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The β-ray angular correlations for the spin alignments of 8Li and 8B have been observed in order to test the
conserved vector current (CVC) hypothesis. The alignment correlation terms were combined with the known β-α
angular correlation terms to determine all the matrix elements contributing to the correlation terms. The weak
magnetism term, 7.5 ± 0.2, deduced from the β-ray correlation terms was consistent with the CVC prediction
7.3 ± 0.2, deduced from the analog-γ decay measurement based on the CVC hypothesis. However, there was
no consistent CVC prediction for the second-forbidden term associated with the weak vector current. The
experimental value for the second-forbidden term was 1.0 ± 0.3, while the CVC prediction was 0.1 ± 0.4 or
2.1 ± 0.5.
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I. INTRODUCTION

In the standard electroweak model, the weak vector current
of nucleons and the isovector part of the electromagnetic
current form a single isovector electroweak current [1]. The
conserved vector current (CVC) hypothesis is analogous
to the electromagnetic current conservation law. The weak
vector current is conserved despite the influence of strong
interactions, such as the contribution from the pion cloud
around a nucleon. The minimum conditions required for the
CVC hypothesis are the universality of the vector coupling
constant gV and the absence of the induced scalar term
gS in the weak nucleon current. The universality of gV is
confirmed at the level of 1.2 × 10−4 and gS is limited to
megS/2MngV = −(0.0011 ± 0.0013) from 20 superallowed
0+ → 0+ β decays [2], where Mn and me are the nucleon
and electron masses, respectively. In this article, the coupling
constant and the induced term in the weak nucleon current,
including gV and gS , are written following Holstein’s expres-
sion [3].

In addition, the so-called strong CVC hypothesis demands
that the weak vector current is paired with the isovector
electromagnetic current. For the isospin triplet state, the
strong CVC requires that a matrix element from the weak
vector current for β decay is identical to one from the
isovector electromagnetic current for analog-γ decay. To
test the strong CVC hypothesis, the weak magnetism term
a

β

WM has been compared with the CVC prediction deduced
from the isovector M1 component of the analog-γ transition
strength [4]. The term a

β

WM was detected using one of the
following: a spectral shape factor, a β-ray angular correlation
with a spin orientation, or a correlation with a delayed α

or γ ray [4–7]. The experimentally determined a
β

WM may

include a possible G-parity irregular term, gII, in the weak
axial-vector current, therefore, the strong CVC has been
tested under the assumption of G-parity conservation. Among
those studies, Minamisono et al. [6] determined the most
accurate a

β

WM in the mass A = 12 system. In their paper,
the gII was determined using the CVC prediction, aCVC

WM , for
the weak magnetism term. When G-parity conservation was
assumed, the strong CVC was confirmed as a

β

WM/aCVC
WM =

1.04 ± 0.03 [8].
Earlier, the strong CVC in the A = 8 system was tested

using the β-α angular correlation terms of 8Li and 8B [9–11].
Among the previous measurements, those by Tribble and
McKeown [10,11] were performed for a wide energy range
of β rays, and the mirror difference δ−

βα of the β-α angular
correlation term was determined. δ−

βα has a contribution of

a
β

WM and a second-forbidden term a
β

WE2 associated with the
weak vector current. While Tribble’s data did not repro-
duce the kinematic shift term for the angular correlation,
McKeown’s data reproduced this term properly, and the result
was consistent with the CVC prediction value δ−

CVC [7] as
δ−
βα/δ−

CVC = 0.93 ± 0.03 ± 0.05, where the first uncertainty
was from the β-α measurement and the second one was from
the CVC prediction.

The β-ray angular distributions of 8Li and 8B are given
by a combination of several matrix elements, not only a

β

WM

and a
β

WE2, but also the Gamow-Teller, axial charge, and
second-forbidden terms from the axial-vector currents. In
spite of this complexity, we previously showed [12] that a

β

WM

and a
β

WE2 could be determined separately by combining the
alignment correlation term and the β-α angular correlation
term. Thus, the strong CVC can be tested for the second-
forbidden transition.
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In our previous letter [12], we reported the measurement
of the β-ray angular correlation term from the spin-aligned
8Li and 8B (Jπ = 2+) and the limitation of gII under the
assumption of CVC. In the present study, we reanalyzed the
data with the assumption of G-parity conservation in order to
test the strong CVC hypothesis for the weak magnetism and
second-forbidden transition separately.

II. β-RAY ANGULAR CORRELATION TERMS
AND ANALOG-γ DECAY

The two kinds of β-ray angular correlation term (i.e., the
alignment correlation term and the β-α angular correlation
term) are similar to each other. The alignment correlation
term is associated with the spin alignment of the parent
nucleus. Because β-delayed α particles are emitted in the
direction perpendicular to the angular momentum of the
daughter nucleus 8Be (Jπ = 2+), the β-α angular correlation
term is associated with the spin alignment of the daughter
nucleus. As a result, the alignment correlation term and the β-α
angular correlation term have the same formula except for the
signs of several second-forbidden terms. This complementary
relationship allows all the matrix elements to be separately
determined, as follows.

The β-ray angular distribution from purely spin-aligned
nuclei is given by W (E, θIβ) ∝ pE(E0 − E)2[B0(E) +
AB2(E)P2(cos θIβ)], where p, E, E0, and θIβ are the β-ray
momentum, energy, end-point energy, and ejection angle with
respect to the spin-orientation axis, respectively. P2 is the
Legendre polynomial. The 8Li and 8B nuclei decay to the broad
first-excited state of 8Be, thus the end-point energy E0 is given
as E0 = Emax − Ex . Emax is the energy release during the β

decay to the 8Be ground state, while Ex is the excitation energy
of 8Be. The nuclear-spin alignmentA = (2a+2 − a+1 − 2a0 −
a−1 + 2a−2)/2 is given by the population am of the magnetic
substate m, with

∑
am = 1. The alignment correlation terms

B2(E)/B0(E) for 8Li and 8B are given by K(E, 0) in [3] as

K(E, s) = − E

3Mn

{
1

A
± b

Ac
− dI

Ac
∓ gII

gA

+ (−)s√
14

[
± f

Ac

E0 + 2E

E0
+ 3

2

j2

A2c

E0 − 2E

Mn

]

− 3√
35

j3

A2c

E

Mn

}
, (1)

where gA is the axial-vector coupling constant, c is the
Gamow-Teller matrix element, b is the weak magnetism matrix
element, dI is the axial charge, f is the second-forbidden term
from the vector current, j2 and j3 are the second-forbidden
terms from the axial-vector current, and A is the mass
number of the nucleus. aWM and aWE2 are given by the ratios
aWM = b/Ac and aWE2 = f/Ac. The β-α angular correlation
term, on the other hand, is given by W (E, θβα) ∝ pE(E0 −
E)2[1 + a∓(E) cos θβα + p∓(E) cos2 θβα], where θβα is the
angle between the momenta of β and α rays. a∓(E) is
the kinematic shift term associated with the recoil of the
daughter nucleus. The β-α angular correlation term p∓(E)
is given as − 2

3p∓(E) = K(E, 1), which is also defined by

Eq. (1). The difference in the correlation terms between
the mirror pair, δ−

align = (B2/B0)8Li − (B2/B0)8B and δ−
βα =

(−2/3)(p− − p+), consists of only three terms, b/Ac, gII/gA,
and f/Ac. The b/Ac term is determined under the assumption
that gII = 0; f/Ac is completely separated from the others as
follows:

δ−
align + δ−

βα

2
= − 2E

3Mn

b

Ac
(2)

δ−
align − δ−

βα

2
= − 2E

3Mn

f

Ac

E0 + 2E√
14E0

. (3)

The c, b, and f terms are described by reduced matrix elements
as follows:

c = gA〈f ||τ±σ ||i〉,
b = A(gM〈f ||τ±σ ||i〉 + gV 〈f ||τ±L||i〉),
f = 2(2π/15)1/2AMnE0gV 〈f ||τ±r2Y2(r̂)||i〉,

where gM is the weak magnetism coupling constant in the weak
vector current. c is determined from the β-decay half-lives of
8Li and 8B.

The matrix elements depend on the final-state energy which
is broadly distributed. The Ex dependence of c and b is
taken into account by using R-matrix theory as described
in Secs. V B and V D. The Ex dependence of the others
is considered as a systematic uncertainty as described in
Sec. V D .

The requirement for a strong CVC is that b and f contribute
also to the electromagnetic transition from the isobaric analog
state in 8Be. b and f are related to the isovector components
of the M1 and E2 transition strengths, �T =1

M1 and �T =1
E2 (i.e.,

b = AMn[6�T =1
M1 /(αE3

γ )]1/2 and f/b = √
10/3δ1) [7]. Here,

Eγ is the γ -ray energy, the fine structure constant α = 1/137,
and the M1/E2 ratio δ1 = (�T =1

E2 /�T =1
M1 )1/2.

The initial state of the analog-γ decay splits into two
isospin mixing states with T = 0 and 1. In addition, the
electromagnetic transitions from these states include the
isoscalar and isovector components. The two strengths �T =1

M1
and �T =1

E2 are the isovector components from the state with
T = 1. The measurement of the γ decay from these states
and the extraction of �T =1

M1 and �T =1
E2 were performed in the

previous work by De Braeckeleer et al. [7].

III. EXPERIMENT

In this section, the experimental details for the alignment
correlation term measurement is described. Figure 1 shows the
experimental setup, which is essentially similar to the previous
experiment for the alignment correlation terms of 12B and
12N [6].

A. Production of unstable 8Li and 8B

The 8Li (8B) nuclei were produced through the nuclear
reactions 7Li(d,p)8Li [6Li(3He,n)8B]. Hereafter, information
within parentheses represents the conditions for 8B. A Li2O
(enriched metal 6Li) target was bombarded by a deuteron (3He)
beam at 3.5 MeV (4.7 MeV) with a typical intensity of 9 µA
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FIG. 1. Schematic view of the experimental setup. The rotational
target with an air cooling system was used to reduce the background
from the target. The catcher and the rf coil were placed at the center of
two telescopes. Each plastic scintillation detector telescope consisted
of two thin 	E detectors (A and B), one veto detector (C), and one
energy detector (E).

(40 µA). A rotating target, which occupied one third of the
circumference of the target rotor, was cooled from inside the
holder by a compressed air jet in order to withstand the high-
intensity 3He beam, which operated at 4.7 MeV up to 40 µA.
The pulsed beam was synchronized to the rotational period
of 2.4 s. The beam-on and beam-off times were 0.8 s and
1.6 s, respectively. The target material was vacuum evaporated
on a backing ribbon made of molybdenum (phosphor bronze).
Phosphor bronze was used to reduce a Rutherford scattering of
3He, which otherwise could have bombarded the recoil catcher
and been an origin of disturbing background activities. A new
ion-source bottle, made of glass, was used for the 3He beam
to prevent a very weak HD+ molecular ion beam from mixing
with the 3He beam. The HD+ ion beam was formed by H2

and D2 gases oozing out from the inner wall of the ion-source
bottle, which were in turn used for the production of p+ or d+
beams.

B. Recoil implantation of polarized nuclei

The recoil angle of the nuclear reaction products was
selected in the range 14◦–40◦ (7◦–18◦) to optimize the obtained
polarization. The polarized 8Li (8B) nuclei were implanted
in Zn [TiO2 (rutile structure)] single crystals by using a
recoil energy of 1.7 MeV (2.3 MeV) obtained by the nuclear
reaction. The crystals were placed in a static magnetic field
B0 to maintain the polarization and to manipulate the spin
orientation using the β NMR technique. The c axis of the
single crystals was set parallel to B0, which was 60 mT
(230 mT). An asymmetry of β rays emitted from polarized
nuclei was detected by two sets of the counter telescopes
placed in opposite directions. The obtained polarization was
determined to be 7.2% (5.4%) from the β-ray asymmetry by
using the β NMR technique.

B1
B0

A detector

C detector

Beam Spot

Magnet
Yoke

Magnet
Coil

Catcher

rf coil
Recoil Nuclei

FIG. 2. Focused view of NMR equipment. An rf oscillating
magnetic field B1, which was applied by the rf coil, is perpendicular
to the external magnetic field B0.

The recoil catcher consisted of a pair of crystals, which
were tilted 45◦ with respect to the magnetic field but in
opposite directions in order to form a dogleg shape (similar
to a half-opened book) as seen from the side, as shown in
Fig. 2. The implantation depth was uniformly distributed at
2.4 µm (3.1 µm) from the surface. The recoil nuclei were
implanted from the inner side of the two crystals, making
the path length and the energy loss of the β rays in the
catcher less sensitive to the β emitter position. The thickness
of crystals was 360 ± 20 µm for the (up) Zn crystal and
250 ± 20 µm for the (down) crystal, and 100 ± 10 µm for both
TiO2 crystals. The systematic uncertainty due to the ambiguity
in the thickness was considered as discussed in Sec. IV D.

C. Spin manipulation

In order to convert the initial polarization into positive
and negative alignments with, ideally, zero polarization, the
nuclear spin was manipulated using the NMR technique.
The Larmor frequency for the spin J = 2 nucleus splits into
four resonance frequencies because of hyperfine interaction
between the electric quadrupole moment Q of the implanted
nucleus and the electric field gradient (EFG) at an implantation
site in the crystal. The EFG is defined by Vii = d2V /di2,
where i represents the principal axes of the EFG (i.e., X, Y ,
and Z, VXX + VYY + VZZ = 0, and |VXX| � |VYY| � |VZZ|).
Therefore, once the principal axes are chosen, the EFG is
given by two parameters q = VZZ and η = (VXX − VYY)/VZZ.
The resonance frequency between two neighboring magnetic
substates, (m − 1) ↔ m, is given in [13] as

νm−1↔m = νL − νQ

4
(3 cos2 θ − 1 + η sin2 θ cos 2φ)(2m − 1),

(4)

where νL is the Larmor frequency, νQ = eqQ/4h, and θ and
φ are the Euler angles between the principal axes of the EFG
and the external magnetic field, respectively.

Populations of two neighboring magnetic substates can
be manipulated independently by applying an rf oscillating
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magnetic field at each frequency. EFG at implantation sites in
crystals has been studied by the β NMR technique [14–16].
The number of possible implantation sites is one for 8Li in
Zn and two for 8B in TiO2. The relative populations are
90% for 8B implanted in the major site of TiO2 and 10%
for that in the minor site. νQ and η have been determined as
νQ = 8.4 ± 0.5 kHz and η = 0 for the implantation site of 8Li
in Zn [14] and as νQ = 144.5 ± 0.6 kHz and η < 0.03 for
the major implantation site of 8B in TiO2 [16]. Because of a
small population for the minor site, it was difficult to detect a
β NQR signal for 8B in the minor site. νQ and η at the minor
site of 8B in TiO2 were evaluated as νQ = 1185 ± 8 kHz and
η = 0.020 ± 0.006 from νQ at the minor site of 12B [15] and
the ratio of the Q moments of 8B and 12B [16]. The directions of
q at an implantation site of 8Li in Zn and at the major site of 8B
in TiO2 [14,16] were parallel to the c axis of the crystals (i.e.,
θ = 0), thus giving four frequencies split at regular intervals.
For the minor site of 8B in TiO2, the direction of q was inclined
at 106◦ relative to the 〈100〉 axis on the (001) plane and the
direction of VYY was parallel to the c axis of the crystal [15]
(i.e., θ = φ = 90◦) as the c axis was parallel to B0. Frequencies
for 8B at the major and minor sites are shown as a function of
B0 in Fig. 3. Frequencies for the major site were isolated from
those of the minor site only for the experimental condition of
B0 = 230 mT. Under this condition, only the nuclear spin of
8B implanted in the major site can be manipulated. The β-ray
angular distribution from the unmanipulated 8B in the minor
site was stable. Because the alignment correlation term was
derived from the dependence of the β-ray angular distribution
on the degree of the alignment, the effect of 8B in the minor
site was canceled.

The spin-aligning procedure for spin J = 2 was developed
as part of our study. Figure 4 shows the schematic aligning
procedure using 8Li as an example. Immediately after the
pulsed beam was stopped, the nuclear spin was manipulated
by applying two kinds of β NMR techniques, the adiabatic-
fast-passage (AFP) and the depolarization methods. The
populations between the two neighboring magnetic substates
were interchanged by the AFP method and equalized by the
depolarization method. To convert a positive polarization to

3.0

2.5

2.0

1.5

1.0

0.5

0.0

F
re

qu
en

cy
  (

M
H

z)

0.50.40.30.20.10
External Magnetic Field  (T)

FIG. 3. External magnetic field dependence of the resonance
frequencies of 8B in TiO2. The solid and dashed lines denote the
frequencies of major and minor sites, respectively.

+2
+1

0
–1

m= –2

am A+

A–

FIG. 4. Spin-aligning procedure for 8Li. The change in the
populations, am of the magnetic substate are shown. The spin
manipulations with the AFP and depolarization methods of the NMR
technique are denoted by the solid and dashed arrows, respectively.
The two open bars in each orientation show the manipulated popula-
tions. The upper and lower parts show the production procedure for
the positive and negative alignments, respectively. The polarizations
of the three orientation patterns framed by the separate squares were
measured to determine the alignment. The timing program for the
measurement is shown in Fig. 5.

a positive alignment A+, the populations in m = 2 and 1,
as well as in m = −1 and 0 were first equalized using the
depolarization method. Following this, the positive alignment
was produced by sequentially applying the AFP method
four times, by which the populations between m = 1 and 0,
m = −1 and 0, m = −2 and −1, as well as m = −1 and
0 were interchanged. A negative alignment was produced
immediately after the beam was stopped in the next beam-
count cycle following a similar procedure applied to the
magnetic substates, as shown in the A− part of Fig. 4. For
8B, an opposite sign of alignment was produced using the
same procedure as for 8Li, because the polarization initially
obtained for 8B was negative while the other parameters
(i.e., the direction of the holding magnetic field and the field
gradient) were similar. The alignment was converted back to a
polarization to check the spin manipulation and to measure
the relaxation time of the alignment. Subsequently, in the
same beam-count cycle, the polarization was converted to an
alignment with the opposite sign, as shown in Fig. 5. This
method of data acquisition, using the present timing program,
removed the systematic uncertainty due to beam fluctuation as
described in Sec. IV B.

D. β-ray energy spectra

The β rays were detected by two sets of plastic scintillation
counter telescopes placed above (θIβ = 0◦) and below (180◦)
the crystal as shown in Fig. 1. Each telescope consisted of
two thin 	E (A and B) detectors of 12 mm φ× 0.5 mm and
55 mm φ× 1 mm, one β-ray energy (E) detector of 160 mm
φ×120 mm, and one cone-shaped veto (C) detector. The C
detector was used to reject the β rays scattered at the magnet.
A typical counting rate of β rays from β emitters stopped in
the catcher was 4 kcps (1.5 kcps).

The energy spectra of β rays emitted from purely aligned
8Li and 8B are shown in Fig. 6. The gain in the analog signal
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t

t
Beam A+ Section A-

 Section

β

FIG. 5. Timing program for the spin-aligning process. In each
cycle, the positive and negative alignments were produced as shown
in upper part. The timing program for the spin manipulation and the
β-ray angular distribution measurement are shown in lower part. The
ellipses and rectangles show the spin manipulation with the AFP and
depolarization methods, respectively, used for the relevant transition
between the magnetic substates shown by the two numbers. The
β-ray angular distribution was observed at the half-height squares.
The alignment was converted back to the polarized form to check the
spin manipulation and to measure alignment relaxation.

was stabilized using the standard light pulse from a light-
emitting diode (LED) pulser whose the circuit was maintained
at a constant temperature.

The energy deposit in the E detector for a monoenergetic
β ray was obtained by a Monte Carlo simulation with the
electron gamma shower (EGS)4 code [17]. The detector
telescopes, the catcher of the reaction products 8Li and 8B,
the catcher holder, and the vacuum chamber near the β-ray
window were arranged in the simulation. The distribution
of the reaction products on the catcher was given using the
reaction kinematics. The response function was obtained by
convoluting the deposit function with a detector resolution, as
shown in Fig. 7. The resolution of the Gaussian function was
determined by the χ2 fitting of the β-ray energy spectra of 8Li
and 8B with σ = σ0

√
Edep, where σ0 = 0.10 ± 0.02 (MeV)1/2.

Here, Edep is the energy deposit that was observed in the E
detector, whereas the alignment correlation term needed to be
extracted as a function of the β-ray energy just as it was emitted
from the nucleus. The peak position of the energy deposit for
monoenergetic β rays was scaled to the incident energy of
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FIG. 6. Typical β-ray energy spectra for 8Li (upper) and 8B
(lower). The dots are the experimental data and the solid curves are
the best-fit lines. The energy region lying between the two vertical
lines in each energy spectrum shows the region used for the line
fitting. The background β rays in the low energy region of the 8B
spectrum were from 15O.

the β ray. The β-ray energy spectrum for the χ2 fitting was
obtained by convoluting the β-ray continuous energy spectrum
with the response function of the monoenergetic β ray.

The β-ray energy was scaled by determining the end-point
energies of several β emitters, which were 8Li itself, 28Al
(E0 = 2.86 MeV), 20F (5.39 MeV), and 12B (13.37 MeV)
for the 8Li experiment, and 8B itself, 15O (1.73 MeV), 20F
(5.39 MeV), and 12N (16.32 MeV) for the 8B experiment.
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FIG. 7. Response function of the E detector for β− ray with 8
MeV. The horizontal axis has been rescaled from the simulated energy
deposit in the E detector to the β-ray energy just after the emission
from the nucleus.
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IV. ANALYSIS

First, the determination of the degree of polarization
and alignment, then that of the alignment correlation terms
are described. The evaluation of corrections and systematic
uncertainties follows.

A. Degree of polarization and alignment

The polarization was determined from the β-ray asymmetry
where β rays from 5 to 13 MeV were used. The β-ray angular
distribution from the polarized nuclei is given by W (θIβ) ∝
B0(E) + B1(E)P cos θIβ ∝ 1 + AsP cos θIβ , where P is the
degree of the polarization. The asymmetry parameter, As =
B1(E)/B0(E), has an energy-independent main term and an
energy-dependent higher-order term. For the determination
of the degree of the polarization and alignment, As was
approximated as −1/3 for 8Li and 1/3 for 8B. The effect
on the alignment correlation term by the higher-order term of
As was corrected as described in Sec. IV C2. The counting
ratio of the top and bottom telescopes (i.e., θIβ = 0◦ and
180◦) was caused by the β-ray asymmetry from the polar-
ization P as well as the possible geometrical asymmetry g

resulting from the geometrical misalignment between the two
telescopes. This ratio is expressed as Rβ = W (0◦)/W (180◦) =
g(1 + AsP)/(1 − AsP). To determine g, the polarization was
inverted by applying a series of ten AFPs. The measured
counting ratios for the initial polarization RP+, the inverted
polarization RP−, and the twice-inverted polarization RP++
are given by

RP+ = g(1 + AsP0)/(1 − AsP0), (5)

RP− = g(1 + αAsP0)/(1 − αAsP0), (6)

RP++ = g(1 + α2AsP0)/(1 − α2AsP0). (7)

From these equations, the initial polarization, P0, g, and the
polarization inversion efficiency α were deduced, as shown in
Table I. The inversion efficiency η for the populations between
the two magnetic substates by one AFP were determined
from the relationship between α and η, α ≈ 4 − 5η. The
relaxation time of the polarization T1 was determined from
the time spectrum of polarization. These parameters are given
in Table I.

The extraction of the degree of alignment from the negative
alignment section shown in Fig. 4 was performed as follows.
The β-ray asymmetry of the three orientations shown in Fig. 4
was observed during the aligning process. The polarization
was determined from the measured asymmetry and g, as
shown in Fig. 8. The population of the magnetic substate
at the first orientation is given by (a−2, a−1, a0, a+1, a+2) =
[r(1 − ε1), r(1 + ε1), s(1 − ε2), s(1 + ε2), t]. The parameters
r, s, and t satisfy the relation 2r + 2s + t = 1. ε1 and ε2 are
the parameters describing incompleteness in the depolarization
method for the two different frequencies. These two parame-
ters yielded a small residual polarization at the pure alignment
section. The polarization of the first orientation is given
by P1st = 1

2 [r(ε1 − 3) + s(ε2 + 1) + 2t]. The population after
the spin manipulation using the AFP method, for example,

TABLE I. Results of the spin manipulation. P0 is the initial
polarization. A∓

1/2 is the alignment, where subscripts 1 and 2 indicate
the first and second halves of the timing program, respectively, and
the superscript is the sign of the alignment. 	A1+2 is the sum of the
absolute value of the alignments. T1 and TA are the relaxation times
of the polarization and the alignment, respectively. α and η are the
efficiencies of the polarization inversion and the population inversion
between the two neighboring magnetic substates. ε is a parameter of
the incompleteness of the depolarization.

8Li 8B

P0 (%) 7.18 ± 0.10 5.42 ± 0.19

A+
1 (%) 3.96 ± 0.20 4.9 ± 0.4

A−
1 (%) −4.93 ± 0.20 −5.6 ± 0.4

A+
2 (%) 2.29 ± 0.19 3.9 ± 0.4

A−
2 (%) −1.91 ± 0.19 −3.2 ± 0.4

	A1+2 (%) 13.1 ± 0.4 17.7 ± 0.8

T1 (s) 13.0 ± 1.6 13 ± 4

TA (s) 2.0 ± 0.7 2.2 ± 1.2

α (%) −85.5 ± 0.3 −94.8 ± 0.9

η (%) 97.09 ± 0.07 98.95 ± 0.18

ε (10−3) 4.4 ± 0.2 −0.9 ± 0.4

between m = 2 and m = 1 is given as a matrix:⎛
⎜⎜⎜⎜⎜⎝

1 − η η 0 0 0

η 1 − η 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a+2

a+1

a0

a−1

a−2

⎞
⎟⎟⎟⎟⎟⎠ , (8)

where η ≈ 1. The spin manipulation shown in Fig. 4 can
be described as the product of the matrices. Therefore,
the population at each orientation is given by r, s, t, η, ε1,
and ε2. The polarization at the second orientation is given
by P2nd ≈ 1

2 {4rε1 + s(ε2 − 1) + t + (1 − η)[−6r(ε1 + 1) −
s(ε2 − 5) + t]} under the approximation, up to the first order,
that (1 − η) 
 1. The pure alignment is produced at the
third orientation. The residual polarization is given by P3rd ≈
1
2 {4rε1 + 2sε2 + (1 − η)[−6r(ε1 + 1) − 3s(ε2 − 1) + 3t]}. η

was determined from the measurement of RP+ , RP− , and
RP++ . Therefore, the number of free parameters is three,
by assuming ε1 = ε2 and given the relation 2r + 2s + t = 1.
All the population parameters were determined from the
polarization change of the three orientations.

The alignment in the third orientation can be calculated
from the population parameters usingA ≈ 1

2 {−2 + 8r + 2s +
(1 − η)[−10r(ε1 + 1) − s(ε2 − 5) + 5t]}. This equation gives
the alignment prior to the alignment section. In order to
consider the alignment relaxation in the crystal, the alignments
prior to and after the alignment section were determined from
the polarization change before and after the alignment section,
respectively. Then the effective alignment and the relaxation
time of the alignment were deduced. Using a different assump-
tion that ε1 = 10ε2 or ε1 = 0.1ε2, the systematic uncertainty
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FIG. 8. Polarization change in the timing program for the spin-
aligning process. The filled circles and the open squares are for the
cycles A and B in Fig. 5, respectively. The beam was chopped and
was stopped for the cycle at the time 0.

was estimated. The change in the alignment was less than the
statistical uncertainty. The results for the spin manipulation
are summarized in Table I.

B. Alignment correlation term

The alignment correlation term was obtained from the ratio
of counts,

R(E) = N (E, d P+,A+)/N(E, d P−,A−),

at the positive and negative alignment sections. A and d P are
the alignment and the residual polarization at the alignment
section, respectively. The signs given by the superscript in A±
and dP± are the alignment signs. The counts are proportional
to the β-ray angular distribution as expressed by

N (E, d P,A) ∝ B0(E){1 ± [B1(E)/B0(E)]dP
+ [B2(E)/B0(E)]A},

where the upper and lower signs are for the top and bottom
telescopes, respectively.

For the first half of cycles A and B shown in Fig. 5, the
counting ratio R1(E) is given by

R1(E) = T +N (E, d P+
1 ,A+

1 )

T −N (E, d P−
1 ,A−

1 )
, (9)

where the values with subscript 1, such as A+
1 , are for the

first half. T − and T + are the beam-current integrals for cycles
A and B, respectively. The alignment correlation term was

derived using the well-approximated formula as

R1(E) ≈ T +

T −

[
1 ± B1(E)

B0(E)
dP1 + B2(E)

B0(E)
	A1

]
, (10)

where the upper and lower signs are for the top and bottom
telescopes, respectively. d P1 = d P+

1 − d P−
1 and 	A1 =

A+
1 − A−

1 . The ratio of T + and T − caused a spurious β-ray
asymmetry in R1(E). The counting ratio R2(E) at the second
half of cycles A and B is given by

R2(E) = T −N (E, d P+
2 ,A+

2 )

T +N (E, dP−
2 ,A−

2 )

= T −

T +

[
1 ± B1(E)

B0(E)
d P2 + B2(E)

B0(E)
	A2

]
, (11)

where the values with subscript 2, such as A+
2 , are for the

second half. In the double ratio R1(E)R2(E), T + and T − are
canceled as

R1(E)R2(E) = N (E, d P+
1 ,A+

1 )

N (E, d P−
2 ,A−

2 )

N (E, d P+
2 ,A+

2 )

N (E, d P−
2 ,A−

2 )

≈ 1 ± B1(E)

B0(E)
d P1+2 + B2(E)

B0(E)
	A1+2, (12)

where d P1+2 = d P1 + d P2 and 	A1+2 = 	A1 + 	A2.
The alignment correlation terms were extracted from the
simple average of the double ratios R1(E)R2(E) for the top
and bottom telescopes so that the influence of the residual
polarization was canceled.

C. Corrections

In the extraction procedure for the alignment correlation
terms described above, the β-ray angular distribution for 8Li
is given by

W (E) ∝ pE(E0 − E)

[
1 ∓ 1

3
P + B2(E)

B0(E)
A

]
, (13)

where the upper and lower signs are for telescopes with θIβ =
0◦ and 180◦, respectively, instead of the following:

W (E, θIβ) ∝ pE(E0 − E)

{
1 + B1(E)

B0(E)

p

E
PP1[cos(θIβ)]

+B2(E)

B0(E)

(
p

E

)2

AP2[cos(θIβ)]

}
. (14)

The correction for the P1[cos(θIβ)] and P2[cos(θIβ)] is given
in Sec. IV C1. The corrections for (p/E), (p/E)2, and
B1(E)/B0(E) are given in Sec. IV C2.

1. Solid angle of β-ray telescope

The polarization and alignment correlation terms in the
β-ray angular distribution are proportional to the Legendre
polynomials P1[cos(θIβ)] and P2[cos(θIβ)] [i.e., the cos θIβ and
3
2 (cos2 θIβ − 1/3) terms] respectively. R1(E)R2(E) in Eq. (12)
includes B2(E)/B0(E), so the 3

2 (cos2 θIβ − 1/3) contribution
should be corrected. 	A1+2 was determined from the degree
of polarization, so the cos θIβ contribution should be corrected.
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FIG. 9. Energy-dependent correction factors and total correction
for 8Li (upper) and 8B (lower). The correction factors for the solid
angle, Csolid, the detector response, Cres, the background, CBG, and
the (p/E)2 term in the β-ray angular distribution, C(p/E)2 , are shown.
The total correction factor, Ctotal also includes the energy-independent
correction factors for the (p/E) and B1/B0 terms in the β-ray angular
distribution.

In order to take the finite solid angle of the detector into
account, the detection efficiency as a function of E and θIβ was
simulated using the EGS4 code. The correction for the solid
angle was evaluated by convoluting the simulated efficiency,
as shown in Fig. 9.

2. Higher-order term in the polarization and alignment
correlation terms

The p/E term and the B1(E)/B0(E) term in the polariza-
tion correlation term were assumed to be 1 and ∓1/3, where the
upper and lower signs are for 8Li and 8B, respectively, when
the polarization was determined from the β-ray asymmetry.
The correction for the polarization is independent of the
energy, because the polarization was determined from the
total count from 5 to 13 MeV. The correction for the p/E

term was 0.9972 and 0.9973 for 8Li and 8B, respectively. The
B1(E)/B0(E) term is given in [3] as

B1(E)

B0(E)
= ∓1

3

[
1 + E

3Mn

(
1

A
± b

Ac
− dI

Ac

)

−
√

21

4

(
± f

Ac

4E + E0 + 4E2/E0

3Mn

− j2

A2c

8E2 − 5EE0

2M2
n

)]
. (15)

To avoid the large systematic uncertainty from the j2/A
2c

term, the correction factor was evaluated using the product
of the correction factor at 5

8E0 and the ratio of the value
at 5

8E0 to the averaged value from 5 to 13 MeV. The ratio
was determined, from the observed energy dependence of
the polarization correlation term, to be 0.983 ± 0.007 for 8Li
and 1.013 ± 0.014 for 8B. The correction factor at 5

8E0 was
self-consistently evaluated using iteration to be 0.98 ± 0.03
for 8Li and 0.99 ± 0.03 for 8B from the matrix elements
b/Ac, dI/Ac, f/Ac, and j2/A

2c, which in the present study
were determined from the alignment correlation terms and
the β-α angular correlation terms. The uncertainty of this
correction included the uncertainty of the matrix elements
and a 100% uncertainty of the higher-order contribution from
f/Ac, thus implying a severe evaluation. Accordingly, the
correction factor for B1(E)/B0(E) was 0.96 ± 0.03 for 8Li
and 1.00 ± 0.03 for 8B.

The (p/E)2 term in the alignment correlation term is
assumed to be 1 for the first-order analysis. The evaluated
correction factor for the (p/E)2 term is shown in Fig. 9.

3. Detector response

The observed alignment correlation term includes the con-
tribution from the neighboring energy region to some extent
because of the finite detector resolution and the low-energy
tail component of the detector response, as shown in Fig. 7.
The correction factor was evaluated self-consistently using the
known detector response and the alignment correlation term,
as shown in Fig. 9. Here, the alignment correlation term was
approximated by a quadratic curve, c1E + c2E

2, with two
parameters c1 and c2. The correction factor for 8B from 6 to
12 MeV was close to 1 because the alignment correlation term
was almost constant and the influence of the different energy
was small.

4. Background

The main backgrounds for 8Li and 8B below 4 MeV
were 17F (T1/2 = 64.5 s, QEC = 2.76 MeV) and 15O (T1/2 =
122 s, QEC = 2.75 MeV), respectively. The correction for the
background is also shown in Fig. 9. The systematic uncertainty
in the alignment correlation term was estimated by assuming
20% ambiguity in the background fraction.

D. Systematic uncertainties

In this subsection, the systematic uncertainties of the
alignment correlation term are described. They are also
summarized in Table II.

1. Polarization relaxation and rank-three spin orientation

The polarization and alignment were relaxed as a function
of time. While the alignment relaxation during the alignment
correlation term measurement was taken into account in the
procedure of the alignment extraction, the relaxation during
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TABLE II. Systematic uncertainties of the alignment correlation term at 9 MeV.

8Li 8B
×10−2 ×10−2

Polarization relaxation 0.002 0.003
Third-order orientation 0.015 0.026
Uncertainty of B2 (B0) in detector-response correction 0.010 0.007
Uncertainty of matrix elements in B1 (B0) correction 0.107 0.133
Position of beam spot and catcher 0.011 0.027
Position of 	E detector and catcher 0.015 0.039
Low-energy tail of detector response 0.050 0.034
Detector resolution 0.021 0.017
Energy scaling 0.053 0.001
Gain fluctuation 0.028 <0.001
Pileup 0.001 <0.001
Background <0.001 <0.001
Total 0.137 0.148

conversion from the polarization to alignment was evaluated
as a systematic uncertainty.

The β-ray asymmetry was caused by the odd rank of the
spin orientation. The degree of the rank-three spin orientation
was determined from the population parameters, similar to the
case of the degree of alignment, as described in Sec. IV A. The
polarization was evaluated by taking the degree of the rank-
three orientation into account. The effect on the polarization
was considered as a systematic uncertainty.

2. Uncertainty in the correction factor resulting from
self-consistent evaluation

The correction factor for the detector response was self-
consistently evaluated using the results of the alignment
correlation term. The energy dependence of the alignment
correlation term was estimated as a quadratic curve without
a constant term. The statistical uncertainty of the quadratic
curve was propagated to the systematic uncertainty.

The correction factor for B1(E)/B0(E) was evaluated
using the matrix elements, such as dI /Ac. The systematic
uncertainty for this correction factor has been discussed in
Sec. IV C.

3. Relative positions of the beam, recoil catcher, and telescope

The implanted recoil nuclei distributed widely on the
catcher except for the part in the shadow part of the collimator.
The relative positions of the beam spot and the catcher were
able to change the distribution of the reaction products on the
catcher. The beam spot was tuned using a fluorescent target
with accuracy 0.5 mm and 1 mm in the horizontal and vertical
directions, respectively. The relative position of the catcher
and the 	E detector had the potential to change the solid
angle of the telescope and the β-ray efficiency. The uncertainty
of this relative position was 2 mm. The correction factors
were evaluated by using the detector response simulated for
different conditions using the EGS4 code. The change in the

alignment correlation terms because of these two uncertainties
was considered to be the systematic uncertainty.

4. Detector response function

The reliability of the low-energy tail in the simulated
response function of a mono-energetic β-ray was evaluated.
The low-energy tail was mainly caused by the energy loss
straggling in the material between the positions of the β-ray
emitter and E detector. The largest uncertainty was due to the
catcher thickness. The relative uncertainty of the thickness was
10% for all the crystals.

The reliability of the simulated low-energy tail has been
studied experimentally [18]. 12B and 12N were produced as
β-ray emitters. The β-ray energy was selected via a dipole
magnet. The shape and amount of low-energy tail were
confirmed to within 20% statistical uncertainty.

The catcher thickness uncertainty of 10% and the simula-
tion reliability of 20% for the low-energy tail were simulated
simultaneously by varying the crystal thickness by 30% in the
EGS4 simulation. The correction factors were evaluated by
simulating the detector response at a crystal thickness varied by
30%. The systematic uncertainty in the alignment correlation
terms was evaluated using these correction factors.

The detector resolution was determined from the resolution
reproducing the experimental β-ray spectra of 8Li and 8B. The
uncertainty of the counter resolution was 20%. The correction
factors were evaluated using counter resolutions both 20%
larger and 20% smaller than the most probable resolution. The
systematic uncertainty in the alignment correlation terms was
evaluated using these correction factors.

5. Energy scaling, gain fluctuation, and pileup

The systematic uncertainty due to the energy-scale un-
certainty δE was evaluated using d

dE
(B2(E)/B0(E))δE.

B2(E)/B0(E) was given by the polynomial for E and E2,
where the coefficients were determined by the χ2 fit analysis.
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The gain fluctuation was typically within 40 keV. The
systematic uncertainty due to the gain fluctuation of the E
detector was evaluated using the same procedure as that for
the energy-scale uncertainty.

For a pileup event caused by two β rays, the obtained
alignment correlation term is determined on the basis of the
contributions of the two β rays at their respective energies. This
effect was evaluated as a systematic uncertainty by integrating
its contribution over the energy of two β rays.

V. RESULTS AND DISCUSSION

After the obtained alignment correlation terms are shown,
the results given by Eq. (2) are compared with the CVC
prediction. Then the weighted mean value of end-point energy
over final-state distribution is described, which is used when
the matrix elements are determined from the alignment
correlation terms and the β-α correlation terms. Finally, the
extraction of the weak magnetism and the second-forbidden
term is described and these terms are compared with the CVC
prediction.

A. Alignment correlation terms and β-α correlation terms

The alignment correlation terms that were obtained are
shown in Fig. 10. The statistical uncertainty of the alignment
	A1+2 in Eq. (12) could shift all data points of the alignment
correlation term in the same direction. The statistical uncer-
tainty of 	A1+2 is not included in each data point of Fig. 10
in order to retain a statistical fluctuation among the different
points, however, the statistical uncertainties of the final results,
such as a

β

WM, include the statistical uncertainty of 	A1+2.
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FIG. 11. Weak magnetism term derived from the β-ray correla-
tion terms. The CVC predictions are shown by the 1σ error band. The
solid, dashed, and dotted bands are the present, De Braeckeleer’s [7],
and Winter’s [19,20] predictions, respectively. Winter’s prediction
was reevaluated using the mirror-averaged end-point energy.

The β-α correlation terms − 2
3p±(E) [11] are also shown

as crosses. The weak magnetism term, −(3Mn/4E)(δ−
align +

δ−
βα) = b/Ac, was derived by combining the two types of

correlation terms shown in Fig. 11. Figure 11 also reflects
a reanalysis using the same energy bin as the β-α correlation
terms [11].

B. CVC prediction

The experimental b/Ac results shown in Fig. 11 indi-
cate a slight E dependence. The CVC prediction of an
energy-dependent b/Ac has been indicated and described
in previous studies by introducing the dependence into the
matrix elements, b(Ex) and c(Ex), of the final-state energy
Ex in 8Be [7,21–23]. The final-state energy distributes widely
because several states with spin and parity of 2+ are mixed
because of the wide decay width. This final-state distribution
can be formulated using the R-matrix theory with four final
states [24,25]. We reevaluated the CVC prediction in Ref. [12]
by using the analog-γ -decay measurement by De Braeckeleer
et al. [7], and the recent measurement of the β-delayed-α
energy spectra from 8Li and 8B by Bhattacharya et al. [25].
The procedure for this reevaluation was the same as for the
previous work [7] except for the number of final states. Three
final states were used in the previous work, while four final
states were used in the present evaluation, similar to that for
the Gamow-Teller matrix element c(Ex) in Ref. [25]. The
procedure is summarized below.

The Ex dependence of c(Ex) gives the final-state distribu-
tion for the β decay (i.e., the delayed-α energy spectrum). The
mirror-averaged c(Ex) was determined from the delayed-α
energy spectra of 8Li and 8B based on the R-matrix formalism
by Bhattacharya et al. [25].

b(Ex) is given by the isovector M1 transition strength of the
analog-γ decay, based on the strong CVC. The isobaric analog
state in 8Be was produced using the 4He (α, γ ) reaction and
the de-excited γ ray was measured [7]. The Ex dependence of
b(Ex) gives the final-state distribution in the analog-γ decay,
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which has been measured through the γ -ray energy spectra
shown in Fig. 4 of Ref. [7]. The matrix elements,Mγ

1 and Rγ in
b(Ex), give the Ex dependence of b(Ex) and were determined
using the three final states in Ref. [7]. The Mγ

1 is the weak
magnetism matrix element for the transition to the first-excited
state, and Rγ is the ratio, Mγ

16/M
γ

1 , where Mγ

16 represents
the transition to an isospin doublet at 16 MeV. These matrix
elements were redetermined for the four final states so as
to reproduce the γ -ray energy spectra, which were Mγ

1 =
8.71 ± 0.28 and Rγ = 1.5 ± 1.4.

The E-dependent b/Ac is given in [7] by the weighted
average as

b

Ac
→

∫
b(Ex)c(Ex)(Emax − Ex − E)2dEx

A
∫

c2(Ex)(Emax − Ex − E)2dEx

. (16)

Here, c(Ex) and Emax averaged between the mirror pair
were used because b/Ac was derived from the β-ray angular
correlations of both 8Li and 8B. The CVC prediction of b/Ac

determined from Eq. (16) is shown in Fig. 11.
The CVC predictions determined by De Braeckeleer

et al. [7] and Winter et al. [19,20] are also shown in Fig. 11. The
previous predictions have a problem with regard to final-state
treatment. The delayed-α spectra have been reproduced very
well using the four final states [24,25]. De Braeckeleer et al.,
however, used three states for both b(Ex) and c(Ex), and
Winter et al. used three states only for b(Ex). The present CVC
prediction was slightly smaller than the previous predictions
at a higher energy region.

The transition to the first-excited state of 8Be was pre-
dominant for the analog-γ transition [7]. Therefore, for a
comparison between the b/Ac extracted from the β de-
cay and its CVC prediction, the weak magnetism for the
first-excited state, aWM, was used. This was given by the
matrix elements of the transition to the first-excited state,
a

β

WM = Mβ

1 /AMβ

GT1 for β decay and aCVC
WM = Mγ

1 /AMβ

GT1

for the CVC prediction, where Mβ

1 and Mβ

GT1 are the
weak magnetism (b) and Gamow-Teller (c) matrix elements
for the weak transition to the first-excited state, respec-
tively. The expression for b/Ac using M1 and MGT1 was
given in Ref. [7]. The CVC prediction was determined to
be aCVC

WM = 7.3 ± 0.2 based on Mγ

1 = 8.71 ± 0.28 and the
mirror-averaged Mβ

GT1 = 0.1496 ± 0.0005 [25]. The CVC
prediction of f was determined by the isovector M1/E2 ratio
δ1 = 0.01 ± 0.03 [7] as aCVC

WE2 = √
10/3δ1a

CVC
WM = 0.1 ± 0.4.

The values are summarized in Tables III and IV.

C. End-point energy

The end-point energy of the β ray is not a constant because
of the broad final state. The alignment correlation terms and
the β-α correlation terms given in Eq. (1) were measured as a
function of β-ray energy without measurement of the end-point
energy. Therefore, the end-point energy was averaged over the
final-state-energy distribution. The weight is the product of
pE[E0(Ex) − E]2 and the final-state distribution c2(Ex) of the
β decay. When a certain β-ray energy is chosen, the weighted

TABLE III. Decay widths and matrix elements for the γ decay
from the isobaric analog state in 8Be. �T =1

M1 is the decay width for the
isovector component of the M1 transition from the isobaric analog
state (T = 1). δ1 is the isovector M1/E2 ratio from the isobaric
analog state. Definition of Mγ

1 and R
γ

1 is described in the text.
Average value Mβ

GT1 of the Gamow-Teller matrix elements of 8Li
and 8B is also shown.

Analog-γ decay Value Matrix Element Value

�T =1
M1 [7] 2.80 ± 0.18 eV Mγ

1 [7]a 8.7 ± 0.3

�T =1
M1 [23]b 3.6 ± 0.3 eV Mγ

1 [23]c 9.9 ± 0.6

�T =1
M1 [22]b 4.1 ± 0.6 eV Mγ

1 [22]c 10.5 ± 0.9

δ1 [7] 0.01 ± 0.03 R
γ

1 [7]a 1.5 ± 1.4

δ1 [23]b 0.14 ± 0.03 Mβ

GT1 [25] 0.1496

±0.0005

aReanalyzed in the present work using the four final states in the
R-matrix formalism.
bReanalyzed in Ref. [7].
cCalculated from Mγ

1 of Refs. [7] and �T =1
M1 of Ref. [7,23] or

Refs. [7,22] using the relation Mγ

1 ∝
√

�T =1
M1 .

mean value of the end-point energy is given by

E0(E) =
∫

pE[E0(Ex) − E]2c2(Ex)E0(Ex)dEx∫
pE[E0(Ex) − E]2c2(Ex)dEx

=
∫

[E0(Ex) − E]2c2(Ex)E0(Ex)dEx∫
[E0(Ex) − E]2c2(Ex)dEx

, (17)

where E0(Ex) = Emax − Ex and the integral range is from 0
to (Emax − E). Figure 12 shows E0(E) calculated using c(Ex)
determined in Ref. [25]. This E0(E) was used in the analysis
to determine the matrix elements

D. Weak magnetism and second-forbidden terms from
the weak vector current

The mirror-difference δ− consists of b/Ac and a small
contribution of j2/A

2c due to the mirror asymmetry of
E0. To avoid the influence of this mirror asymmetry, the
χ2 fit analysis was performed simultaneously on the four
correlation terms (i.e., both alignment correlation terms and
β-α angular correlation terms of 8Li and 8B). The Ex-
dependent b/Ac in the β-ray angular correlation terms was

TABLE IV. Ratio of matrix elements contributing to the β-ray
angular correlations. The CVC predictions are also shown. aCVC

WM =
Mγ

1 /AMβ

GT1 and aCVC
WE2 = √

10/3δ1a
CVC
WM .

Matrix Element Value Matrix Element Value

a
β

WM 7.5 ± 0.2 aCVC
WM [7] 7.3 ± 0.2

a
β

WE2 1.0 ± 0.3 aCVC
WM [23] 8.3 ± 0.5

dI/Ac 5.5 ± 1.7 aCVC
WM [22] 8.8 ± 0.7

j2/A
2c −490 ± 70 aCVC

WE2 [7] 0.1 ± 0.4

j3/A
2c −980 ± 280 aCVC

WE2 [23] 2.1 ± 0.5

065501-11
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FIG. 12. Weighted mean value of the end-point energy over the
broad-final-state distribution as a function of β-ray energy.

given by the same formula as the CVC prediction of b/Ac.
a

β

WM = Mβ

1 /AMβ

GT1 was used as a free parameter for the
χ2 fit analysis, where Rβ was assumed to be the same as
Rγ . The E dependencies of a

β

WE2, dI/Ac, j2/A
2c, and j3/A

2c

were not clearly seen in the β-ray correlation terms because of
the relatively large statistical uncertainties. These terms were
assumed to be constant and were chosen as free parameters
for the χ2 fit analysis. The obtained terms were considered
as the value averaged over the analyzed energy region. The
best-fit curves are shown in Fig. 10 and the results are
summarized in Table IV. The weak magnetism and the second-
forbidden terms were a

β

WM = 7.54 ± 0.12(stat.) ± 0.15(syst.)
and a

β

WE2 = 1.0 ± 0.2(stat.) ± 0.2(syst), respectively. The sys-
tematic uncertainty because of the E dependence of a

β

WE2

was estimated to be 0.05 for a
β

WE2 by assuming that the
Ex dependence of f (Ex) was the same as b(Ex). The other
systematic uncertainties in the alignment correlation terms and
the β-α correlation terms were independently propagated to
those in a

β

WM and a
β

WE2 by performing the χ2 fit analysis for
the data applied to the different correction factors. a

β

WM was
consistent with the CVC prediction from De Braeckeleer’s data
(i.e., aβ

WM/aCVC
WM = 1.03 ± 0.04). However, the present aβ

WE2 is
inconsistent with the De Braeckeleer’s data, aCVC

WE2 = 0.1 ± 0.4.
The deviation of aWE2 was 1.8σ as a

β

WE2 − aCVC
WE2 = 0.9 ± 0.5.

We compared these results with the other analog-γ -decay
measurements by Bowles and Garvey [23] and Paul et al. [22].
The CVC prediction was aCVC

WM = 8.3 ± 0.5 and aCVC
WE2 = 2.1 ±

0.5 for Bowles’ data, and aCVC
WM = 8.8 ± 0.7 for Paul’s data.

These predictions were inconsistent with the De Braeckeleer’s
data and also with the present β-decay results; that is, both
aCVC

WM were larger than a
β

WM, and the deviation of aWE2 was
1.8σ , as −1.1 ± 0.6. It was pointed out by De Braeckeleer
et al. [7] that there were problems in these measurements
with regard to the absolute cross section, the photon angular
distribution, and the neutron background. The difference
between the two aCVC

WE2 was due to deviation of δ1 (i.e., 0.01 ±
0.03 [7] compared to 0.14 ± 0.03 [7,23]). This deviation
was determined via the relatively difficult measurement of
the photon angular distribution. The inconsistency might be
due to an underestimated background for the photon angular
distribution. Although the CVC prediction by De Braeckeleer
et al. was adopted in the present work, De Braeckeleer’s data
need to be confirmed with more accurate measurements.

VI. SUMMARY

The nuclear-spin-aligned nuclei 8Li and 8B were produced
from spin-polarized nuclei using the β NMR technique to
test the strong CVC at a zero-momentum-transfer limit. This
allowed strong CVC to be tested for the second-forbidden
transition. The alignment correlation terms for the β-ray
angular distribution were determined using both positively
and negatively aligned nuclei. The weak magnetism and the
second-forbidden terms originating from the weak vector
current were determined by combining the present alignment
correlation terms and the previously known β-α angular cor-
relation terms. The CVC predictions of the weak magnetism
and the second-forbidden terms were reevaluated using the
most precise data set of the analog-γ decay in 8Be. Although
the weak magnetism term was consistent with the CVC
prediction obtained from the isovector-M1-transition strength,
the second-forbidden term was inconsistent with that from the
isovector-E2-transition strength. For more reliable tests for
the second-forbidden transition, the CVC predictions need to
be confirmed by more accurate measurements, especially with
regard to the isovector M1/E2 ratio δ1.
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