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We present a unified Dyson-Schwinger equation treatment of static and electromagnetic properties of
pseudoscalar and vector mesons, and scalar and axial-vector diquark correlations, based upon a vector-vector
contact interaction. A basic motivation for this paper is the need to document a comparison between the
electromagnetic form factors of mesons and those diquarks that play a material role in nucleon structure. A
notable result, therefore, is the large degree of similarity between related meson and diquark form factors. The
simplicity of the interaction enables computation of the form factors at arbitrarily large spacelike Q2, which
enables us to expose a zero in the p-meson electric form factor at zj, ~ /6m,,. Notably, rng ~ rng, where r,
and rp are, respectively, the electric radii of the p-meson and deuteron.
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I. INTRODUCTION

In numerous respects, w and p mesons are the simplest
bound states to study in QCD. That is, of course, supposing
that the framework employed is Poincaré-covariant, capable
of simultaneously implementing light-quark confinement and
expressing dynamical chiral symmetry breaking (DCSB), and
admits a global-symmetry-preserving truncation scheme. All
these features are required because, amongst many other
things, the pion is the lightest hadron and QCD’s Goldstone
mode, the p meson couples strongly to two pions and is
an important part of the photon’s vacuum polarization, and
modern facilities probe hadrons with momentum transfers far
in excess of any reasonable constituent-quark-like mass scale.

The Dyson-Schwinger equations (DSEs) [1,2] provide
an approach to hadron physics that is distinguished by its
ability to satisfy these demands;' in addition, there is a large
body of research that addresses - and p-meson properties.
For example, the analysis of static properties is reported in
Refs. [7-27] and of interactions in Refs. [28-47]. There is
nevertheless a need to return to this theme, namely, a program
aimed at charting the interaction between light quarks by
explicating the impact of differing assumptions about the
behavior of the Bethe-Salpeter kernel on hadron elastic and
transition form factors [48].

To expose the connection, we remark that, in quantum
field theory, a baryon appears as a pole in a six-point
quark Green’s function. The pole’s residue is proportional
to the baryon’s Faddeev amplitude, which is obtained from
a Poincaré-covariant Faddeev equation that sums all possible

"Within the DSE framework, gauge invariance follows from gauge
covariance, with which a truncation is imbued via the dressed-quark-
gluon vertex. A prescription and program exist for addressing this
challenge (see, e.g., Refs. [3-6]).
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quantum-field-theoretical exchanges and interactions that can
take place between three dressed quarks. A tractable truncation
of the Faddeev equation is based [49] on the observation
that an interaction which describes mesons also generates
diquark correlations in the color-3 channel [9]. The dominant
correlations for ground-state octet and decuplet baryons
are scalar (O") and axial-vector (1) diquarks because, for
example, the associated mass scales are smaller than the
baryons’ masses and their parity matches that of these baryons.
This is elucidated in Ref. [50].

At leading order in a global-symmetry-preserving trunca-
tion of the DSEs [15,17], simple changes in the equations
describing 7 and p mesons yield expressions that provide de-
tailed information about the scalar and axial-vector diquarks,
e.g., their masses [9,10,18,23,50,51], and electromagnetic
elastic [41] and transition form factors, which are critical
elements in the computation of a baryon’s kindred properties. It
is therefore natural to elucidate concurrently the properties of &
and p mesons and those of the scalar and axial-vector diquark
correlations because it opens the way to a unified, symmetry-
preserving explanation of meson and baryon properties as
they are predicted by a single interaction. The potential of
this approach is apparent in Refs. [52,53], but it has yet
to be fully realized. For the present, the best connection is
provided by the less rigorous approach of Ref. [54], which uses
more parameters to express features of QCD, but also predicts
and describes simultaneously a larger array of phenomena
[55-57].

Herein, as part of the program outlined above, we describe
results for a range of static and dynamic properties of these
simplest u/d mesons and diquark correlations as produced
by a vector-vector current-current interaction that is mediated
by a momentum-independent boson propagator, i.e., by the
symmetry-preserving regularization of a contact interaction.
Given the large body of work based on QCD-like vector-boson

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevC.83.065206

H. L. L. ROBERTS et al.

propagation that is already available, this paper will provide
numerous points for comparison and contrast that are relevant
to existing and planned experiments.

In Sec. II, we describe a global-symmetry-preserving
regularization and DSE formulation of the contact interaction,
following Refs. [44,46,50]. Our scheme is such that confine-
ment is manifest, and chiral symmetry and the pattern by which
it is broken are veraciously represented. In addition to the
current-quark mass, the model has two parameters. In Sec. 111,
we describe results for - and p-meson electromagnetic elastic
and transition form factors, computed using the rainbow-ladder
truncation of the DSEs, with the analogous discussion of
diquark correlations reported in Sec. IV. Section V provides a
summary and perspective.

II. CONTACT VECTOR-CURRENT-CURRENT
INTERACTION

A. Gap equation

The typical starting point for a DSE study of hadron
phenomena is the dressed-quark propagator, which is obtained
from the gap equation

S(p) =iy -p+m

d4q 2D A4 g A -
+/(27T)4g ””(p_q)?yﬂ- (q)? v(qv p)a
(1)

where m is the Lagrangian current-quark mass, D, is the
vector-boson propagator, and I', is the quark—vector-boson
vertex. Much is now known about D,, in QCD [58-61],
and nonperturbative information is accumulating on I,
[4,6,26,62,63].

However, our goal is to build a stock of material that can
be used to identify unambiguous signals in experiment for the
pointwise behavior of the interaction between light quarks,
the light quarks’ mass function, and other similar quantities.
While these are particular qualities, taken together they will
enable a characterization of the nonperturbative behavior of the
theory underlying strong interaction phenomena [45,48]. We
therefore elucidate predictions following from the assumption

& Du(p— @) = Sy @)
mg
where m¢ is a gluon mass scale, and proceed by embedding
this interaction in a rainbow-ladder truncation of the DSEs,
which is the leading order in the most widely used, global-
symmetry-preserving truncation scheme [17]. This means

Cp.g)=w 3)

in Eq. (1) and in the subsequent construction of the Bethe-
Salpeter kernels.

One may view the interaction in Eq. (2) as being inspired
by models of the Nambu-Jona-Lasinio type [64]. However,
as will become clear, our treatment is atypical. It is also
worth remarking that Eq. (2) is an antithetical complement
to the interaction proposed in Ref. [65], i.e., a § function in
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four-momentum space, which is confining because it provides
a strong interaction that is independent of separation, x>.
Using Egs. (2) and (3), the gap equation becomes

Sl(p)=iy-p+m+‘—‘i/ﬂy S@ye @
3mZ ) Quyt " o

an equation in which the integral possesses a quadratic
divergence, even in the chiral limit. If the divergence is
regularized in a Poincaré-covariant manner, then the solution
is

S(p)t =iy -p+M, (5)
where M is momentum independent and determined by
M:m—i—L/oodss;. (6)
37t2m2G 0 s+ M?

One must specify a regularization procedure in order to
proceed. We write [66]

1 o0
— / dt efr(.erMz)
s + 1‘42 0
.L.Z
r 2
— dt e 6TMD (7
3
e*(5+M2)Tuzv _ ef(:Jer)rf
= e : ®)

where ;. v are, respectively, infrared and ultraviolet regula-
tors. Itis apparent from Eq. (8) that a finite value of 7y, =: 1/A;;
implements confinement by ensuring the absence of quark
production thresholds [67,68]. We note that, since Eq. (2) does
not define a renormalizable theory, A, := 1/t,, cannot be
removed but instead plays a dynamical role and sets the scale
of all dimensioned quantities. The gap equation can now be
written as

M=m+ c (M3, ©)

3w2m%
where Ci“(Mz)/M2 =TI(-1, Mzruzv) —I'(—1, Mzri%), with
['(«, y) being the incomplete gamma function.

B. Point-meson Bethe-Salpeter equation

In rainbow-ladder truncation, with the interaction in Eq. (2),
the homogeneous Bethe-Salpeter equation for a color-singlet
meson is

4 1 d*q
L(k; P) = T3nd /W Yux(qs P)yu, (10)
where x(q; P) = S(g + P)['(q; P)S(q) and I'(g; P) is the
meson’s Bethe-Salpeter amplitude. Since the integrand does
not depend on the external relative momentum k, then a
symmetry-preserving regularization of Eq. (10) will yield solu-
tions that are independent of k. It follows that, if the interaction
in Eq. (2) produces bound states, then the relative momentum
between the bound state’s constituents can assume any value
with equal probability. This is the defining characteristic of a
pointlike composite particle.
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With a dependence on the relative momentum forbidden
by the interaction, the pseudoscalar and vector Bethe-Salpeter
amplitudes take the general form? [69]

1
I7(P) = iysE-(P)+ 275V PEx(P), (1)

1
TA(P) = v E(P) 4 20 PuFy(P), (12)

where P,y =0and y] + y. = y,. We observe that

F (P) ladder (13)
However, it should be kept in mind that this is an artifact of the
rainbow-ladder truncation; viz., even using Eq. (2), F,,(P) # 0
in any symmetry-preserving truncation that goes beyond this
leading order [17]. We will see that the accident expressed in
Eq. (13) has material consequences.

C. Ward-Takahashi identities

No study of m- or p-meson observables is meaningful
unless it ensures expressly that the vector and axial-vector
Ward-Takahashi identities are satisfied. The m = 0 axial-
vector identity states (k. = k 4 P)

PTs,(ky, k) = S~ (kpiys +iysS™' k), (14)

where I's, (ky, k) is the axial-vector vertex, which is deter-
mined by

4 1 d*q
s, tky, k) = ysyu — z—5 / 2ny YaXs5u(qss @)Ve - (15)

3 sz

We must therefore implement a regularization that main-
tains Eq. (14). This requirement is readily found to entail the
following two chiral limit identities [44]:

1
+ £ 16
3mc (271)4[61 2+ M2 qi+M2] (10
dq [ P- P-
9+ q 7 (17)
Qu)*L gt +M?>  ¢*+ M?

which must be satisfied after regularization. By analyzing the
integrands using a Feynman parametrization, one arrives at the
following identities for P> = 0 = m:
_leM /
3my ) @yl + Mz]
d* d*q 1 g%+ M>
@ny [q + M2
Equation (18) is just the chiral-limit gap equation.
Hence, it requires nothing new of the regularization scheme.
On the other hand, Eq. (19) states that the axial-vector
Ward-Takahashi identity is satisfied if, and only if, the model

is regularized so as to ensure that there are no quadratic or
logarithmic divergences. Unsurprisingly, these are the just the

(18)

19)

2We assume isospin symmetry throughout and hence do not include
the Pauli isospin matrices explicitly.
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circumstances under which a shift in integration variables is
permitted, an operation required in order to prove Eq. (14).

It is notable, too, that Eq. (14) is valid for arbitrary P.
In fact, its corollary [Eq. (16)] may be used to demonstrate
that, in the chiral limit, the two-flavor scalar-meson rainbow-
ladder truncation of the contact-interaction DSEs produces
a bound state with mass m, = 2M [50,70]. In the presence
of a momentum-dependent dressed-quark mass function, one
could reverse this association and define a chiral-limit dressed-
quark constituent mass as one-half the mass of the lightest
rainbow-ladder scalar meson. This procedure yields M° ~
0.3 GeV, as may readily be determined from Ref. [2].

The second corollary, Eq. (17), entails

1
0= / do {C"(w(M?, o, P?)) + C(w(M?, a, P?)}, (20)
0

with
o(M?, a, P) = M? + a(l — a)P?, (1)
Cl'(2) = —2(d/d2)C"(2)
= z[[(0, M*r) —
The vector Ward-Takahashi identity
Pl (ky k) = S (ky) — S7'(h), (23)

r, M*r;)]. (2

where T}, is the dressed-quark—photon vertex, is crucial for a
sensible study of electromagnetic form factors [29]. Ideally,
the vertex needs to be dressed at a level consistent with the
truncation used to compute the bound state’s Bethe-Salpeter
amplitude [33]. In our case, this means the vertex should be
determined from the following inhomogeneous Bethe-Salpeter
equation:

4 1 dq
3m Qr
where X,L(c”,q)=S(q+P)FM(Q)S(q). Owing to the

momentum-independent nature of the interaction kernel, the
general form of the solution is

Tw(Q) =yl Pr(Q®) + vy PL(QY), (25)

where 0,y = 0andy + y} = y,. This simplicity does not
survive with a more sophisticated interaction nor with Eq. (2)
beyond rainbow-ladder truncation [50].

By inserting Eq. (25) into Eq. (24), one readily obtains

F(Q) = yu — n) Ya XG4 @)Va (24)

PL(QY) =1, (26)
owing to Eq. (17). By using this same identity, one finds
Pr(Q*) = ———, 27
M9 = o @7)
with [C1(2) = Ci(2)/2]
K, (0% = —
Y B 3n2m%

1 .
x / daa(l —a)Q*C, [o(M?, a, 0H)]. (28)
0
Plainly,
Pr(Q*=0)=1, (29)
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FIG. 1. (Color online) Dressing function for the transverse piece
of the quark-photon vertex; viz., Pr(Q?) in Eq. (27), computed using
the parameter values described in connection with Table 1.

so that at Q> =0 in the rainbow-ladder treatment of the
interaction in Eq. (2), the dressed-quark-photon vertex is equal
to the bare vertex.’

However, this is not true for Q2 # 0. In fact, the transverse
part of the dressed-quark-photon vertex will display a pole at
0? < 0 for which

14+ K,(0)=0. (30

This is just the model’s Bethe-Salpeter equation for the ground-
state vector meson.

In Fig. 1, we depict the function that dresses the transverse
part of the quark-photon vertex. The pole associated with
the ground-state vector meson is clear. This is accompanied
by a minimum at spacelike Q2, a feature observed in all
computations of the dressed-quark-gluon vertex (see, e.g.,
Ref. [33]). The minimum arises because, in an internally
consistent computation, spectral strength in the 1™~ channel is
shifted to the p-meson pole. One cannot simultaneously satisfy
the Ward-Takahashi identity Pr(Q? = 0) = 1 and exhibit the
o pole unless the dressing function is depleted for Q2 > 0.
The precise location and depth of the minimum are model
dependent, but its existence is model independent. Another
important feature is the behavior at large spacelike Q2, namely,
Pr(Q? — 1~ as Q? — oo. This is the statement that a
dressed quark is pointlike to a large-Q? probe. The same
is true in QCD up to the logarithmic corrections, which are
characteristic of an asymptotically free theory [33].

D. Bethe-Salpeter kernels for = and p

At this point, we can write the explicit form of Eq. (10) for
the pion as

|:En(P)i|_ 1 I:]CEE ’CEF][En(P)] 31)
Fr(P)] 3n2m% |Kre Kpr]| F2(P)]’

3Equations (26) and (29) guarantee a massless photon and show that
our regularization also ensures preservation of the Ward-Takahashi
identity for the photon vacuum polarization [71].
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where

1
Kpp = / da{C (o(M?, o, —m2))

0
+2a(1 —a)ym? Cy (o(M?, «, —m2))},  (32)

Ker = —m? / daC ( ( ) O, —mi)), (33)

Ko = 008 [ daClolvt 0 ). o
0

Krr = —2Krk. 35)

This is an eigenvalue problem for the pion mass-squared m%
Note that we used Eq. (20) to arrive at Eq. (35).

The explicit form of Eq. (10) for the p meson, the solution
of which yields its mass-squared, is

1+ K,(—m})=0, (36)

where K, is given in Eq. (28).

In the computation of observables, one must use the
canonically normalized Bethe-Salpeter amplitudes. For the
rainbow-ladder pion, this means that I';; is rescaled to satisfy

d*q a
P,=N.tr | —T,(—P)—S P)T',(P)S(qg),
u rf(2ﬂ)4 x( )BPM (g +P)I'z(P)S(q)
(37)
which, in the chiral limit, becomes
Ne 2,
=y OO

For the rainbow-ladder p meson, on the other hand, the vector
meson analog of Eq. (37) requires that

1
E2_

E [E; —2F;]. (38)

> Tips uv)

d
—omL K, . (39)
dz 7=—m?
In terms of the canonically normalized Bethe-Salpeter
amplitudes, the leptonic decay constants of the 7 and p mesons
are, respectively, given by

1 3 =—m2
fr = 17505 Ex = 2F 1Kpe "™, (40)
__%E 2
fo= =5 o Ko(=m). 41)

Another important low-energy property is the in-pion

condensate*
3 P2 PP=—m?
kr = for—[ExKgp " 4Ry Ker 7] (42)

4
In the chiral limit, «, — 0 = —(gq), i.e., the so-called
vacuum quark condensate [72] Moreover, in this limit, too,
one can readily verify that [44]

E, = — (43)

“There is an analogous in-p-meson condensate but that will be
discussed elsewhere.
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TABLE I. Results obtained with (in GeV) mg = 0.132, A;; = 0.24, and A,, = 0.905, which yield a root-mean-square relative error of
13% in comparison with our specified goals for the observables. Dimensioned quantities are listed in GeV.

m E. F, E, M K3 My m, fr 5
0 3.568 0.459 1.520 0.358 0.241 0 0919 0.100 0.130
0.007 3.639 0.481 1.531 0.368 0.243 0.140 0.928 0.101 0.129

which is a particular case of one of the Goldberger-Treiman
relations proved in Ref. [19], and F; (P = 0) satisfies a similar
identity.

III. = AND p ELASTIC AND TRANSITION
FORM FACTORS

In order to compute the form factors, we need to fix the
model’s two parameters, namely, mg and Ay.> We do that
by performing a least-squares fit in the chiral limit to [44,46,
73-751 M° = 0.40 GeV, k? = (0.22 GeV)?, f0 = 0.088 GeV,
mg = 0.78 GeV, and f[? = 0.15 GeV. This procedure yields
the results in Table I. We remark that, in fitting, the same
weight was given to each quantity because they are equally
important. In dealing with electromagnetic form factors, some
might suppose that one should lean more heavily toward
obtaining the empirical value of m,. However, the dressed-
quark mass, in-pion condensate, and pion-leptonic decay
constant are low-energy observables that are just as important
as m,,. Furthermore, attempts to suppress the value of m,, lead
invariably to a marked reduction in the value of f,, e.g., a
20% reduction in mg and a 10% reduction in Ay, produce
m, = 0.91 GeV (a 2% reduction) and f, = 0.11 GeV (a 15%
reduction). Given the importance of f, in electromagnetic
processes, it must be weighted at least equally with m,. A
description of static pion and p-meson observables with a
13% root-mean-square relative error, in which m,, is just 19%
too large and f, is 13% too small, is the best result achievable
in an internally consistent, symmetry-preserving treatment of
the vector-vector contact interaction we have defined.

It is worth observing that mg is merely the single
parameter that we have chosen to characterize g?D,,(p —
g) in Eq. (2). We could equally have written g?D =
4oy /[mA]?, where m@ = 0.8 GeV is a mass scale typical
of the one-loop renormalization-group-improved interaction
introduced in Refs. [20,22]. With this alternative prescription,
m¢g = 0.132 GeV corresponds to ¢ /m = 0.93, a magnitude
commensurate with contemporary estimates of the zero-
momentum value of a running coupling in QCD [75-78].

A. m-meson elastic form factors

We are solving the interaction of Eq. (2) in the rainbow-
ladder truncation, i.e., at leading order in the nonperturbative
global-symmetry-preserving truncation of Refs. [15,17]. At
this order, the generalized impulse approximation is computed

SWe fix Ay =0.24 GeV ~ AQCD since rQcp ‘= 1/AQCD ~ (0.8 fm
is a length scale typical of confinement.

for three-point scattering processes [29], such as elastic form
factors. An analysis of the associated triangle diagram yields
the formulae in the Appendix and the computed result is
depicted in Fig. 2. Two features are immediately apparent, viz.,
the pole associated with the p meson at timelike momentum,
which is a consequence of dressing the quark-photon vertex,
and a momentum-independent interaction produces F (Q?) =
constant as Q? — oo. The following function is a valid
interpolation of the full result on the domain shown:

interpolation 1 + 0.33 Q2 + 0.024 Q4
Fem(Q?) M L4
x (20 1120021005308 Y

In Table II, we report the pion charge radius

2 d 2

=S @) (45)
The result is less than experiment (r, = 0.672 £ 0.008 fm
[79]). This is due in small part to our omission of pseudoscalar
meson rescattering effects [80] but more to the large value
we obtain for the p meson’s mass. It cannot be remedied in
our global-symmetry-preserving rainbow-ladder treatment of
Eq. (2) because all dimensioned quantities are too closely
tied to the value of M. An interaction that preserves the
one-loop renormalization-group behavior of QCD [20,22]
provides decoupling between the values of ultraviolet and
infrared phenomena, such as «, and m,,.

4
3f|
<
— 2f|i
£ H
R \ .
uw *\
1.
0

FIG. 2. (Color online) F;‘“(Qz) computed in rainbow-ladder
truncation from the interaction in Eq. (2). Solid curve: Fully
consistent, i.e., with a dressed-quark-photon vertex so that the p
pole appears. Dashed curve: Computed using a bare quark-photon
vertex. Dotted curve: Fit to the result in Ref. [35], which was obtained
with a momentum-dependent interaction that preserves the one-loop
renormalization-group behavior of QCD, included a consistently
dressed-quark-photon vertex, and serves to illustrate the trend of
contemporary data.
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TABLE II. Row 1: Form factor radii (in fm), and magnetic and
quadrupole moments for the p meson G, (Q* = 0) and G4,(Q* = 0),
respectively, computed with (in GeV) m = 0.007, ms = 0.132,
Ay = 0.24, and A, = 0.905. For a structureless vector meson, ;. =
2 and Q = —1[81]. The next four rows list results reported elsewhere.
Experimentally, r, = 0.672 +0.008 fm [79]. (Note that none of
the quoted computations included contributions from nonresonant
pseudoscalar-meson final-state interactions and, hence, agreement
with the experimental value of r, should be seen as a defect of the
associated model [80]. The nature of this flaw is understood within the
DSE context, where such contributions can be viewed as computable
corrections to the rainbow-ladder truncation [52].) The last two lines
report results for the scalar and axial-vector diquark correlations.
Here, the magnetic and quadrupole moments should be multiplied by

the relevant charge factor, viz., ej,,; = %, eud) = %, and eyg) = _%.

T rk r re o Q,
This work 045 056  0.51 0.51 2.11 —0.85
Ref. [43] 066 073 2.01 —0.41
Refs. [82,83]  0.56  0.61 2.69 —0.84
Refs. [84,85]  0.66  0.61 2.14 —0.79
Refs. [86,87]  0.66  0.52 192 —-043

ot rlE+ rl"ﬁ rlE+ i+ Qi+
This work 049 055 051 0.51 2.13 —0.81
Ref. [41] 0.71

B. p-meson elastic form factors

The JP€ = 17~ p meson has three elastic form factors and
we follow Ref. [43] in defining them. By denoting the incoming
photon momentum by Q, and the incoming and outgoing
p-meson momenta by p' = K — Q/2 and pf = K + Q/2,
then K - Q =0, K>+ Q?/4 = —m?, and the p-y-p vertex
can be expressed as

3
1, (K. Q) Fi(QY), (46)

j=1
A [L\)(K Q) - ZK)» L(Pi)

A)»,/,LU(K’ 0)=

PL (ph), (47)

(K,Q)=|0 0" PL(p’
Auv w p“2 2 Pi(p?)

— fQ_2 Pr (p 48
Ov+p; 2m? (P (48)

0° Q7
p“z 2:||:Qv +P5%}

(49)

where Plfv(p) =8,y — pupv/p?. A symmetry-preserving
regularization scheme is essential here so that the following
identities are preserved throughout the analysis:

QiAww(K, Q) =0, (50)
Pl (K, Q) =0=p/ A, (K, Q).  (51)

The electric, magnetic, and quadrupole form factors are
constructed as follows:

G7(0%) = FiI(Q%) + $nG (0, (52)

P
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Gy(0%) = —F(0Y), (53)
GH(QY) = FiI(Q) + F(Q%) + [1 + n]F3(Q%), (54)

where n = Q?/ [4m%]. In the limit Q% — 0, these form factors
define the charge, and magnetic and quadrupole moments of
the o meson, viz.,

GRQ*=0)=1, (55)

Ghy(Q*=0)=p, GHQ* =0)=Q0,. (56
It is readily seen that Eq. (55) is a symmetry constraint. One
has Gz(Q? = 0) = F;(Q? = 0) and

Ap (K, Q) 2=° PL(K)F(0).  (57)

By using Egs. (23), (27), and (A10), this becomes
K, P (K)F(0)

_NEztrD/(2 4)sz

The right-hand-side is simply the analog of Eq. (37) for the
rainbow-ladder vector meson. Hence, when E,, is normalized
according to Eq. (39) and so long as one employs a global-
symmetry-preserving regularization procedure, the right-hand
side is equal to K, Plfv(K) and thus F(0) = 1.

We compute the form factors using the formulae in the
Appendix. In Table II, we report form-factor radii and the
magnetic and quadrupole moments. The comments following
Eq. (45) are also relevant to the magnitudes of the p-meson
radii.

From the table, we find r,/r, = 0.80. However, an in-
terpretation of this value is not straightforward because we
have consistently used the rainbow-ladder truncation, and
whereas F;(P) # 0 always, F,(P) =0 in rainbow-ladder
truncation. [Note that in all more sophisticated truncations,
F,(P) # 0.] Another relevant comparison may therefore be
obtained if one artificially sets F;(P) = 0 when computing
the pion form factor. This yields 7, = 0.51 fm and, therefore,
7z /1, = 0.92. Now, the DSE computation in Ref. [43], which
employs a QCD-based interaction, produces r,/r, = 0.90,
and, in combination, the more phenomenological DSE studies
of Refs. [82,83] yield r,/r, = 0.92. This context establishes
that our result is actually typical of studies in which the
structure of 7 and p mesons is treated equally.

Our computed p-meson electric form factor is plotted in
Fig. 3. It displays a zero at Q? = 5.0 GeV? and remains
negative thereafter. Given that the deuteron is a weakly bound
J = 1 system, constituted from two fermions, and its electric
form factor possesses a zero [88], it is unsurprising that
G%(Qz) exhibits a zero. It is notable, in addition, that the
deuteron’s zero is located at zg = /0% = 0.8 GeV, so that

2K, P, (K)

S(Z + K)iy, S(€). (58)

zgrD ~ z‘érf, (59)
where rp is the deuteron’s radius. An interpolation valid on
Q7 € [-m?%, 10 GeV?] is

1 —0.20 02
1+1.1502-0013 0%

mterpolatlon

GR(0?) (60)
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1.0 fy
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< 06)
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<& 02}
i 0.

0.0

-0.2%b :

0 2 4 6 8 10

Q2 (GeV?)

FIG. 3. (Color online) Solid curve: p-meson electric form
factor G%(Q?), which exhibits a zero at Q%> =5.0 GeV?. (It
is notable that 1—3n=0 for Q?= 6m> =52 GeV?.) The
dashed curve G4, (0%)/1, and dotted- dashed curve Go(Q%)/Q,
are almost indistinguishable, as emphasised by the dotted curve

(Qz)/u,,]/[G (Q? )/9Q,]. The charge radii and magnetic and
quadrupole moments are given in Table II. Note that all form factors
exhibit a pole at Q% = —mf) because the quark-photon vertex is
dressed as described in Sec. I C.

In Fig. 3, we also depict the magnetic and quadrupole form
factors of the p meson, both normalized by their values at
0>=0. Notably, neither of these two form factors change
sign: for Q% > m ,G"? (Q ) is positive definite and G* (Q )
is negative deﬁnite. It is worth remarking that, on this entire
domain, GY, ,(Q?) exhibit a very similar Q> dependence,
which is made especially apparent via the dotted curve in
Fig. 3. Interpolations valid on Q? € —m%, 10 GeV?] are

2.11 +0.021 Q2
1+1.150%—0.015 0%
0.85 4+ 0.038 Q2
141170240014 0%

The similar momentum dependence of G, and G’é recalls
a prediction in Ref. [81], namely,

1nterpolation

G (0D (61)

mterpoldtlon

(Q ) (62)

GE(Q%): Gu(Q7): Go(@*) P
in theories with a vector-vector interaction mediated via
bosons propagating as 1/k? at large k*. Our computed ratio
rmg =G M(Q )/ G? (QZ) conforms approximately with this

prediction on a large domaln of 02, e.g.,

0? 0 10 102 103
rujo —248 —2.54 —238 —2.17°

Howeyver, at Q2 = 10* GeV?, ruso = —1.28. Moreover, the
remaining two ratios are always in conflict with the prediction;
closer inspection reveals that even the apparent agreement for
Gﬁ,,(Q )/G (Q?) is accidental, since Eq. (63) is true if, and

1—2p:2:-1 (63)

(64)

%In constituentlike quark models, Q, = G4, (Q* =0) < 0 corre-
sponds to oblate deformation [89]. Contemporary lattice simulations
arrive at a similar conclusion [90,91]. In this connection, it should be
kept in mind that @ = G,(Q? = 0) = —1 for a structureless J = 1
bound state [81].

PHYSICAL REVIEW C 83, 065206 (2011)
only if,

Q—)OO

Fi(Q%) : Fx(Q%) : Q*F3(Q%) :—=2:0. (65
None of these predictions are satisfied in our computation.

The mismatch originates, of course, with Eq. (2) and the
concomitant need for a regularization procedure in which the
ultraviolet cutoff plays a dynamical role. If one carefully re-
moves Ay, — 00, Eq. (65) is recovered but at the cost of a log-
arithmic divergence in the individual form factors. We there-
fore conclude that a vector-vector contact interaction cannot
reasonably be regularized in a manner consistent with Eq. (63).

In closing this section, we reiterate that it is only in
the rainbow-ladder truncation that F,(P) = 0. Therefore, in
connection with the p meson’s form factors, material changes
should be anticipated when proceeding beyond this leading-
order truncation.

C. p- & transition form factor

This transition is closely related to the y*my transition
form factor, whose behavior in connection with Eq. (2) was
analyzed in Ref. [46]. The interaction vertex is expressed in
Eq. (A18) and defines a single form factor, viz.,

T3 (ks ko) = € apkinkas GTP(Q2), (66)

m,

where k12 = Q?, k% = —m%. The coupling constant g, is
defined such that G™"?(Q? = 0) = 1, and explicit formulae
for computing this form factor are provided in the Appendix.

Our computed form factor is depicted in Fig. 4. Naturally,
because the quark-photon vertex is dressed (see Fig. 1),
the transition form factor exhibits a pole at Q> = —m,
which we have not displayed. An interpolation valid on
07 € [-m?, 10 GeV?] is

1nterpolation 1+40.37 Q2 + 0.024 Q4

GTrP
(2% 1+1.290%+0.0150*"

(67)

1.0

0.8 1\
G 06 N
0.4 AN
02l I
0.0

2

Gﬂyp(

Q? (GeV?)

FIG. 4. (Color online) Solid curve: The full result for G*7(Q?).
Dashed curve: G*"*(Q?) obtained with F,(P) = 0. Experimentally
[79], the partial width for p* — 7w +y is 68 £ 7 keV, which corre-
sponds to a dimensionless coupling [38] g, = (0.74 £0.05)m,,/
GeV. This is in fair agreement with our computed result, viz.,
8ryp = 0.63m,/Gev.
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For (@

FIG. 5. (Color online) Solid curve: Full result for scalar-diquark
elastic electromagnetic form factor. Dashed curve: Result obtained
without dressing the quark-photon vertex. The computed mass of
the diquark is mg, . = 0.776 GeV and the charge radius is given in
Table II.

In the neighborhood of Q? = 0, the form factor is charac-
terized by a radius-like length scale, viz.,

2 = _6L(;7fw)(Q2) = (0.46 fm)*>,  (68)

myp d0? 00
which is almost indistinguishable from both r, = 0.45 fm in

Table II and the anomaly interaction radius defined in Ref. [46],
viz., r;O = 0.48 fm. On the other hand,

lim G™"(Q* =0.11, (69)
0%?—00

owing to the presence of the pion’s pseudovector component,
a result in keeping with the pointlike nature of bound states
generated by a contact interaction [44,46].

IV. 0*- AND 1*-DIQUARK ELASTIC AND TRANSITION
FORM FACTORS

A. Scalar-diquark elastic form factor

In the context of the interaction in Eq. (2), a detailed dis-
cussion of the relationship between pseudoscalar- and vector-
mesons and scalar- and axial-vector-diquark correlations may
be found in Ref. [50]. Using the information provided therein,
it is straightforward to show that, in rainbow-ladder truncation,
the electromagnetic form factor of a scalar diquark is readily
obtained from the expression for F;m(Qz). Namely,

(Ex,F)=> N/ 3Egqy  Fagys) (70)

M= Mgq

5% = 3FEM(QY)

where the scalar-diquark Bethe-Salpeter amplitude is ex-
pressed via (C = y»y4 is the charge-conjugation matrix)

1
Tyq0- (P)CT = y5 [iquU+(P) +Y Pquw(P)}. (71)

Our result for the scalar-diquark elastic electromagnetic
form factor is presented in Fig. 5. An interpolation valid on

PHYSICAL REVIEW C 83, 065206 (2011)
Q7 € [-m2, 10 GeV?] is

em interpolation 1 1 4 0.25 Q2+0027 Q4
Fgm(oh) "ET 2 ; )
3 1+1.2702+0.130Q

The normalization is different but the momentum dependence
is similar to that of F:™. This is indicated, too, by the ratio
of charge radii, viz., ro+ /r, = 1.08, which may be compared
to the value of 1.09 obtained in Ref. [41] and contrasted with
the value of 0.8 in [92]. In the absence of the scalar-diquark
Bethe-Salpeter amplitude’s pseudovector component Fy
0, we find rop+ = 0.51 fm, i.e., an increase of 6%.

qot+ =

B. Pseudovector-diquark elastic form factors

From the above observations, it will be apparent that the
rainbow-ladder results for the {ud} axial-vector diquark elastic
form factors may be obtained directly from those of the p
meson through the substitutions

/7

0 = LR e (73)

The momentum dependence of the form factors for the {uu}

and {dd} correlations is identical, but in these cases, the

normalizations are, respectively, % and —%.

We depict the axial-vector diquark form factors in Fig. 6.

They are similar to, but distinguishable from, those of the

p meson, falling off a little less rapidly owing to the larger

mass of the axial-vector diquark. Interpolations valid on Q2 €
[—m?, 10 GeV?] are

+ in ion 1-0.16 Q2

Gl 2 terp;lato , 74
£ (09 1+1.170240.012 Q4 74)
+ in ion 2.13-0.19 2

GIIVI(QZ) terp;]ato Q (75)

1+ 1.0702—0.10 0%’

1.0f
Lc\é’ 0.8}
S 06}
O 04}
<]
<2 0.2}
®

0.0

—0.2L :

0 2 4 6 8 10

Q? (GeV?)

FIG. 6. (Coloronline) Solid curve: Pseudovector-diquark electric
form factor GL (Q?), which exhibits a zero at Q? = 6.5 GeV?2.
(In this case, 1 — %n =0 for Q> = 6m%Jr = 6.7 GeV?, given the
computed mass of 1.06 GeV.) The dashed curve G}\;(Qz) / 1+ and
dotted-dashed curve G]Q+(Q2) / Q1+ are almost indistinguishable, as
emphasized by the dotted curve [G}, (Q?)/1,)/[G}) (Q*)/Q1+]. The
charge radii and magnetic and quadrupole moments are given in
Table II. Note that all form factors exhibit a pole at Q> = —m?
because the quark-photon vertex is dressed as described in Sec. I1 C.

065206-8



7 AND p MESONS, AND THEIR DIQUARK ...

0.81 — 0.029 Q2
1+ 1.11 02 — 0.054 0*’

interpolation

Gy (QH "= (76)

from which the particular pseudovector diquark form factors
are obtained after multiplication by the appropriate charge
factors listed in Table II.

C. 1*-0* diquark transition form factor

Owing to the flavor structure of the scalar diquark, this
transition can only involve the {ud} axial-vector diquark. It
is described by a single form factor, which can be introduced
through

lgOnylJr

0ry1t _
1,7 (ki k) = 3

€mapkiakos GUTT(QD),  (T7)

99+

and one may readily determine that, in rainbow-ladder trunca-
tion,

(Ex,FrE) =~/ 2 (Eqqy Fagyr Eaqys)

Mg = Myqqy Mp—>Mgq, |

GUr(Q%) = GT(QY)

(78)

Computation of the form factor is straightforward and the
result is depicted in Fig. 7. An interpolation valid on Q% €
[—m2, 10 GeV?] is

i ion 1+0.10 Q?
G0+y1+ 2 mterp;lanon 1+0100° -
(@ 1+1.073 02 (79)

The associated transition radius is
roty1+ = 0.48 fm, (80)
which is 5% larger than r,, in Eq. (68), and

lim G°'"'(Q%) = 0.049, (81)

0?—>00

just under one-half of the value in Eq. (69).

~——

Q? (GeV?)

FIG. 7. (Color online) Solid curve: Momentum dependence of
full result for axial-vector—scalar-diquark transition form factor
GO (Q?). Dashed curve: Result for G™”(Q?) in Fig. 4. The
different rates of evolution are typical of meson and diquark form
factors computed herein. Note that eg,q80+y 1+ = €(uay0.78 = 0.26.
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V. EPILOGUE

We described a unified Dyson-Schwinger equation treat-
ment of static and electromagnetic properties of pseudoscalar-
and vector-mesons and scalar- and axial-vector-diquark corre-
lations based upon a vector-vector contact interaction. Isospin
symmetry was assumed, with m, = my; = m =7 MeV pro-
ducing a physical pion mass; two parameters were used
to define the gap-and Bethe-Salpeter. In a comparison with
relevant static quantities, we recorded a value of 13% for the
overall root-mean-square relative error.

A basic motivation for our paper is the need to document
a comparison between the electromagnetic form factors of
mesons and those diquarks that play a material role in nucleon
structure because this is an important step toward a unified
description of meson and baryon form factors based on a single
interaction. A notable feature of our results, therefore, is the
large degree of similarity between related form factors. For ex-
ample, we find that it would be a good practical approximation
to assume equality of related radii: ro+ ~ r; and ri+ X r,.

As has previously been observed, a fully consistent treat-
ment of the contact interaction produces a pion electromag-
netic form factor that approaches a nonzero constant value
at large spacelike momenta. On the other hand, owing to a
peculiarity of the rainbow-ladder truncation, which prevents
the appearance at this order of a tensor component for the
o meson produced by a contact interaction, the p-meson
form factors approach zero at large spacelike momenta. This
accident means that a comparison with QCD-based DSE
calculations can meaningfully be interpreted. In a comparison
with the most sophisticated such study, the form factors
produced by the contact interaction are harder, although the
ratio 7 /rpE is similar. Moreover, the contact interaction’s
simplicity allows one to readily compute the p-meson form
factors at arbitrarily large spacelike Q2 and expose a zero in
the electric form factor at z7, ~ 6mf). Notably, rng A rf zg,
where rp and ZZ are, respectively, the deuteron’s radius
and the location of the zero in its electric form factor. The
o meson’s magnetic and quadrupole form factors are pos-
itive and negative definite, respectively. We reiterate that
the behavior of all pseudovector-diquark form factors is
semiquantitatively the same.

At the core of our analysis is a global-symmetry-preserving
treatment of a vector-vector contact interaction. This has
now been used in the completely consistent computation of
the hadron spectrum and meson and diquark form factors.
The foundation has thus been laid for the computation of
baryon elastic and transition form factors, which will provide
information that is crucial for the use of experimental data
on such observables as a tool for charting the nature of the
quark-quark interaction at long range [48].
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APPENDIX: FORM-FACTOR FORMULAE

This Appendix is a repository for the formulae we have
used to compute the form factors.

1. Elastic pion form factor

FE™Q%) = Pr(QY)[EZT (0D + Ex Fo T (0%

PHYSICAL REVIEW C 83, 065206 (2011)

where Pr(Q?)is given in Eq. (27) and
3 ! —iu
em = 2 | [ aaC M2 @, 0°
n,EE 472 |:/0 o l(w( o Q ))
1 .
+ 2mi /0 do dﬁota;u(wz(Mz, a, B, QZ, mi)):| ,
(A2)

3 1 1
Ier = ﬁ[_ / da Cy (@(M?, @, Q%)+ f dadp o
0 0

< (00" = 2m2) Y on (M, . 0%, |

+ FT5% (7], (A1) (A3)

|

3 1 1 —iu
T pp = _QW/O da d,Boz{A(oz, 0?, mi)C1 (a)g(Mz, o, B, 0%, mi)) (A4)
+[B(M?, . B, 0% m2) — Ale, Q% m2) n(M?, t, B, Q*, m2)|Cy (wn(M?, o, B, Q% m2))}, (AS)

with

B(M?*, a, B, Q*,m2) = a Q*M* + M’m2(a — 2)
+am?{eQ’[1 —a — 28(1 — p)
+3aB(1 = H)] — (1 — a)’mz},

(A6)

Ala, 0> m2) = —La Q>+ im2(2 - 3a), (A7)
wr(M?,a, B, Q*, m2)=M*+ Q*«*B(1 —B) — a(l — a)m,
(A8)

where C"(z) is defined after Eq. (9); C"(z) and w(M?, &, Q%)
in Eqs.(21) and (22); C| (z) after Eq. (27); and

i 1 " T g2 —zr
CY'(2) = 32°C"() = S (e — ™) (A9)

with Gy = Ci¥(z)/22.

2. Elastic p-meson form factors

In generalized impulse approximation, the p-y vertex in
Eq. (46) becomes

d* | '
Appor = 2N,irp / SR B W St + ) Pr (@i,

xS + PYE, (P, S, (A10)
where E, is the canonically normalized p-meson Bethe-
Salpeter amplitude. Explicit expressions for the scalar func-
tions Fj 5 3(Q?) can be obtained via contraction with any three

sensibly chosen projection operators; the subsequent use of
Feynman parametrizations yields

3 1 —=iu
F(Q) = mE,%PT(QZ)/O dadp a[A; C (w2)

+B; — A 1Ty (@2)], (Al1)
where F; = Fi(M?, a, B, 0>, m), Fi = A;, B;, viz.,
A =2—a, (A12)
= m2[a(108 —7) — 4] + Q%a(2B — 1)
2 — 2m% £l
(A13)
 2a(1 - 28)(5m> + Q?)
Az = 1 0 , (A14)
By =2[M*Q2—a)+ma(l —a)
— B2 —a)1 - 07|, (A15)

m’ By = m)[M*(—4 — 7o + 10ap)
—my(—1+a)a(l —Ta — 68 + 10ap)]
+a{M* (=1 428)+ mla[—1+28
+a(l+B-58*+28)10%},  (Al6)

(4m? + Q%)Bs = da(m {5M*(1 = 28) + m(—1 + )
x[3— 6B+ a(—5— 6B + 16871}
+ {M2(1 —-2B) — mioz[—l +oa—28
+3aB +4B° — TaB’ + 208’1} 7).
(A17)
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3. Vector-pseudoscalar transition form factor

The interaction vertex describing the 7 -p transition

TG k) = S22, pk1ka G (Q%)
p

4

I i (—=P)S(£2) Pr(QY)i
= unf oyl 2) Pr(Q%) iy,

X S(L12) i} (k2) S(£1), (A1B)

where the incoming o meson has momentum k,, the photon has
momentum k; = Q, the outgoing pion has momentum P =
(ki +ky),and ;=€ — ki, b, =L+ ky, lip =€ — ki + k. In
this instance, the kinematic constraints are

2k1 ~k2=m2

ki =-07 2 —m2 — Q%

(A19)

2 _ 2
kz——mp,

Given the structure of the pion’s Bethe-Salpeter amplitude,

one may write
G™"(Q%) = GF (0% + G (), (A20)

wherein

. E.E ! .
GEV’J(QZ):#MPT(QZ)/(; dadBfaCl(ws), (A21)
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AT an 1 1 - Sir
GY7(0%) = ——Z L Pr(Q) /0 dardB [ {7 CF (@)
H(£ = w3 £777)CE (@3)] (A22)
with

w3 = a)3(M2, o, B, mf), mi, 2) =M - oz[aﬁ(l — ,B)mi
+(1 —a)(1 — Bym; — (1 —a)BQ7] (A23)

and

Typ _
=2

77 =@ —a)[M*+a’B(1 — Bm?]
+(1 —a)[a(l — pym. —apQ?]. (A25)

The vertex in Eq. (A18) is intimately connected with the
Abelian anomaly, which describes the process 7% — yy and
associated transition form factors. The manner by which all
aspects of the anomaly may be reproduced in the model we
are considering is detailed in Secs. III A and III B 2 of Ref. [46].
In the present context, consistency with the anomaly requires
that, in Eqs. (A21) and (A22), &, = E, /Ny, with Ny,
defined such that G™"7(Q? =0)=1/2 and G;W’(QZ) =
Grlf-yp (0% — GT;W(O). Both modifications are necessary in
order to correct for the dynamical role played by the ultraviolet
cutoff in a contact-interaction theory.

— 3a, (A24)
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