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The KKK̄ system is investigated with a coupled-channel approach based on solving the Faddeev equations
considering the KKK̄ , Kππ , and Kπη channels and using as input two-body t matrices that generate dynamically
the f0(980) and a0(980) resonances. In the present calculation, a quasibound state around 1420 MeV with total
isospin I = 1/2 and spin-parity J π = 0− is found below the three-kaon threshold. This state can be identified
with the K(1460) resonance listed by the Particle Data Group. We also study the KKK̄ system in a single-channel
three-body potential model with two-body effective KK and KK̄ interactions, in which the KK̄ interaction is
adjusted to reproduce the properties of the f0(980) and a0(980) resonances as KK̄ bound states, obtaining a very
similar result to the one found in the Faddeev approach.
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I. INTRODUCTION

The study of systems made by mesons and baryons and
the interpretation of the states found in them is one of the
challenging issues in theoretical as well as in experimental
hadron and nuclear physics. Some historical examples, which
even now continue to be of current interest, are the study
of the K̄N interaction and the formation of the �(1405) as a
quasibound state [1], the searching of bound states in the K̄NN

system [2], the possibility that some scalar resonances, such
as the f0(980) and a0(980), could be considered as hadronic
molecular states of a system made by a K and a K̄ [3] and the
consideration of the scalar nonet as qq̄ states with a meson-
meson admixture [4,5].

In the last decade, the study of few hadron systems within
effective field theories has represented a step forward in the
understanding of the properties of many hadron resonances
and bound states. In particular, the use of effective chiral
Lagrangians to describe the meson-baryon and meson-meson
interactions implemented with unitarity in coupled channels
has shed new light on the nature of several meson and baryon
states such as the ones studied in Refs. [1,3] (see Refs. [6,7]).
For example, in the meson sector for strangeness S = 0, within
unitarity chiral theories, the f0(980) and σ (600) states can
be understood as dynamical generated states in the KK̄ and
ππ interactions in s wave, while the a0(980) resonance gets
dynamically generated in the KK̄ and πη channels [6,8]. The
use of unitarity chiral theories has been also successful in the
description of the meson-baryon interaction. For instance, for
strangeness S = −1, the study of the K̄N and coupled-channel
system in s wave has revealed the dynamical generation of the
�(1405) resonance with a double pole structure: one pole,
around 1426 MeV and with a width of 16 MeV, which couples
strongly to the K̄N channel, and another one, with a mass
around 1390 MeV and a width of 66 MeV, which couples
more to the π� channel [9–11]. It is important to emphasize
that the �(1405) can be described as a dynamically generated
resonance without introducing an explicit pole term [12]. In
case of S = 0, the investigation of the πN system and coupled
channels in s wave revealed significant contributions of the
K� and K� component to the N∗(1535) resonance [13–15].

In all these systems the kaons play an important role in the
dynamics owing to their heavy mass (as compared to the pion)
and Nambu-Goldstone boson nature. As mentioned above, the
K̄N and KK̄ interactions are strongly attractive in s wave,
and the fact that the kaon has a mass around 3.5 times bigger
than the pion makes the s-wave interactions involving kaons
more effective than those involving pions, especially around
the threshold energy. In addition, knowing that the typical
kaon kinetic energy in the bound systems estimated by the
hadronic interaction range is small in comparison with the
kaon mass, one may treat the kaons in few-body systems within
nonrelativistic potential models.

Recently, special interest has developed for few-body
systems constituted by one or more kaons. For example, the
K̄NN system has been the object of thorough studies [16–20]
and all of them indicate the presence of a quasibound state
with a large width. Baryonic systems with two kaons, such
as KK̄N and K̄K̄N , were also investigated in Refs. [21,22]
with a single-channel variational method and a new N∗ state
around 1910 MeV with Jπ = 1/2+ was predicted in the first
case, while a very weakly bound state was found in the second
case. A peculiar feature of these states is that they can be
considered as loosely bound systems in which the identity of
the constituent hadrons is kept and, thus, can be regarded as
hadronic molecular states. Reflecting this fact, the interhadron
distances are compatible with typical nucleon distances in
nuclei and the size of the KK̄N system is as large as 4He [21].
The �(1405) resonance described in the unitary chiral model
also has a larger spatial size than a typical baryon in its ground
state [23].

The KK̄N system was also investigated solving the Fad-
deev equations to obtain the three-body T matrix for the system
and also resulted in the finding of a N∗ resonance around
1920 MeV [24,25], confirming in this way the prediction
done in Ref. [21]. The approach employed in Refs. [24,25]
is based on the idea of extending the unitary chiral models
successfully used to study two hadron interactions to the
investigation of three-hadron systems using the Faddeev
equations. This formalism has been applied to study many
different three-body systems made of mesons and baryons
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and has brought out, for the first time, the three-body nature
of several resonances [24–31]. For example, the study of
systems such as πK̄N , ππ�, ππN , φKK̄ , etc., has revealed
the dynamical generation of all the known 1/2+ baryon
states listed by the Particle Data Group (PDG) [32], some
N∗ resonances, such as the N∗(1710) [24,27], as well as some
of the recent meson states observed in the experiments, such
as φ(2170) [28], Y (4260) [29].

Going back to the kaonic systems, one can summarize
that so far the well-studied few-hadron systems constituted by
antikaons and nucleons are K̄N , K̄NN , K̄K̄N , and KK̄N .
Of the different states generated in these systems, the most
peculiar probably are the �(1405), owing to its double-pole
nature, and the N∗(1910), which is formed when the �(1405)
is dynamically generated in the K̄N subsystem and coupled
channels and, at the same time, the KK̄ subsystem and coupled
channels give rise to the f0(980) or a0(980) states. As shown in
Refs. [21,24,25], the attraction present in the K̄N subsystem
in isospin zero and KK̄ in isospin zero or one is strong enough
to compensate the repulsion in the KN subsystem and, thus,
form a KK̄N bound state.

The question which arises now is what will happen if
instead of a nucleon we add a kaon to the KK̄ system. Now,
the different KK̄ interactions can lead to the simultaneous
presence of the a0(980) and f0(980) resonances in two of
the subsystems, such that these interactions could be strong
enough to overcome the KK repulsion and form a KKK̄

bound state or resonance. Recently, two-body systems of
f0(980)K and a0(980)K have been studied [33] using an
extended version of the formalism developed in Ref. [34] and
a resonant peak is found at 1460 MeV with 100 MeV of width
and total isospin 1/2. However, some remarks concerning the
model used in Ref. [34] have been made in Ref. [35].

In this work, we study the possibility to form a three-
body state in the KKK̄ system by means of the three-body
Faddeev formulation developed in Refs. [24–31]. One of
the advantages of the present three-body formulation is that
all the parameters involved in the approach are related to
the two-body subsystems (typically a cutoff or a subtraction
constant to regularize the two-body loops). Thus, we can focus
on the investigation of the three-body hadron dynamics without
introducing new adjustable parameters.

The paper proceeds as follows: In Sec. II we introduce
briefly the formalism employed to determine the two-body
t matrices of the different subsystems and the method used to
calculate the three-body T matrix of the KKK̄ system and
coupled channels. In Sec. III we present the results obtained
from the Faddeev approach and we compare them with the
ones of the nonrelativistic single-channel KKK̄ potential
model calculation (Sec. IV), which is based on the work of
Refs. [21,22] and which provides a simple physical picture of
the KKK̄ quasibound state found. Finally, in Sec. V we draw
some conclusions.

II. FORMALISM

To study the KKK̄ system, we first need to determine
the two-body t matrices which describe the KK and KK̄

interactions. These two-body amplitudes are calculated by
solving the Bethe-Salpeter equation in a coupled-channel
approach and using the on-shell factorization method [6], in
which the t matrix for the system read as

t = (1 − V G̃)−1V, (1)

where the interaction kernel V corresponds to the lowest-order
amplitude obtained from chiral Lagrangians [6]. In Eq. (1),
G̃ represents the loop function of two pseudoscalar mesons and
we calculate it using the dimensional regularization scheme of
Ref. [8],

G̃r = 1

16π2

{
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E

[
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(
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m2
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+ ln
(
E2 + (
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− ln
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)

− ln
(− E2 − (
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1r − m2

2r

) + 2qrE
)]}

, (2)

with µ a regularization scale and ar (µ) a subtraction constant
for the channel r . Following Ref. [8], we consider µ =
1224 MeV and a value for ar (µ) ∼ −1. These parameters
are fixed to reproduce the observed two-body phase shifts and
inelasticities for the KK̄ system and coupled channels as done
in Ref. [6,8]. For the KK system we have assumed the same
values for µ and ar . In Eq. (2), E is the total energy of the
two-body system, m1r , m2r , and qr correspond, respectively,
to the masses and the center-of-mass momentum of the two
pseudoscalars present in the channel.

The solution of Eq. (1) is obtained by taking into account all
possible two-body channels of two mesons (π , η, K , K̄) which
couple to KK̄ , Kπ , Kη, and KK , except for the ηη channel,
whose effect in the KK̄ amplitude is negligible [6]. The KK̄

and ππ t matrices calculated within this model dynamically
generate, in s wave, the resonance f0(980), while the system
formed by the channels KK̄ and πη gives rise to the a0(980)
state.

Once the two-body amplitudes for the different subsystems
are determined we can study the KKK̄ system. To do that,
we consider the set of coupled channels given by KKK̄ ,
Kππ , and Kπη and obtain the three-body T matrix for the
transitions between the different channels using the formalism
developed in Refs. [24,26,27,31], which is based on the
Faddeev equations [36]. The calculation of the three-body
T matrix is done for real values of the three-body energy and
peaks found in the modulus squared of the three-body T matrix
can be associated with dynamically generated resonances.

In this approach, the Faddeev partitions, T 1, T 2, and T 3,
are written as [26,27,31]

T i = t iδ3(�k ′
i − �ki) +

3∑
j �=i=1

T
ij

R , (3)

for i = 1, 2, 3 with �ki (�k′
i) being the initial (final) momentum

of the particle i and t i , i = 1, 2, 3, the two-body t matrix that
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T 31
R =

t1
t3 + T 13

R
t3 + T 12

R
t3

FIG. 1. Schematic representation of Eq. (4) for the partition T 31
R .

describes the interaction for the (jk) pair of the system, j �=
k �= i = 1, 2, 3, and which is calculated as explained above.

The T
ij

R partitions, which contain all the different con-
tributions to the three-body T matrix in which the last two
interactions are given in terms of the two-body t matrices
t j and t i , respectively, satisfy the following set of coupled
equations,

T
ij

R = t igij t j + t i
[
Giji T

ji

R + Gijk T
jk

R

]
, (4)

for i �= j, j �= k = 1, 2, 3. A schematic representation of
Eq. (4) is given in Fig. 1.

In Eq. (4), gij correspond to the three-body Green’s function
of the system and its elements are defined as

gij (�k′
i ,

�kj ) =
(

Nk

2Ek(�k′
i + �kj )

)

× 1√
s − Ei(�k′

i) − Ej (�kj ) − Ek(�k′
i + �kj ) + iε

,

(5)

with Nk = 1 for mesons and El , l = 1, 2, 3, is the energy of
the particle l.

The Gijk matrix in Eq. (4) represents a loop function of
three particles and it is written as

Gijk =
∫

d3k′′

(2π )3
g̃ij · F ijk, (6)

with the elements of g̃ij being

g̃ij (�k′′, slm) = Nl

2El(�k′′)

Nm

2Em(�k′′)

× 1
√

slm − El(�k′′) − Em(�k′′) + iε
, (7)

for i �= l �= m, and the matrix F ijk , with explicit variable
dependence, is given by

F ijk
(�k′′, �k′

j ,
�kk, s

k′′
ru

)
= t j

(
sk′′
ru

)
gjk(�k′′, �kk)[gjk(�k′

j ,
�kk)]−1[t j (sru)]−1, (8)

for j �= r �= u = 1, 2, 3. In Eq. (7),
√

slm is the invariant mass
of the (lm) pair and can be calculated in terms of the external
variables. The upper index k′′ in the invariant mass sk′′

ru of
Eq. (8) indicates its dependence on the loop variable, as it was
shown in Ref. [27].

Equation (4) is an algebraic coupled equation be-
cause it involves only the on-shell part of the two-body
t matrices. This is owing to the finding of a cancellation
between the contribution of the off-shell parts of the chiral
two-body t matrices to the three-body Faddeev amplitudes
and a contact term with same topology whose origin is in the
chiral Lagrangian used to describe the interaction. It was found
in the three-body system of two pseudoscalar mesons and one

baryon or one vector meson that this cancellation becomes
exact in the flavor SU(3) limit [26–28]1 and that in a realistic
case off the SU(3) limit the sum of the off-shell part and
the three-body contact term was estimated to be smaller than
5% of the total on-shell contribution. Thus, only the on-shell
part of the two-body (chiral) t matrices was significant. For
the present case of a three-pseudoscalar meson system, as we
show in the Appendix, an exact analytic cancellation can be
achieved in the chiral limit by considering two more diagrams
that involve s-channel intermediate states of one meson and
five mesons.2 In a realistic calculation off the chiral limit, we
find numerically that the breaking of the cancellation accounts
for about 7% of the total on-shell contribution. This result
is very similar to the one found in Refs. [26–28] when the
SU(3) limit was not taken. Therefore, for our purpose, we can
neglect the contribution coming from the off-shell parts of the
two-body chiral t matrices, the corresponding contact term
from the chiral Lagrangian and the diagrams with one and five
meson intermediate states, and work only with the on-shell
part of the two-body t matrices and three-body intermediate
states.

The T
ij

R partitions given in Eq. (4) are calculated as a
function of the total three-body energy,

√
s, and the invariant

mass of the particles 2 and 3,
√

s23. The other invariant masses,√
s12 and

√
s31, can be obtained in terms of

√
s and

√
s23,

as it was shown in Refs. [24,27]. To present our results, we
have chosen

√
s and the invariant mass of the (23) two-body

subsystems,
√

s23. Because we are interested in generating
the s wave f0(980) and a0(980) states in the KK̄ subsystem,
we project all the matrices present in Eq. (4) on s wave,
which implies that the quantum numbers of the three-body
system and, hence, the resulting bound states or resonances
are Jπ = 0−.

The full three-body T matrix is obtained in terms of the
two-body t matrices and the T

ij

R partitions as

T = T 1 + T 2 + T 3 =
3∑
i

t iδ3(�k ′
i − �ki) + TR, (9)

where

TR ≡
3∑

i=1

3∑
j �=i=1

T
ij

R . (10)

In this formulation, the symmetry property for the exchange
of two identical particles is automatically incorporated to the
full T and TR matrices as far as that symmetry is implemented

1Although in Ref. [26] the cancellation was found to be exact in the
SU(3) limit and assuming a small momentum transfer for the baryon,
this last condition was shown to be unnecessary in Refs. [27,28] for
a two-meson and one-baryon system and a three-meson system with
one of the mesons being a vector meson.

2Note that for the cancellation found in Refs. [26–28], owing to
the particular structure of the pseudoscalar-baryon and pseudoscalar-
vector Weinberg-Tomozawa interactions, these diagrams can only
contribute to the on-shell terms and, thus, they were not necessary for
the cancellation.
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in the corresponding two-body t matrices, which is the case
here.

The two-body t matrices present in Eq. (9) cannot give rise
to any three-body structure, thus, to identify possible three-
body states one can concentrate in studying the properties of
the TR matrix defined in Eq. (10).

III. RESULTS

Our interest is to examine the possibility of existence of
kaonic states in the KKK̄ system. For this purpose, we solve
numerically Eq. (4) in a coupled-channel approach consid-
ering the following set of coupled channels for total charge
zero: K0K+K−, K0K0K̄0, K0π+π−, K0π−π+, K0π0π0,
K0π0η, K+K0K−, K+π0π−, K+π−π0, K+π−η, and we
take isospin-averaged masses for the different mesons, that
is, mK (for K+,K−,K0, K̄0), mπ (for π+, π−, π0), and mη.
To identify the isospin associated with peaks in the |TR|2, we
make an appropriate unitary transformation from the charged
base to an isospin base which is characterized by the total
isospin of the three-body system, I , and the isospin of one of
the two-body subsystems, Iab. In this way we can understand
further the properties of the possible resulting states. Naming
the particles in the KM2M3 system as 1, 2, and 3, we calculate
the transition amplitude in the isospin base |I, I23〉 as follows:

T
(I,I23)
R

(√
s,

√
s
I23
23

) ≡ 〈I, I23|TR(
√

s,
√

s23)|I, I23〉. (11)

Resonance or bound states are determined as peaks in the
modulus squared of the T

(I,I23)
R amplitude, which depends on

the energy of the three-body system,
√

s, and the invariant mass
of the (23) subsystem projected on isospin I23,

√
s
I23
23 . The mass

and the width of the state is read off from the peak position
of |TR|2. In general, if resonances are formed owing to the
three-body dynamics, they appear in all the coupled channels.
We present here the results involving the TR amplitude for the
particular case KKK̄ → KKK̄ .

In Fig. 2, we show the contour plots associated to the
modulus squared three-body amplitudes T

(1/2,0)
R (top panel)

and T
(1/2,1)
R (bottom panel) for the transition KKK̄ → KKK̄

with total isospin I = 1/2. We consider the cases in which
the two-body (23) subsystem is projected on isospin I23 = 0
(top panel) or I23 = 1 (bottom panel) to have the possibility
of generating the f0(980) or a0(980), respectively, in that
subsystem.

First of all, we see in both panels of Fig. 2 a peak structure
at an energy around 3mK ∼ 1488 MeV (with mK = 496 MeV
the kaon mass), which appears when the invariant masses of
the respective KK̄ subsystems have a value around 2mK , that
is, their threshold values. If we only considerer Kππ and
Kπη as coupled channels, the signal at 1488 MeV is not
present. Thus, we conclude that the peak that shows up at
1488 MeV corresponds then to the opening of the three-body
KKK̄ threshold.

Apart from this trivial structure, we find a peak at
√

s ∼
1420 MeV and a width of ∼ 50 MeV when

√
s0

23∼983 MeV,
as shown in the top panel of Fig. 2. As can be seen in the
bottom panel of Fig. 2, this resonance state also shows up
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FIG. 2. Contour plots of the three-body squared amplitudes
|T (1/2,0)

R |2 and |T (1/2,1)
R |2 for the KKK̄ → KKK̄ transition with total

I = 1/2 as functions of the total three-body energy,
√

s, and the
invariant mass of the KK̄ subsystem with I23 = 0 (top) or the invariant
mass of the KK̄ subsystem with I23 = 1 (bottom).

for a value of
√

s1
23 around 950 MeV and

√
s ∼ 1420 MeV.

These two peaks correspond to a single state with a mass
∼1420 MeV, which can be interpreted as a quasibound state
of the KKK̄ system with one of the KK̄ pairs forming the
f0(980): The resonance shows up when the invariant mass
of the KK̄ pair with isospin zero is close to a value of
983 MeV. This means that the f0(980) resonance is formed
in the subsystem. However, when the KK̄ is projected on
I23 = 1, the invariant mass for the KK̄ pair has a value around
950 MeV. This value is not exactly in the region where the
a0(980) gets dynamically generated, but it is also not very
far away,3 and the attraction present in the system helps in
forming a three-body bound state. Therefore, for the state
found around a total energy of 1420 MeV, both attractions
of KK̄ with isospin 0 [and in which the f0(980) is generated]
and 1 are important to form the three-body quasibound state.

This is a similar situation to the three-body resonance state
N∗(1910) found in the KK̄N system [21,25], in which the
state is generated by the attraction in K̄N and KK̄ .

The state obtained in the KKK̄ system and coupled
channels can probably correspond to the K(1460) listed by
the PDG [32] (which is omitted from the summary table)
and observed in Kππ partial-wave analysis, although the
width found in this work is much smaller than the two values
listed by the PDG, around 250 MeV. Note, however, that the
width obtained within this formalism comes only from s-wave
three-body channels and, normally, is smaller than the total
width observed for that state to which the two-body decay

3Although the pole associated with the a0(980) is localized on the
complex plane at a real value of the energy near 1009 MeV, the peak
corresponding to this state on the real plane appears around 980 MeV.
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widths also contribute, even if these two-body channels have
a smaller weight in the resonance wave function, as implicitly
assumed in our study. For example, the inclusion of p-wave
channels, such as πK∗(892) (a decay channel observed for
the K(1460) [32]), although it should not be essential to gen-
erate the state found,4 could definitively help in increasing the
width obtained. However, the poor experimental information
available in this energy region for kaonic states suggests that
the values of the widths in Ref. [32] may not be very precise.

To understand further the structure of the resonance found
at 1420 MeV, we have studied the effect of the differ-
ent three-body coupled channels calculating the three-body
TR amplitude taking into account the KKK̄ channel and
excluding Kππ and Kπη in the three-body space.5 In this
calculation, we get again a peak in the KKK̄ amplitude
around

√
s ∼ 1420 MeV for total isospin I = 1/2 with one

of the KK̄ pairs forming the f0(980) and the other not very
far away from the region where the a0(980) gets generated
and with a magnitude in |TR|2 similar to the result obtained
with the full set of coupled channels. If the KKK̄ channel
is excluded and the Kππ and Kπη channels are considered
as coupled channels, the corresponding peak is found around
1450 MeV (a bit higher than the resonance position of the full
calculation) for total isospin 1/2. However its signal is much
weaker than that of the full calculation. This fact suggests
that for the state found in the KKK̄ system and coupled
channels around 1420 MeV the f0(980) resonance plays an
important role in determining the resonance position, because
the ππ channel couples weakly to the f0(980) in the two-body
dynamics as compared to the KK̄ channel and without the KK̄

channel the f0(980) resonance cannot participate strongly in
the three-body dynamics. Nevertheless, because there is still
some attraction from the πη channel in the (23) subsystem with
I23 = 1 to form the a0(980) resonance, one can still find a weak
signal for the state, although the KKK̄ channel essentially
determines the structure of this resonance.

Finally, it is rewarding to mention that in our calculation
of the three-body system with total isospin I = 3/2, which
is manifestly exotic and cannot be made up with a qq̄

configuration, we do not find any resonance state in the
studied energy region: For total isospin I = 3/2, the two-body
subsystems present in the KKK̄ system have substantially
large isospin 1 components. In the KK subsystem the isospin
1 configuration is repulsive in nature, while for KK̄ , although
the isospin 1 configuration is attractive, the interaction is not

4A dynamically generated resonance, such as the one found in this
article, can be interpreted as an hadronic-molecular resonance where
the hadrons forming it retain their structure. This means that the
quarks inside the hadrons do not play an essential role in the formation
of this type of states. Such resonances are normally weakly bound
states and, thus, the constituent hadrons have little energy, which
implies that the probability of formation of such resonances is higher
when the interaction between the hadrons is in s wave because these
hadrons have low momenta.

5To determine the two-body t matrices of the KK and KK̄ systems
we continue considering all the two-body coupled channels, except
for the ηη channel as done before.

as strong as when the πη channel is also present to generate
together the a0(980) resonance. Thus, for total isospin 3/2, in
the KKK̄ system, the KK̄ interaction in isospin 1 probably
is not strong enough to overcome the repulsion originated
from the KK interaction in isospin 1 and form a resonance
or a bound state. For this reason, states with total isospin
I = 3/2 are probably hard to be generated dynamically in the
three-body system.

IV. POTENTIAL MODEL

As we have seen in Sec. III, the state found around an
energy of 1420 MeV in the KKK̄ , Kππ , and Kπη system
couples more strongly to KKK̄ than to Kππ or Kπη. This
fact, together with the smallness of the kinetic energy of the
kaons in a bound system in comparison with the kaon mass,
makes possible the study of the single-channel KKK̄ using a
nonrelativistic potential model, such as the one developed in
Refs. [21,22], and compare the results with the ones obtained
by solving the Faddeev equations for the KKK̄ system and
coupled channels.

Following Refs. [21,22], we consider KKK̄ as a single
channel and determine its wave function by solving the
Schrödinger equation for the Hamiltonian of the system, which
is given by

H = T + VKK (r1) + VKK̄ (r2) + VKK̄ (r3), (12)

with T the kinetic energy of the system and VKK , VKK̄

effective potentials which describe the KK and KK̄ inter-
actions, respectively. These potentials are written in terms of
	-independent local potentials as functions of the K-K and
K-K̄ distances, r1, r2, and r3, and we take a Gaussian form for
them:

V I
k (r) = UI

k exp[−(r/b)2] Pk(I ), (13)

where k denotes KK̄ or KK , I is the isospin of the two
kaon system, and Pk represents the isospin projector. The
parameters involved in Eq. (13) are the interaction range, b,
and the strength of the potential, UI

k . We consider as values for
the parameters those used in Refs. [21,22] to study the KK̄N

and K̄K̄N systems, which are U
I=0,1
KK̄

= −1155 − 283i MeV,
UI=1

KK = 313 MeV, with b = 0.47 fm. The K̄K interaction
strengths were determined to have a quasibound state with
mass 980 MeV and width 60 MeV in isospin 0 and isospin 1,
which correspond to the f0(980) and a0(980) resonances,
respectively. This means that the attractive K̄K interactions
have the same strengths for both IK̄K = 0 and IK̄K = 1. The
strength of the repulsive KK interaction in IKK = 1 was fixed
to reproduce the scattering length aK+K+ = −0.14, which has
been obtained from a lattice QCD calculation [37]. Because
the s-wave interaction for KK in isospin 0 is forbidden owing
to Bose statistics, we consider UI=0

KK = 0. In Refs. [21,22],
another parameter set is given for b and UI

k . We have also tried
that set of parameters and obtained very similar results to the
ones shown below.

In solving the Schrödinger equation for the KKK̄ channel,
we first consider only the real part of the potentials and de-
termine the corresponding wave functions using a variational
approach as in Refs. [21,22]. Then we calculate the bound-state
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TABLE I. Comparison of the results of the Faddeev calculation
and the potential model. The spatial structure of the KKK̄ quasi-
bound state obtained with the potential model is also shown in the
table.

Model
Faddeev

calculation
Potential
Model

Mass (MeV) ∼1420 1467
Width (MeV) ∼50 110
Root mean squared radius (fm) 1.6
K-K distance (fm) 2.8
(KK)-K̄ distance (fm) 1.7
K2-K̄3 distance (fm)a 1.6
K1-(K2K̄3) distance (fm)a 2.6

aThe values of the K2-K̄3 and K1-(K2K̄3) distances are obtained
before making the symmetrization of K1K2.

energies E as the expectation values of the Hamiltonian
defined in Eq. (12) with respect to the obtained wave functions.
The binding energy is determined from the real part of the
calculated energy, while the widths of the bound states are
evaluated from the imaginary part of the complex energies as

 = −2 ImE.

We get as a result a quasibound state of the KKK̄ system
with 21 MeV binding energy and 110 MeV width. This state
appears for an energy similar to the one of the resonance
obtained in the Faddeev calculation of Sec. III. A comparison
of the results found with both methods is given in Table I. It
is interesting to notice that although the two methods are very
different, the energy position of the quasibound KKK̄ state
does not differ very much. Note, however, that in the potential
model used we consider only the single KKK̄ channel and do
not take into account the possible modification of the two-body
interaction in the presence of the third particle. In such a simple
calculation, for weakly bound systems, the resulting binding
energy and width correspond to the sum of the binding energies
and widths of the two-body subsystems, f0(980) and a0(980)
in the present case, as discussed in Ref. [21].

In the potential model, the three-body wave function is
also obtained. With the wave function we can investigate the
spatial structure of the three-body quasibound state. We obtain
the root-mean-squared radius of the KKK̄ quasibound state to
be 1.6 fm. This value is similar to the one found for the KK̄N

system [21], which was 1.7 fm. The average K-K distance and
the distance between the KK cluster and K̄ are calculated and
found to be 2.8 and 1.7 fm, respectively. The distance of the
repulsive KK is also very similar to the corresponding result
for the KN distance in the KK̄N system.

In the calculation, we have taken three Jacobian coordi-
nates of the K1K2K̄3 system, K1-(K2K̄3), K2-(K1K̄3), and
K̄3-(K1K2). Even without the K̄3-(K1K2) rearrangement
channel, we obtain almost the same three-body binding energy.
This means that the system can be described essentially
by the K1-(K2K̄3) + K2-(K1K̄3) configuration. Because the
s-wave configuration of K1K2 with I12 = 0 is not allowed
because of Bose statistics, the K1K2 subsystem has almost
I12 = 1. In case that the K1K2 subsystem has purely I12 = 1,
according with the isospin algebra, the KK̄ subsystem should

0

2

1

f (980)

K

K
K

FIG. 3. Schematic picture of the KKK̄ quasibound state before
making the symmetrization of K1 and K2.

be composed by isospin 0 and 1 in a ratio of 3:1 for total
isospin I = 1/2 of the KKK̄ system. Calculating the distances
of K2-K̄3 and K1-(K2K̄3) without the symmetrization of K1

and K2, we obtain 1.6 and 2.6 fm, respectively. A schematic
picture is given in Fig. 3. These facts indicate that the KKK̄

quasibound system can be interpreted as a system of one K

and a strongly correlated KK̄ pair forming dominantly the
f0(980). This feature is consistent with what we have found
for the KKK̄ resonant state in the Faddeev calculation. It
is also worth noting that the attraction of KK̄ in isospin 1
is essential to make the interaction between K and f0(980)
attractive enough to form a quasibound state. Actually, when
we do not include attraction in KK̄ with isospin 1, we find no
bound state for the KKK̄ system.

Here we emphasize an important role of the repulsive KK

interaction for the hadronic molecular states. One of the crucial
features of the hadronic molecular state is that the system
can be described by its hadronic constituents. Therefore, if a
quasibound state is formed in the hadronic system, it should
be such a loosely bound state that the constituents hadrons are
separated and keeping their identities inside the bound state.
For deeply bound states, such as ones with hundreds of MeV
binding energy, the constituent hadrons get close to each other
and may be overlapped. In such a case, the hadronic molecular
picture may be broken down for these states and, if such states
exist in nature, one has to interpret them by other mechanisms
than the hadronic molecular picture. In the present KKK̄

system, KK with isospin 1 has a repulsion, and this keeps the
KKK̄ system loosely bound with a moderate binding energy.
When we take an artificial attraction for the KK interaction
as strong as the KK̄ interaction, we obtain a very deeply
bound state with hundreds of MeV binding energy. Thus, for
a hadronic molecular state appearing near the threshold of the
system, it is necessary that one of the pairs has a repulsive
interaction or, at least, sufficiently weak attraction.

Because in this calculation we have considered the same
potential for the cases IKK̄ = 0 and IKK̄ = 1, for total isospin
I = 3/2 we obtain a quasibound state at the same energy
as the one found for total isospin I = 1/2. However, the
origin of this state is in the use of an isospin-independent
KK̄ interaction in the potential model: Although the f0(980)
and a0(980) resonances can be considered as bound states
of the KK̄ system for isospin 0 and 1, respectively, at
almost the same energy, one should also consider some
nonresonant contributions, as done in the Faddeev calculation,
which certainly makes the KK̄ interaction in isospin 0
different from the one in isospin 1, resulting, as shown in
Sec. III, in no quasibound state in the KKK̄ system for total
isospin 3/2.
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V. CONCLUSIONS

We have studied the KKK̄ system and coupled channels
solving the Faddeev equations within a unitary chiral approach
to describe the interaction between the different subsystems.
A resonance state around 1420 MeV, thus below the KKK̄

threshold, which couples dominantly to the KKK̄ channel,
is found when one of the KK̄ pairs is in isospin zero
generating the resonance f0(980) and the other one is in
isospin 1, not very far from the region where the a0(980)
is generated. A nonrelativistic potential model has been also
employed to study the KKK̄ channel and similar results to
those of the Faddeev approach has been obtained. A state of
these characteristics could be probably observed in processes
involving a final state of three particles such as KKK̄ , as an
enhancement of the cross section close to threshold owing to
the presence of the quasibound KKK̄ state below it, by taking
coincidence of the f0(980) out of the invariant masses of the
KK̄ pairs. And also in processes involving final states such
as Kππ or Kπη, although the coupling to these channels is
much smaller and it can be more difficult to find the state.

The resonance state obtained in the KKK̄ system can
be an analog state of the quasibound states found in KK̄N

[21,24,25], in K̄NN [19], and in K̄K̄N [22]. These states
are found to be loosely bound in the systems of kaons and
nucleons. The significant similarity among these systems
stems from the fact that the two-body KK̄ and K̄N systems
with isospin 0 have sufficient attraction to form loosely bound
states with a dozen MeV binding energy. This is because,
although kaons and nucleons, having different masses, are
kinematically different, the fundamental interactions among
KK̄ and K̄N in s wave at low energy are determined by current
algebra as a consequence of the spontaneous breaking of the
chiral symmetry in QCD, and the strengths of these interactions
are identical in the sense of the SU(3) flavor symmetry
being enough to make a bound state [38]. Even though the
attractions in the two-body subsystems are important to form
three-body quasibound states in kaonic nuclear systems, some
repulsive interaction or sufficiently weak attraction in one
of the two-body subsystems is necessary to form a hadronic
molecular state.
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APPENDIX: CANCELLATION OF THE OFF-SHELL
CONTRIBUTION

In Ref. [27] a cancellation between the contribution of
the off-shell part of the two-body chiral t matrices to the

Faddeev diagrams and a contact term whose origin stands on
the chiral Lagrangian used to describe the interaction between
the particles has been shown to be exact in the flavor SU(3)
limit for a system made of two pseudoscalar mesons and
a baryon. In Ref. [28] the same type of cancellation was
obtained for a system of three mesons, one of them being
a vector meson. In this Appendix we are going to show that
in a three-pseudoscalar system a cancellation similar to that
mentioned above can be found and this cancellation turns out
to be exact in the chiral limit in which the mesons are assumed
to be massless. To do that, we consider, as an example, the
process K0π0η → K0π0η. In Fig. 4 we show the Faddeev
diagrams contributing to this process taking into account all
the possible three-meson intermediate states present in the
process under consideration. For the proof of the cancellation,
it is sufficient to consider the lowest-order diagrams, because
the rescattering effects can be factored out.

To calculate the contribution of the diagrams shown in
Fig. 4, we need to know the two-body amplitudes K0π0 →
K0π0, K0π0 → K0η, K0η → K0η0, and π0η → π0η. At
lowest order, the chiral Lagrangian that describes the inter-
action between any number of pseudoscalar mesons (P) is
given by

L = f 2

4
〈∂µU †∂µU + M(U + U †)〉, (A1)

where f is the pion decay constant and 〈 〉 stands for the trace
of the matrices built out of U (�) and M , with

U (�) = ei
√

2�/f , (A2)

and � a matrix containing the different Goldstone boson fields,

� =

⎛
⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞
⎟⎠ , (A3)

and M the mass matrix,

M =
⎛
⎝m2

π 0 0
0 m2

π 0
0 0 2m2

K − m2
π

⎞
⎠ . (A4)

The η meson mass is given by the Gell-Mann–Okubo mass
relation

m2
η = 1

3

(
4m2

K − m2
π

)
. (A5)

If we expand U in series up to terms containing four
pseudoscalar fields �, Eq. (A1) becomes

L4P = 1

12f 2
〈(∂µ�� − �∂µ�)2 + Mφ4〉. (A6)

Using this Lagrangian, we get

VK0π0→K0π0 = 1

12f 2

[
s − 2t + u − 2m2

K − 2m2
π

]
, (A7)

VK0π0→K0η =− 1

12
√

3f 2

[
3(s−2t + u)+2m2

K −2m2
π

]
, (A8)

VK0η→K0η = 1

12f 2

[
3(s − 2t + u) − 6m2

K + 2m2
π

]
, (A9)

Vπ0η→π0η = − m2
π

3f 2
, (A10)
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η
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η
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η
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η
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η
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η
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η
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η
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k1

k2
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k2
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K0

π0

η

K0

π0

η

k̃

(b () c)

(d () e () f )

(g () h)

FIG. 4. Faddeev diagrams contributing to the process K0π 0η → K0π 0η with three-meson intermediate states. The vertical lines represent
the tree level amplitudes given in Eqs. (A7)–(A10).

with the Mandelstam variables s = (k1 + k2)2, t = (k1 − k3)2,
and u = (k1 − k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u = ∑

k2
i , we can write these amplitudes as

VK0π0→K0π0 = 1

12f 2

[
−3t +

∑
i

(
k2
i − m2

i

)]
, (A11)

VK0π0→K0η = − 1

12
√

3f 2

[−9t + 8m2
K + m2

π

+ 3m2
η + 3

∑
i

(
k2
i − m2

i

)]
, (A12)

VK0η→K0η = 1

12f 2

[
−9t+6m2

η+2m2
π + 3

∑
i

(
k2
i − m2

i

)]
,

(A13)

with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as

T (e) = 1

144f 4

[− 9k3
2 + 6m2

η + 2m2
π + 3

(
k̃2 − m2

K

)]
× 1

k̃2 − m2
K

[− 3k2
2 + (

k̃2 − m2
K

)]
≡ T (e)

on + T
(e)

off , (A14)

where ki ≡ ki − k′
i (i = 1, 2, 3) and with T (e)

on (T (e)
off ) the

contribution which comes from the on-shell (off-shell) part

of the amplitudes:

T (e)
on = − 1

48f 4

[− 9k3
2 + 6m2

η + 2m2
π

] k2
2

k2
2 − 2k′

1k2
,

T
(e)

off = 1

144f 4

[ − 9k3
2 − 6k2

2 − 6k′
1k2 + 6m2

η + 2m2
π

]
.

(A15)

For the rest of diagrams in Fig. 4, analogously to Eq. (A15),
we obtain their off-shell parts:

T
(a)

off = − 1

36f 4
m2

π , (A16)

T
(b)

off = − 1

12f 4
m2

π , (A17)

T
(c)

off = − 1

12f 4
m2

π , (A18)

T
(d)

off = − 1

36f 4
m2

π , (A19)

T
(f )

off = 1

144f 4

[− 9k3
2 − 6k2

2 + 6k1k2

+6m2
η + 2m2

π

]
, (A20)

T
(g)

off = 1

144f 4

[
− 9(k3 − k′

2)2 − 9(k2 − k′
3)2

+ 3

2
{(k1 + k3 − k′

2)2 + (k′
1 + k′

3 − k2)2}

+ 13m2
K + 2m2

π + 6m2
η

]
, (A21)
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η
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η
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FIG. 5. Contact term whose origin stands on the Lagrangian of Eq. (A1) (a) and terms with one-meson and five-meson intermediate states
(b),(c) contributing to the process K0π 0η → K0π 0η.

T
(h)

off = 1

144f 4

[
− 9(k2 − k′

3)2 − 9(k3 − k′
2)2

+ 3

2
{(k1 + k2 − k′

3)2 + (k′
1 + k′

2 − k3)2}

+ 13m2
K + 2m2

π + 6m2
η

]
, (A22)

where in Eqs. (A21) and (A22) we have used that k1 + k3 −
k′

2 = k′
1 + k′

3 − k2 and k1 + k2 − k′
3 = k′

1 + k′
2 − k3, respec-

tively.
In accordance with the findings of Refs. [26–28], the

contribution of the off-shell part for the different diagrams
of Fig. 4, together with the corresponding three pseudoscalar
contact terms of the chiral Lagrangian [see Fig. 5(b)], is
expected to vanish under some limit. In case of Refs. [26–28],

the cancellation found was exact in the SU(3) limit. For
this case, a three-pseudoscalar system, we show that the
cancellation is exact under the chiral limit. It is interesting
to notice that for a three-pseudoscalar system, apart from
the mentioned contact term, we can have two more diagrams
which involve one-meson and five-meson intermediate states
with the same initial and final states as those shown in Fig. 4
[see Figs. 5(b) and 5(c)]. In the energy range of interest for
the three-body quasibound state, 1300–1500 MeV, the on-shell
contributions of the diagrams Figs. 5(b) and 5(c) are negligibly
small because they have large energy denominators in the
intermediate states.

Let us now evaluate the contribution from the contact term
of Fig. 5(a). To do that we need to expand the Lagrangian of
Eq. (A1) up to terms involving six pseudoscalar meson fields,
obtaining

L6P = 1

360f 4
〈−9∂µ��∂µ��3 + 11∂µ��2∂µ��2 − 4∂µ��3∂µ�� + 2∂µ��4∂µ� − 4�∂µ��3∂µ�

+ 11�2∂µ��2∂µ� − 9�3∂µ��∂µ� + 6∂µ�∂µ��4 + 6�4∂µ�∂µ� − 15�∂µ�∂µ��3 + 5�∂µ��∂µ��2

− 10�∂µ��2∂µ�� + 5�2∂µ��∂µ�� − 15�3∂µ�∂µ�� + 20�2∂µ�∂µ��2 − 2M�6〉. (A23)

Taking into account Eq. (A3) particularized for the process
K0π0η → K0π0η and Eqs. (A4), and (A23) adopts the form

La = − 1

180f 4

(
m2

K + m2
π

)
K0K̄0π0π0ηη

+ 1

120f 4
[K0K̄0∂µπ0∂µπ0ηη + 6∂µK0∂µK̄0π0π0ηη

− 3K0∂µK̄0∂µπ0π0ηη − 3∂µK0K̄0∂µπ0π0ηη

− 3K0∂µK̄0π0π0∂µηη − 3∂µK0K̄0π0π0∂µηη

+ 4K0K̄0π0∂µπ0∂µηη + K0K̄0π0π0∂µη∂µη].

(A24)

Using Eq. (A24) and taking into account that

k1 + k2 + k3 = 0, (A25)

we get for the diagram of Fig. 5(a) the contribution

t
(a)
3 = 1

6f 4
k1

2 − 1

90f 4

(
16m2

K + 3m2
η + m2

π

)
. (A26)

The contribution of the diagrams in Figs. 5(b) and 5(c) can
be calculated using the amplitude of Eq. (A12). In particular,
for the diagram in Fig. 5(b) we have

t
(b)
3 = 1

144 · 3f 4

[− 9(k2 + k3)2 + 8m2
K + m2

π + 3m2
η

+ 3
(
k̃2 − m2

K

)] 1

k̃2 − m2
K

[− 9(k′
2 + k′

3)2

+ 8m2
K + m2

π + 3m2
η + 3

(
k̃2 − m2

K

)]
≡ t

(b)
3 on + t

(b)
3 off. (A27)

We are interested only in t
(b)
3 off, which is given by

t
(b)
3 off = 1

144f 4

[− 9(k2 + k3)2 − 9
(
k′

2 + k′
3

)2

+ 3

2
{(k1 + k2 + k3)2 + (k′

1 + k′
2 + k′

3)2}
+ 13m2

K + 2m2
π + 6m2

η

]
, (A28)

where we have used the fact that k1 + k2 + k3 = k′
1 + k′

2 + k′
3.

Similarly, for the diagram in Fig. 5(c) we obtain the off-shell
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part as

t
(c)
3 off = 1

144f 4

[
− 9(k′

2 + k′
3)2 − 9(k2 + k3)2 + 3

2
{(k1 − k′

2 − k′
3)2 + (k′

1 − k2 − k3)2} + 13m2
K + 2m2

π + 6m2
η

]
, (A29)

where we make use that k1 − k′
2 − k′

3 = k′
1 − k2 − k3. Summing Eqs. (A15)–(A20) and using Eq. (A25) we get

f∑
i=a

T
(i)

off = − 1

8f 4
k1

2 + 5

24f 4
k2k3 + 1

36f 4

(
3m2

η − 7m2
π

)
. (A30)

If we add Eqs. (A26) and (A30) we obtain

f∑
i=a

T
(i)

off + t
(a)
3 = 1

24f 4

(
k1

2 + 5k2k3
) − 1

180f 4

(
32m2

K − 9m2
η + 37m2

π

)
. (A31)

Adding now Eqs. (A21), (A22), (A28), and (A29) we find

h∑
i=g

T
(i)

off +
c∑

i=b

t
(i)
3 off = 1

24f 4

[− 10m2
η − 10m2

π + 2m2
K + 5k3k

′
2 + 5k2k

′
3 − 5k2k3 − 5k′

2k
′
3 + k1(k2 + k3)

]

+ 1

36f 4

(
13m2

K + 2m2
π + 6m2

η

) = 1

24f 4

[− 10m2
η − 10m2

π + 2m2
K − 5k2k3 − k1

2]
+ 1

36f 4

(
13m2

K + 2m2
π + 6m2

η

)
, (A32)

which can be reduced to
h∑

i=g

T
(i)

off +
c∑

i=b

t
(i)
3 off = − 1

24f 4

[
k1

2 + 5k2k3
] + 1

36f 4
(16m2

K − 13m2
π − 9m2

η). (A33)

Therefore, summing all the contributions, which is obtained by adding Eqs. (A31) and (A33), we find that the term depending
on ki gets canceled and there is a mass term remaining, which, using Eq. (A5), reads as

h∑
i=a

T
(i)

off +
c∑

i=a

t
(i)
3 off = − m2

π

2f 4
, (A34)

which vanishes in the chiral limit. In this way we obtain an exact cancellation in the chiral limit.
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