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Relativistic quark-diquark model of baryons
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A relativistic quark-diquark mass operator with direct and exchange interaction has been constructed in the
framework of point form dynamics. The nonstrange baryon spectrum has been calculated and compared with
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I. INTRODUCTION

The notion of diquark is as old as the quark model itself.
Gell-Mann [1] mentioned the possibility of diquarks in his
original paper on quarks, and then soon afterward, Ida and
Kobayashi [2] and Lichtenberg and Tassie [3] introduced
effective degrees of freedom of diquarks in order to describe
baryons as composed of a constituent diquark and a constituent
quark. Since its introduction, many articles have been written
on this subject (for a review see Ref. [4]) and, more recently,
the diquark concept has been applied to various calculations
[5–13]. It has long been known that any interaction that is
strong enough to bind π and ρ mesons in the so-called
rainbow-ladder approximation of QCD’s Dyson-Schwinger
equation (DSE) will also produce (non-point-like) diquarks
[14]. Furthermore, indications for diquark confinement have
also been provided [15]. This makes it sufficiently plausible
to include diquarks as part of the baryon’s wave function.
Moreover, very important phenomenological indications for
diquark-like correlations have been collected over the years,
like some regularities in hadron spectroscopy, the Regge be-
havior of hadrons, the �I = 1

2 rule in weak nonleptonic decays
[16], some regularities in parton distribution functions [17]
and in spin-dependent structure functions [17], and in �(1116)
and �(1520) fragmentation functions [5–7]. Recently, diquark
effective degrees of freedom have proven to be useful also
in the study of transversity problems and fragmentation
functions [18].

The idea of this article is to construct a relativistic quark-
diquark model “inspired” by the good properties of the recently
constructed nonrelativistic interacting quark-diquark model
[19], which has been used to correlate different phenomeno-
logical data. We will reformulate the nonrelativistic interacting
quark-diquark model using the point form formalism [20].
This formalism has allowed the development of point-form
three-quark CQM’s for baryons, such as the chiral constituent
quark model [21], which is the point form reformulation of
Glozman and Riska’s nonrelativistic chiral quark model [22],
and the point-form relativistic hypercentral model [23], i.e., the
point-form reformulation of the nonrelativistic hypercentral
model [24], but up to now no one has tried to construct a
point-form relativistic quark-diquark model. This is the subject
of the present article. We will show that the nonstrange baryon
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spectrum is reproduced with a quality comparable to that of
three-quark CQM’s and, most important, that no missing state
is present under 2 GeV.

II. NONRELATIVISTIC QUARK-DIQUARK STATES

We assume that baryons are composed of a constituent
quark, q, and a constituent diquark, q2 = Q2. We consider
the diquark as two correlated quarks with no internal spatial
excitations (thus in S wave) or at least we hypothesize that
their internal spatial excitations are higher in energy than
the scale of masses of the resonances we are going to study
(2 GeV). Their color-spin-flavor wave functions then must be
antisymmetric.

Moreover, as we take only light nonstrange baryons into
account, composed of (u, d) quarks, the internal group is
restricted to the Wigner spin-isopin SUsi(4). Using the con-
ventional notation of denoting spin and isospin by their values
and color by the dimension of the representation, the quark has
spin s2 = 1

2 , isospin t2 = 1
2 , and C2 = 3. Since the hadron must

be colorless, the diquark must transform as 3 under SUc(3) and
therefore one can have only the symmetric SUsi(4) representa-
tion 10si(S), containing s1 = 0, t1 = 0, and s1 = 1, t1 = 1, i.e.,
the scalar and axial-vector diquarks, respectively. Thus, if only
nonstrange baryons are considered, one can use the isospin of
the diquark, t1, and quark, 1/2, and the total isospin, T , to get
the following basis states in the spin-isospin space:∣∣s1 = 0, t1 = 0; 1

2 , 1
2 ; S = 1

2 , T = 1
2

〉
, (1a)∣∣s1 = 1, t1 = 1; 1

2 , 1
2 ; S = 1

2 , T = 1
2

〉
, (1b)∣∣s1 = 1, t1 = 1; 1

2 , 1
2 ; S = 1

2 , T = 3
2

〉
, (1c)∣∣s1 = 1, t1 = 1; 1

2 , 1
2 ; S = 3

2 , T = 1
2

〉
, (1d)∣∣s1 = 1, t1 = 1; 1

2 , 1
2 ; S = 3

2 , T = 3
2

〉
. (1e)

III. RELATIVISTIC QUARK-DIQUARK MODEL

A. Two-particles velocity states

The general quark-diquark state, defined on the product
space H1 ⊗ H2 of the one-particle spin s1 [here 0 (or 1)]
and spin s2 (here 1/2) positive energy representations
H1 = L2(R3) ⊗ S0

1 or H1 = L2(R3) ⊗ S1
1 and H2 =

L2(R3) ⊗ S
1/2
2 of the Poincaré Group, can be written as

|p1, p2, σ1, σ2〉, (2)
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where p1 and p2 are the four-momenta of the diquark and the
quark, respectively, while σ1 and σ2 are the z projections of
their spins. The spin s1 of the diquark is chosen to be only 0 or 1,
since we have made the hypothesis that the internal excitation
of the non-point-like diquark will not be important for the
spectrum under 2 GeV, but in principle all the excited states of
the diquark can be considered within the same formalism. The
only change would be in an increased number of basis states.

We introduce the velocity states (see Ref. [20]) by applying
a Lorentz boost UB(v) to the states of the previous equation in
the quark-diquark rest frame

|v, �k1, �k2, σ1, σ2〉 = UB(v)|k1, k2, σ1, σ2〉0, (3)

where the suffix 0 means that the diquark and the quark
three-momenta �k1 and �k2 satisfy the condition �k1 + �k2 = 0: �k1

and �k2 are called internal momenta. We choose UB(v) to be a
canonical boost, obtaining that the transformed tetramomenta
are p1 = B(v)k1 and p2 = B(v)k2. Instead of the internal
momenta �k1 and �k2 we use the relative momentum �q, conjugate
to the relative coordinate �r = �r1 − �r2, thus considering the
following velocity basis states:

|v, �q, σ1, σ2〉 = UB(v)|k1, k2, σ1, σ2〉0. (4)

The important point is that a Lorentz transformation applied
to a velocity state acts as [20]

U�|v, �q, σ1, σ2〉
=

∑
σ ′

1,σ
′
2

|�v,Rw �q, σ ′
1, σ

′
2〉0D

s1

σ ′
1,σ1

(Rw)Ds2

σ ′
2,σ2

(Rw), (5)

that means that all the Wigner rotations are the same and
thus one can couple angular momenta and/or spins as in the
nonrelativistic case [20]. In particular since �q is defined as

a linear combination of the internal momenta �k1 and �k2, it
undergoes the same Wigner rotation.

Moreover, one can define states

|v, L,ML, q, σ1, σ2〉 =
∫

d2q̂ YLML
(q̂)UB(v)|�q, σ1, σ2〉0, (6)

where L is the total orbital angular momentum. We couple the
spins s1 and s2 to obtain the total spin S and their z components
to σ1 + σ2 = Sz:∣∣∣∣v, L,ML, q, S = 1

2
,MS

〉

=
〈
0, σ1,

1

2
, σ2

∣∣∣∣1

2
, Sz

〉 ∫
d2q̂ YLML

(q̂)UB(v)|�q, σ1, σ2〉0,

(7a)

∣∣∣∣v, L,ML, q, S = 1

2
,MS

〉

=
〈
1, σ1,

1

2
, σ2

∣∣∣∣1

2
, Sz

〉 ∫
d2q̂ YLML

(q̂)UB(v)|�q, σ1, σ2〉0,

(7b)
and∣∣∣∣v, L,ML, q, S = 3

2
,MS

〉

=
〈
1, σ1,

1

2
, σ2

∣∣∣∣3

2
, Sz

〉 ∫
d2q̂ YLML

(q̂)UB(v)|�q, σ1, σ2〉0.

(7c)

Finally, we couple L and the total spin S together to the
total angular momentum J and its z component, obtaining the
following basis

∣∣∣∣v, J,M, q, L, S = 1

2
, s1 = 0, s2 = 1

2

〉

=
〈
L,ML, S = 1

2
, Sz

∣∣∣∣J,M

〉 〈
s1 = 0, σ1, s2 = 1

2
, σ2

∣∣∣∣S = 1

2
, Sz

〉 ∫
d2q̂ YLML

(q̂)UB(v) |�q, σ1, σ2〉0 , (8a)

∣∣∣∣v, J,M, q, L, S = 1

2
, s1 = 1, s2 = 1

2

〉

=
〈
L,ML, S = 1

2
, Sz

∣∣∣∣J,M

〉 〈
s1 = 1, σ1, s2 = 1

2
, σ2

∣∣∣∣ S = 1

2
, Sz

〉 ∫
d2q̂ YLML

(q̂)UB(v)|�q, σ1, σ2〉0, (8b)

∣∣∣∣v, J,M, q, L, S = 3

2
, s1 = 1, s2 = 1

2

〉

=
〈
L,ML, S = 3

2
, Sz

∣∣∣∣J,M

〉 〈
s1 = 1, σ1, s2 = 1

2
, σ2

∣∣∣∣ S = 3

2
, Sz

〉 ∫
d2q̂ YLML

(q̂)UB(v)|�q, σ1, σ2〉0, (8c)

where the repeated indices mean as usual a sum
and the Clebsch-Gordan coefficients are indicated as usual
with the brackets. The isospin part of the states is the same as
in the description of Eq. (1).

B. The mass operator

We consider a quark-diquark system, where �r is the relative
coordinate between the two constituents and �q is the conjugate
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momentum of �r . We have already said that we use the relative
momentum �q instead of the internal momenta �k1 and �k2, which
undergo the same Wigner rotation as �q.

We propose a relativistic quark-diquark model based on the
following baryon rest frame mass operator:

M = E0 +
√

q2 + m2
1 +

√
q2 + m2

2 + Mdir(r)

+Mcont(r) + Mex(r), (9)

where E0 is a constant, Mdir(r) and Mex(r), respectively, are
the direct and the exchange diquark-quark interaction, m1 and
m2 stand for the diquark and quark masses, where m1 is either
mS or mAV according if the mass operator acts on a scalar or
an axial vector diquark [5,6,25–37], and Mcont(r) is a contact
interaction.

The direct term is a Coulomb-like interaction with a cutoff
plus a linear confinement term

Mdir(r) = −τ

r
(1 − e−µr ) + βr. (10)

The importance of the Coulomb-like interaction was empha-
sized long ago by Lipkin [38]. A simple mechanism that
generates a Coulomb-like interaction is one-gluon exchange.

One needs also an exchange interaction, as emphasized by
Lichtenberg [39]. This is indeed the crucial ingredient of a
quark-diquark description of baryons. We have

Mex(r) = (−1)l+1e−σr [AS( �s1 · �s2) + AI ( �t1 · �t2)

+ASI (�s1 · �s2)( �t1 · �t2)], (11)

where �s and �t are the spin and the isospin operators.
Moreover, we consider a contact interaction similar to that

introduced by Godfrey and Isgur [40]

Mcont =
(

m1m2

E1E2

)1/2+ε
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2+ε

,

(12)

where Ei =
√

q2 + m2
i (i = 1, 2), ε, η, and D are parameters

of the model.
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FIG. 1. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ nonstrange baryon resonances
(up to 2 GeV) and the experimental masses from PDG [41] (boxes).

TABLE I. Resulting values for the model parameters.

mq = 200 MeV mS = 600 MeV mAV = 950 MeV
τ = 1.25 µ = 75.0 fm−1 β = 2.15 fm−2

AS = 375 MeV AI = 260 MeV ASI = 375 MeV
σ = 1.71 fm−1 E0 = 154 MeV D = 4.66 fm2

η = 10.0 fm−1 ε = 0.200

The Hamiltonian of the nonrelativistic model of Ref. [19] is

H = E0 + q2

2µ
− τ

r
+ βr + [B + Cδ0]δs1,1

+ (−1)l+12Ae−αr [( �s1 · �s2) + (�t1 · �t2) + ( �s1 · �s2)(�t1 · �t2)],

(13)

TABLE II. Comparison between the experimental values [41] of
the masses of the nonstrange baryon resonances (up to 2 GeV) and
the numerical ones (all values are expressed in MeV). In the second
column the “status” of each resonance is reported according to the
classification given by PDG [41]. Tentative assignments of 2∗ and
1∗ resonances are shown in the second part of the table. J P and LP

are respectively the total angular momentum and the orbital angular
momentum of the baryon, including the parity P ; S is the total spin,
obtained coupling the spin of the diquark s1 to the one of the quark;
finally nr is the number of nodes in the radial wave function.

Resonance Status Mexpt J P LP S s1 nr Mcalc

(MeV) (MeV)

N (939) P11 **** 939 1
2

+
0+ 1

2 0 0 939

N (1440) P11 **** 1420–1470 1
2

+
0+ 1

2 0 1 1513

N (1520) D13 **** 1515–1525 3
2

−
1− 1

2 0 0 1527

N (1535) S11 **** 1525–1545 1
2

−
1− 1

2 0 0 1527

N (1650) S11 **** 1645–1670 1
2

−
1− 1

2 , 3
2 1 0 1671

N (1675) D15 **** 1670–1680 5
2

−
1− 3

2 1 0 1671

N (1680) F15 **** 1680–1690 5
2

+
2+ 1

2 0 0 1808

N (1700) D13 *** 1650–1750 3
2

−
1− 1

2 , 3
2 1 0 1671

N (1710) P11 *** 1680–1740 1
2

+
0+ 1

2 1 0 1768

N (1720) P13 **** 1700–1750 3
2

+
0+ 3

2 1 0 1768

�(1232) P33 **** 1231–1233 3
2

+
0+ 3

2 1 0 1233

�(1600) P33 *** 1550–1700 3
2

+
0+ 3

2 1 1 1602

�(1620) S31 **** 1600–1660 1
2

−
1− 1

2 1 0 1554

�(1700) D33 **** 1670–1750 3
2

−
1− 1

2 1 0 1554

�(1900) S31 ** 1850–1950 1
2

−
1− 1

2 1 1 1986

�(1905) F35 **** 1865–1915 5
2

+
2+ 3

2 1 0 1952

�(1910) P31 **** 1870–1920 1
2

+
2+ 3

2 1 0 1952

�(1920) P33 *** 1900–1970 3
2

+
2+ 3

2 1 0 1952

�(1930) D35 *** 1900–2020 5
2

−
1− 3

2 1 0 2005

�(1950) F37 **** 1915–1950 7
2

+
2+ 3

2 1 0 1952

N (2100) P11 * 1855–1915 1
2

+
0+ 1

2 0 2 1893

N (2090) S11 * 1869–1987 1
2

−
1− 1

2 0 1 1882

N (1900) P13 ** 1820–1974 3
2

+
2+ 1

2 0 0 1808

N (2080) D13 ** 1740–1940 3
2

−
1− 1

2 0 1 1882

�(1750) P31 * 1708–1780 1
2

+
0+ 1

2 1 0 1858

�(1940) D33 * 1947–2167 3
2

−
1− 1

2 1 1 1986

065204-3



J. FERRETTI, A. VASSALLO, AND E. SANTOPINTO PHYSICAL REVIEW C 83, 065204 (2011)

TABLE III. Mass difference (in MeV) between scalar and axial-
vector diquarks according to some previous studies.

mS (MeV) mAV − mS (MeV) Source

– 210 Jaffe [5]
– 290 Wilczek [6]
– 360 Orginos [25]
688 202 Maris [26]
595 205 Lichtenberg et al. [27]
– 200÷300 Lichtenberg, Johnson [28]
420 520 Schäfer et al. [29]
770 140 de Castro et al. [30]
692 330 Cahill, Gunner [31]
750 100 Flambaum et al. [32]
590 210
— 162 Babich et al. [33]
— 270 Eichmann et al. [34]
640 220 Hecht et al. [45]
730 210 Bloch et al. [46]
737 212 Burden et al. [37]

where δ0, a short notation for δn,0δL,0, means that the contact
term acts only on the ground state.

Comparing the mass operator of Eq. (9) to the nonrela-
tivistic one of Eq. (13), one can note the disappearance of the
terms Bδs1,1 and Cδ0δs1,1, where B and C are constants. The
term Bδs1,1, introduced in Ref. [19] to take the scalar-axial
vector diquark mass difference into account, is here neglected
because this mass difference results already automatically in
the two different diquark masses mS and mAV in the kinetic
energy operator, while the term Cδ0δs1,1 is here replaced with
the explicit contact interaction (12). The presence of the split
between the two diquark configurations is a key ingredient of
a quark-diquark model [19].

Moreover, we have introduced a cutoff in the Coulomb-like
term to regularize it for short values of r , in order to avoid
numerical problems arising in the relativistic case. Finally, it
has to be noted that in the present work all the calculations are
performed without any perturbative approximation.

We can thus state that the mass operator of Eq. (9) is
not simply the relativistic extension of the interacting quark
diquark model of Eq. (6) and Ref. [19], since at the end it results
to be only inspired by the nonrelativistic previous model.

In point form dynamics Eq. (9) corresponds to a good mass
operator since it commutes with the Lorentz generators and
with the four velocity. We diagonalize (9) in the Hilbert space
spanned by the velocity states. Since the mass operator and
the velocity commute, the eigenstates of the mass operator are
eigenstates also of the velocity operator.

IV. RESULTS AND DISCUSSION

Figure 1 and Table II show the comparison between the
experimental data [41] and the results of our quark-diquark
model calculation, obtained with the set of parameters of
Table I. The overall quality in the reproduction of the
experimental data (considering only 3∗ and 4∗ resonances) is
comparable to that of other three quarks CQM’s [22,24,42–44],
but our model is not plagued with the problem of missing
resonances (see Table II).

It has to be noted that this particular model does not predict
missing states below the energy of 2 GeV, while the three
quarks CQM’s give rise to several missing states [41]. For
example, Capstick and Isgur’s model [42] has five missing
states up to 2 GeV, the hypercentral CQM [24] has 8, the
Glozman and Riska’s model has 4 [22], and the U(7) model
has 17 [44].

While the absolute values of the diquark masses are model
dependent, their difference is not. Comparing our result for
the mass difference mAV − mS between the axial vector and
the scalar diquark to those of Table III, it is interesting to note
that our estimation is comparable with the other ones. Such
evaluations come from phenomenological observations [5,6,
27]; lattice QCD calculations [25,33]; instanton liquid model
calculations [29]; applications of Dyson-Schwinger, Bethe-
Salpeter, and Fadde’ev equations [26,31,32,34,37,45,46]; and
constituent quark-diquark model calculations [28,30], even if
in the latter it is not calculated the entire spectrum.

The whole mass operator of Eq. (9) has been diagonalized
by means of a numerical variational procedure, based on
harmonic oscillator trial wave functions. With a variational
basis made of N = 256 harmonic oscillator shells the results
converge very well, even if we have noticed that convergence
is already satisfying for N ≈ 150.

The present work can be expanded to include strange
baryons or baryons with one or two heavy quarks and
also to include an interaction term able to mix the various
configurations with the same JP but different spin-flavor
content.

The application of our model to the description of strange
baryons is straightforward and does not require a complete
modification of the mass operator but just a change in the
potential terms of Eq. (11), which should contain a flavor
dependence instead of the isospin one.
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