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Incoherent diffractive J/� production in high-energy nuclear deep-inelastic scattering
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We compute cross sections for incoherent diffractive J/� production in lepton-nucleus deep-inelastic
scattering (DIS). The cross section is proportional to A in the dilute limit and to A1/3 in the black disk limit,
with a large nuclear suppression due to saturation effects. The t dependence of the cross section, if it can be
measured accurately enough, is sensitive to the impact parameter profile of the gluons in the nucleus and their
fluctuations, a quantity that determines the initial conditions of a relativistic heavy-ion collision. The nuclear
suppression in incoherent diffraction shows how the transverse spatial distribution of the gluons in the nucleus
gradually becomes smoother at high energy. Since the values of the momentum transfer |t | involved are relatively
large, this process should be easier to measure in future nuclear DIS experiments than coherent diffraction.
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I. INTRODUCTION

Strongly interacting systems in the high-energy (or small x)
limit are very nonlinear systems in spite of the smallness
of the coupling constant αs. This is due to the large phase
space available for semihard gluon radiation that increases
the occupation numbers of gluonic modes in the hadron or
nucleus wave function. Thus, high-energy scattering has to be
understood in terms of gluon recombination and saturation
that enforce the unitarity requirements of the S matrix.
This happens naturally in the color glass condensate (CGC)
effective theory of the high-energy wave function. In the
context of deep-inelastic scattering (DIS) the CGC leads to
the dipole picture that naturally gives a consistent description
of both inclusive and diffractive scattering. The nonlinearities
in high-energy scattering are enhanced when the target is
changed from a proton to a heavy nucleus. Thus there is
a great opportunity to understand them by studying nuclear
DIS in new collider experiments, such as the EIC [1] or the
LHeC [2]. The particular process we discuss in this paper is
diffractive DIS on nuclei.

In the Good-Walker [3] picture of diffraction one needs to
identify the states that diagonalize the imaginary part of the T

matrix. In the case of nuclear DIS at high energy these states
are the ones with the virtual photon fluctuating into a dipole
of a fixed size r and with the nucleons in the nucleus at fixed
transverse positions bi . In coherent diffraction the nucleus is
required to stay intact, which corresponds to performing the
average over the nuclear wave function at the level of the
scattering amplitude. Averaging the cross section, instead of
the amplitude, over the nucleon positions allows for the nucleus
to break up, giving the sum of incoherent and coherent cross
sections, i.e., the quasielastic cross section. For a more formal
discussion of this we point the reader to, e.g., Ref. [4]. The t

dependence of the incoherent cross section therefore directly
probes the fluctuations and correlations in the nuclear wave
function, which have turned out to be a crucial ingredient in
understanding the initial conditions in heavy-ion collisions [5].

The average gluon density probed in the coherent process
is very smooth, meaning that the cross section is dominated

by small values of momentum transfer to the nucleus, t ∼
−1/R2

A. Measuring such a small momentum transfer accu-
rately is very challenging. At momentum scales corresponding
to the nucleon size t ∼ −1/R2

p the diffractive cross section
is almost purely incoherent. The larger momentum transfer
should also be easier to reconstruct experimentally, even
without measuring the transverse momentum of the nuclear
remnants, by accurately reconstructing the outgoing electron
and J/� momenta and using momentum conservation. By
taking these processes into account in the detector design one
should be capable of measuring diffractive events at a higher
accuracy than was done at HERA. In the dilute limit (for small
dipoles) there is no multiple scattering, and the incoherent
cross section is given by A times the corresponding one for
protons. The deviation of the t slope from the proton measures
the transverse size of the fluctuating areas in the nucleus.

In the black disk limit the nucleus is smooth not only on
average but also event by event, leading to a strong suppression
of the incoherent cross section. Incoherent diffraction gets
contributions from the edge of the nucleus, making the cross
section asymptotically behave as ∼A1/3 in contrast to ∼A in
the dilute limit. The suppression in the normalization relative
to the proton is a measure of the approach to the unitarity limit
in the dipole cross section. It is a clear signal of how individual
nucleons have lost their identity in the sense that they cannot be
resolved by the virtual photon. It is precisely this suppression
that we are proposing to use to quantitatively access saturation
effects in the nuclear wave function. The purpose of this paper
is to provide a realistic estimate of the nuclear suppression in
diffractive cross sections in a regime that could be measured
in future nuclear DIS experiments.

Nuclear DIS data from fixed target experiments, in particu-
lar E665 [6] and NMC [7], have already been much discussed
in the literature as demonstrations of color transparency (see,
e.g., Refs. [8–12]). The form of nuclear modification to the
incoherent diffraction in terms of the dipole cross section that
we have rederived is not new (see, e.g., Refs. [11,13]). So far,
however, less attention has been paid to inelastic diffraction
in future DIS experiments. The production cross sections

065202-10556-2813/2011/83(6)/065202(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.065202
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have not been calculated using the same CGC-inspired cross
sections that have been used successfully to confront HERA
data, as we intend to do here. In this work we concentrate on
the J/� because its small size means that the interaction of
the dipole with the target is calculable in weak coupling even
at small Q2.

The importance of diffraction in understanding gluon
saturation has been discussed and our basic setup motivated in
Ref. [14]. Nuclear modifications to the diffractive structure
functions, integrated over the momentum transfer t , were
computed in Ref. [15]. Vector-meson production at future DIS
experiments was recently discussed from a more experimental
point of view in Ref. [4], and coherent production cross
sections (integrated over t) were calculated in Ref. [16]. An
interesting discussion on coherent and incoherent diffraction
and gluon saturation in the nucleus can be found in Ref. [17].
In this study we want to take a step beyond the discussion
of inclusive diffraction in Refs. [14,15] to understand the t

dependence in more detail.

II. DIPOLE CROSS SECTIONS

There are many dipole cross-section parametrizations avail-
able in the literature, and we have taken for this study two
representative samples. One is the IIM [18] dipole cross sec-
tion, which is a parametrization including the most important
features of BK [19] evolution. The detailed expression for the
dipole cross section can be found in Ref. [18]; we use here
the values of the parameters from the newer fit to HERA
data including charm [20] that was also used to compute
diffractive structure functions in Ref. [21]. We also want to
compare our results to a parametrization with an eikonalized
DGLAP-evolved gluon distribution. For this purpose we will
use an approximation of the IPsat dipole cross section [22,23].

To extend the dipole cross section from protons to nuclei
we will take the independent scattering approximation that is
usually used in Glauber theory and write the S matrix as

SA(rT , bT , x) =
A∏

i=1

Sp(rT , bT − bT i, x). (1)

Here we conventionally parametrize the energy dependence of
the scattering amplitude with x, the Bjorken variable of the DIS
event.1 The variables bT i in Eq. (1) are the nucleon coordinates
that we will discuss in Sec. III. This independent scattering
assumption is natural in IPsat-like parametrizations or the MV
[24] model, where, denoting r = |rT |, S(rT ) ∼ e−r2Q2

s /4 with a
saturation scale Q2

s proportional to the nuclear thickness TA(b).
High-energy evolution, however, introduces an anomalous
dimension that leads, in the nuclear case, to what could be
called leading twist shadowing. With an anomalous dimension
S ∼ e−(Qsr)2γ

with γ �= 1, a proportionality Q2
s ∼ TA(b) is

1Note that, strictly speaking, the relation between x and the energy
of the dipole-target scattering depends on Q2, not only r . Using x

here is justified in a high-energy approximation where the energy of
the dipole in the target rest frame is approximately the same as that
of the virtual photon.

not equivalent to Eq. (1). A solution to this problem (see
also the more detailed discussion in Ref. [15]) would require
a realistic impact-parameter-dependent solution to the BK
equation which, we feel fair to say, is not yet available. We
point the reader to, e.g., Ref. [25] for a discussion of the
difficulties. These are related to the long-distance Coulomb
tails that, physically, are regulated at the confinement length
scale that is not enforced in a first-principles weak-coupling
calculation. The effect of BK evolution is important for
the CGC description of the forward suppression of particle
production in dAu collisions at RHIC (for a review, see
Ref. [26]). In our case the difficulty is greater since we are
interested not only in the relatively smooth average gluon
density but also its variations at smaller length scales of the
order of the proton radius. We thus leave the modifications of
Eq. (1) due to the effects of evolution to a future study.

The IIM parametrization assumes, either explicitly or
implicitly, a factorizable bT dependence

dσ
p
dip

d2bT

(bT , rT , x) = 2[1 − Sp(rT , bT , x)] (2)

= 2 Tp(bT )N (r, x),

We take, following Ref. [21], a Gaussian profile Tp(bT ) =
exp(−b2/2Bp) with Bp = 5.59 GeV−2 (see Sec. IV for a
discussion of this largish numerical value).

In the IPsat model the impact parameter dependence is
included in the saturation scale as

dσ
p
dip

d2bT

(bT , rT , x) = 2 {1 − exp[−r2F (x, r)Tp(bT )]}. (3)

Here Tp(bT ) = exp(−b2/2Bp) is the impact parameter profile
function in the proton with Bp = 4.0 GeV2, and F is
proportional to the DGLAP evolved gluon distribution [27],

F (x, r2) = 1

2πBp

π2

2Nc
αs

(
µ2

0 + C

r2

)
xg

(
x, µ2

0 + C

r2

)
,

(4)

with C chosen as 4 and µ2
0 = 1.17 GeV2 resulting from the

fit [23]. The proton dipole cross sections used are plotted in
Fig. 1 for x = 0.0001.

We would generally prefer the unfactorized b dependence
of Eq. (3) to the factorized one in Eq. (2) because it allows
for the correct unitarity limit of the scattering amplitude at all
impact parameters (see the discussion in Ref. [15]). However,
there seems to be no clear difference between the two in terms
of the quality of the description of HERA data, and for the
sake of computational simplicity we will in this work limit
ourselves to the factorized dependence and approximate the
IPsat dipole cross section by

dσ
p
dip

d2bT

(bT , rT , x) ≈ 2Tp(bT ) {1 − exp[−r2F (x, r)]} (5)

using the same F (x, r) defined in Eq. (4). This approximation
brings the IPsat parametrization to the form (2) withN (r, x) =
{1 − exp[−r2F (x, r)]}; in fact, this is the form used already
in Ref. [27]; we, however, use the gluon distribution from the
IPsat fit [23] for convenience. Improving this description goes
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FIG. 1. (Color online) The r dependence of the different proton
dipole cross sections used, at x = 0.0001 and b = 0. As discussed in
Sec. IV, the “IPnonsat” curve is Eq. (5) linearized in r2F (x, r).

hand in hand with giving up the approximation of independent
scatterings off the nucleons, Eq. (1), and is left for future work.
As we shall see in the following, these approximations enable
us to write the cross section for incoherent diffraction in a form
that is much simpler to evaluate numerically than one with a
general b dependence.

III. COMPUTING DIFFRACTIVE CROSS SECTIONS

The cross section for quasielastic vector-meson production
in nuclear DIS is

dσγ ∗A→V A

dt
= R2

g(1 + β2)

16π
〈|A(xP ,Q2,�T )|2〉N, (6)

with t = −�T
2. The dipole cross section is evaluated

at the energy scale corresponding to the rapidity gap between
the vector meson and the target xP . To translate this
into the photon-target center-of-mass energy W that is often
used to present experimental results, note that xP = (M2

J/� +
Q2)/(W 2 + Q2). The factor 1 + β2 accounts for the real part
of the scattering amplitude, and the factor R2

g corrects for the
skewedness effect, i.e., that the gluons in the target are probed
at slightly different x [29]. For these corrections we follow the
prescription of Ref. [30], taking them as

β = tan
πλ

2
, (7)

Rg = 22λ+3

√
π

�(λ + 5/2)

λ + 4
, (8)

with

λ = ∂ lnAγ ∗p→J/�p

T,L

∂ ln 1/xP
. (9)

These corrections depend, in general, on t , which we take
into account in our calculation. For the full IPsat model λ

changes by about 5% between t = 0 and −t = 0.5 GeV2.

For the factorized impact parameter dependence in Eqs. (2)
and (5) λ is independent of t . We calculate the correction
terms from the energy dependence of the nucleon scattering
amplitudes and use the same values for the nucleus at the
same Q2, xP . Since the difference in λ extracted from the
nucleus and the nucleon cross sections is small (compared to
the value of λ) and Rg and β are in themselves corrections to
the cross section, this approximation is justified. In addition
this approximation has the advantage that these corrections
cancel on the nucleus-nucleon cross-section ratio. The real
part and skewedness corrections, especially Rg , are, however,
a significant factor in the absolute normalization of the cross
section and are necessary for the agreement with HERA
data.

The imaginary part of the scattering amplitude is the Fourier
transform of the dipole cross section from bT to �T contracted
with the overlap between the vector-meson and virtual-photon
wave functions:

A(xP ,Q2,�T ) =
∫

d2rT

∫
dz

4π

∫
d2bT [�∗

V �](r,Q2, z)

×e−ibT ·�T
dσdip

d2bT

(bT , rT , xP ), (10)

where we have followed the normalization convention of [23].
For the virtual-photon–vector-meson wave-function overlap
we use the “boosted Gaussian” parametrization from Ref. [23].
We have also tested the “gaus-LC” wave function also
used in Ref. [23]. Although the “boosted Gaussian” seems
preferred by HERA data, the gaus-LC parametrization is also
compatible with the data within the experimental errors. The
cross sections for the proton differ by factors of the order
of 10%. The interaction of the gluon target with the dipole
can in general depend also on �T , which introduces terms
that couple rT , �T , and z in Eq. (10). For the J/� and
the range in t considered in this paper �T is sufficiently
small compared to the relevant values of 1/r that we can
neglect this coupling, which simplifies the structure consid-
erably. Lighter vector mesons would require a more general
treatment.

The average over the positions of the nucleon in the nucleus
is denoted here by

〈O({bT i})〉N ≡
∫ A∏

i=1

[d2bT iTA(bT i)]O({bT i}). (11)

Here TA is the Woods-Saxon distribution with nuclear ra-
dius RA = (1.12A1/3 − 0.86A−1/3) fm and surface thickness
d = 0.54 fm. This expectation value is equivalent to the
average over nucleon configurations in a Monte Carlo Glauber
calculation. We are assuming that the positions bT i are
independent, i.e., neglecting nuclear correlations that would
be a subject of interest in their own right (see, e.g., [31]). The
coherent cross section is obtained by averaging the amplitude
before squaring it, |〈A〉N|2, and the incoherent one is the
variance 〈|A|2〉N − |〈A〉N|2 that measures the fluctuations of
the gluon density inside the nucleus. Because 〈A〉N is a very
smooth function of bT , its Fourier transform vanishes rapidly
for 
 � 1/RA. Therefore at large 
 the quasielastic cross
section (6) is almost purely incoherent.
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The cross section for quasielastic vector-meson production
is now expressed in terms of the dipole scattering amplitude as

dσγ ∗A→V A∗

dt
= R2

g(1 + β2)

16π

∫
dz

4π

dz′

4π
d2rT d2rT

′

×[�∗
V �](r, z,Q) [�∗

V �](r ′, z′,Q)

×〈|Aqq̄ |2(xP , r, r ′,�T )〉N . (12)

We now average the square of the dipole scattering amplitude
over the nucleon coordinates using the assumptions of Eqs. (1)
and (2) and taking the large A limit. We are additionally
assuming that TA is a smooth function on the distance scale
defined by Bp. Averaging the square of the amplitude gives
the total quasielastic contribution, but we only keep the terms
that contribute at large |t | � 1/R2

A, which leaves us with the
expression

|Aqq̄ |2(xP , r, r ′,�T ) = 16πBp

∫
d2bT

A∑
n=1

1

n

(
A

n

)
e−Bp�T

2/n

× e−2πBpATA(b)[N (r)+N (r ′)]

×
(

πBpN (r)N (r ′)TA(b)

1−2πBpTA(b) [N (r)+N (r ′)]

)n

.

(13)

Note that Eqs. (1) and (2) have enabled us to write the leading
contributions as proportional to the (Gaussian) proton-impact-
parameter profile, which can then be Fourier transformed
analytically. Giving up either of these approximations would
force us to numerically Fourier transform the “lumpy” b

dependence corresponding to a fixed configuration of the
nucleon positions. This would make the numerical calculation
much more demanding and is left for future work.

The terms with n � 2 correspond to scattering off a system
of several overlapping nucleons simultaneously, leading to
slower suppression with |t |. In practice we have verified
numerically that they do not contribute to our results at
the values of t we are interested in (the n = 2 contribution
is typically �2% of the n = 1 one, only reaching 5% at
−t � 0.5 GeV2), and we will neglect them in the following.
This leaves us with the expression

|Aqq̄ |2(xP , r, r ′,�T )

= 16πBpA

∫
d2bT e−Bp�T

2

e−2πBpATA(b)[N (r)+N (r ′)]

×
(

πBpN (r)N (r ′)TA(b)

1 − 2πBpTA(b)[N (r) + N (r ′)]

)
. (14)

Equation (14) has a very clear interpretation. The squared
amplitude is proportional to A times the squared amplitude
for scattering off a proton, corresponding to the dipole
scattering independently off the nucleons in a nucleus. This
sum of independent scatterings is then multiplied by a nuclear
attenuation factor

e−2πBpATA(b)[N (r)+N (r ′)]

1 − 2πBpTA(b)[N (r) + N (r ′)]

≈ e−2π(A−1)BpTA(b)[N (r)+N (r ′)], (15)

which accounts for the requirement that the dipole must not
scatter inelastically off the other A − 1 nucleons in the target
(otherwise the interaction would not be diffractive). Note that
the factor 4πBpN (r, xP ) = σ

p
dip(r, xP ) is the proton-dipole

cross section for a dipole of size r . Thus this attenuation
corresponds to the probability of a dipole with a cross section
that is the average of dipoles with r and r ′ to pass though the
nucleus. A similar expression can be found, e.g., in Ref. [11].

For comparison, the coherent cross section in our approxi-
mation is given by

dσγ ∗A→V A

dt
= R2

g(1 + β2)

16π
|〈A(xP ,Q2,�T )〉N|2, (16)

where in the large A and smooth nucleus limit the amplitude
is

〈A(xP ,Q2,�T )〉N

=
∫

dz

4π
d2rT d2bT e−ibT ·�T [�∗

V �](r,Q2, z)2

×[1 − exp{−2πBpATA(b)N (r, xP )}]. (17)

IV. RESULTS AND DISCUSSION

We first test our dipole cross-section parametrizations and
vector-meson wave functions by comparing them to HERA
results [28] on diffractive J/� production that is known to be
well described by dipole model fits [23,32]. The comparison is
quite satisfactory, as can be seen from Fig. 2. In addition to the
factorized approximation [Eq. (5), “factorized IPsat” in Fig. 2]
that we are using in the rest of this paper, also shown is the
result with the original IPsat parametrization [Eq. (3), denoted
“IPsat” in Fig. 2]. The factorized approximation differs from
the original one slightly at small Q2, but the difference is
not significant for our purpose of establishing a reasonable
baseline for computing nuclear effects.

We note here that the diffractive slope parameters in the
parametrizations are different, Bp = 4.0 GeV−2 for IPsat and

FIG. 2. (Color online) Comparison of the used dipole cross
sections to HERA data [28] on diffractive vector-meson production.
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FIG. 3. (Color online) The quasielastic and coherent diffractive
J/� cross sections in gold nuclei at Q2 = 0 and xP = 0.001. Shown
are the IPsat and IIM parametrizations. We also show the result for
the linearized “IPnonsat” version (used, e.g., in Ref. [4]), where the
incoherent cross section is explicitly A times that of the proton. Our
approximation (13) is not valid for small |t |; the corresponding part
of the distribution has been left out.

Bp = 5.59 GeV−2 for IIM; since these are correlated with
the other parameters in the fits leading to the parameter values
used, we do not wish to alter them here. Our approximation of a
factorized b dependence with a constant B does not allow us to
describe the observed weak energy and Q2 dependence of the
diffractive slope. The larger B that we use for IIM comes from
the σ0 normalization in a fit to inclusive F2 data and also agrees
with the observed slopes in inclusive diffraction at large β and
small xP [33] and exclusive ρ and φ data [34]. The HERA J/�

data, on the other hand, have a smaller slope ∼4 GeV−2 [28].
The t slope in the IPsat parametrization is mostly determined
by this J/� measurement, and an agreement with the larger
measured slopes for ρ and φ is obtained by taking into account
the larger size of the wave functions of these lighter mesons.

The differential cross section dσγ ∗A→J/�A/ dt for A =
197 (gold) as a function of t is presented in Fig. 3. We
show the cross section at xP = 0.001 for photoproduction. As
we performed the nuclear wave-function average leading to
Eq. (13) in the approximation where |t | is large, neglecting the
coherent contribution, we cannot extend our incoherent curves
to small |t |. For comparison we show the corresponding “IP-
nonsat” result where the IPsat model is linearized in r2F (x, r).
This curve corresponds to the calculation done in Ref. [4],
including both the coherent and incoherent contributions, but
without the effect of multiple scattering off different nucleons
(i.e., the incoherent cross section is explicitly A times the
one for a proton). As one can see, the nuclear modification
due to multiple scattering [resulting mostly from the factor
e−2πBpATA(b)[N (r)+N (r ′)] in Eq. (13)] is very large. In the full
black disk limit of N (r) = 1 this factor becomes ≈e−0.5A1/3

and completely suppresses the contribution from the center
of a large nucleus, leaving only an area of ≈2πdRA ∼ A1/3

contributing to the integral over bT . Thus the cross section in
the black disk limit behaves as ∼A1/3 compared to ∼A in the
dilute limit, so a large suppression is to be expected.

We also show in Fig. 3 the coherent cross sections [using
Eq. (17)]. They are also suppressed compared to the linearized
version (IPnonsat) but not by as much as the incoherent one.
In the linearized version (as can be seen explicitly in Ref. [4]
where this case was considered) the ratio between the coherent
cross section at t = 0 and the incoherent one extrapolated
to t = 0 is A. In the IPsat model we get 270 (250) and in
the IIM model 300 (270) at Q2 = 0 (Q2 = 10 GeV2). This
would make it slightly easier to measure the first diffractive
dip in the coherent cross section since the background from
the incoherent process is smaller by a factor of 2 than the
linearized estimate [4].

To demonstrate the nuclear dependence further we show in
Fig. 4 the ratio of the cross section in a gold nucleus to that in a
nucleon as a function of Q2. Historically, this ratio is known as
the “nuclear transparency.” Its smallness at low energy, similar
to corresponding quantities in hadron-nucleus scattering, is
due to the interactions of the J/� as it propagates through
the nucleus. The growth of the transparency toward 1 for
increasing Q2 [6,7] is a demonstration of color transparency
(see, e.g., Refs. [8–12,35]), namely, that at large Q2 the
interacting components of the photon wave function are of
smaller size r and interact weakly. In our framework color
transparency is automatically present in the fact that the dipole
cross section approaches zero for r → 0. In Fig. 4 we also show
the result (labeled “IPsat, nonsatp”) of using a nonsaturated
dipole-nucleon cross section in Eq. (13). This corresponds
to including unitarity effects at the nucleus level but not
for a single nucleon. The observed nuclear suppression in
this unphysical scenario is significantly larger than for the
saturated full IPsat parametrization, showing the sensitivity of

FIG. 4. (Color online) The “nuclear transparency” ratio of cross
sections vs Q2 for IPsat and IIM parametrizations at xP = 10−2 (blue
solid line in the top set of curves) and 10−4 (black dashed line in the
bottom set of curves). For comparison we also include the result if
unitarization effects are included at the nucleus but not at the nucleon
level in the IPsat parametrization. (See text for discussion.)
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FIG. 5. (Color online) The “nuclear transparency” ratio of cross
sections vs Q2 using the gaus-LC vector-meson wave functions. The
labeling is the same as in Fig. 4.

the nuclear transparency to saturation effects already at the
proton level.

The IIM parametrization has a much larger nuclear suppres-
sion in incoherent diffraction, with the nuclear transparency
ratio close to that of an unsaturated dipole-proton cross section.
To put this in perspective recall that both parametrizations
gave an equally good description of the elastic cross section
measured at HERA (Fig. 2). Since IIM does this with a larger
Bp than IPsat, we can infer that the typical N is smaller, so
that the elastic cross section σ el ∼ BpN 2 is of the same order.
The nuclear transparency ratio, on the other hand, depends
on the total dipole-nucleon cross section ∼BpN ∼ σ el/N ,
which is thus larger for IIM. Thus we have a situation where
both parametrizations have been fitted to inclusive F2 data2

and reproduce well the HERA J/� cross section but differ in
their result for incoherent diffraction in nuclei. This stresses the
importance of performing a global analysis of both inclusive
and diffractive data to constrain the dipole cross sections
and demonstrates the utility of eventual incoherent diffractive
measurements in such an analysis.

Figure 5 shows the same Q2 dependence using the gaus-
LC wave function. It puts more weight on large dipole
sizes, leading to a stronger nuclear suppression. The cross
section ratio typically decreases by ∼0.04 from the “boosted
Gaussian” wave function, but the relative structure between the
different dipole cross sections stays the same. The difference
between the cross sections themselves is larger, but much of
the it cancels in the ratio. The existing HERA data are not
precise enough to fully discriminate between different models
for the vector-meson wave function, a situation that should
also improve with planned new DIS experiments.

The energy dependence of the nuclear suppression (again
for A = 197) is shown in Fig. 6 for both IPsat and IIM
parametrizations at Q2 = 0 and Q2 = 10 GeV2. Again we

2However, we have here approximated the original IPsat
parametrization by factorizing the b dependence.

FIG. 6. (Color online) The “nuclear transparency” ratio of cross
sections vs xP using the IPsat and IIM parametrizations for Q2 = 0
and Q2 = 10 GeV2.

see the larger nuclear suppression in the IIM model than in
IPsat. The differences in the energy (i.e., xP ) dependence
of the two dipole cross sections are more clearly visible in
the photoproduction result. This is natural since in the IPsat
model the energy dependence at the initial scale of the DGLAP
evolution (probed at smaller Q2) is almost flat, in stark contrast
to the typical behavior resulting from BK evolution. At higher
Q2 the difference in the x dependence is smaller, although
there the IPsat model, driven by the DGLAP evolution, turns
over to a faster energy dependence. We have not extrapolated
our curves to higher energies since there is no prospect of
experimental measurements. One does, however, see from
Fig. 6 that the curves continue to go down when extrapolated

FIG. 7. (Color online) The incoherent cross section integrated
over the interval 0.1 GeV2 < −t < 0.3 GeV2 divided by the coherent
cross section integrated over 0 < −t < 0.1 GeV2 as a function of
Q2 + M2

J/� .
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FIG. 8. (Color online) The incoherent cross section integrated
over the interval 0.1 GeV2 < −t < 0.3 GeV2 divided by the coherent
cross section integrated over 0 < −t < 0.1 GeV2 as a function of xP .

to smaller xP . This is to be expected since, as discussed
previously, one has not yet reached the black disk limit.

In a realistic experimental setup it might be possible to
detect or veto the nuclear breakup even when the momentum
transfer t is not measured very accurately. In this case it will be
interesting to understand how the relative magnitudes of the
incoherent and coherent cross sections behave as a function
of Q2 and xP . Generally, when approaching the black disk
limit, the coherent cross section increases and the incoherent
one decreases. The relative change shows, however, a smaller
dependence on Q2 and xP than the nucleus-nucleon cross-
section ratio. This is shown in our parametrization in Figs. 7
and 8, where we plot the the incoherent cross section integrated
over the interval 0.1 GeV2 < −t < 0.3 GeV2 divided by the
coherent cross section integrated over 0 < −t < 0.1 GeV2 as a
function of Q2 + M2

J/� and xP . Figure 9 further demonstrates
the relative similarity of the nuclear suppression in the coherent
and incoherent cross sections. Shown is the A dependence of
the ratios ( dσA

incoh/ dt)/(Adσp/ dt) (which, in our approxi-
mation, is independent of t) and ( dσA

coh/ dt)/(A2 dσp/ dt)|t=0

forQ2 = 10 GeV2 and xP = 0.001. Note that the coherent
and the incoherent cross sections are normalized by different
powers of A and that the width of the coherent peak at small t

also depends on A.
Figures 3 and 4 are our main result. Our calculation uses

as input only well-tested parametrizations that have been fit to

FIG. 9. (Color online) The ratio of the coherent (at t = 0) and
incoherent (at t = −0.5 GeV2, but in our approximation this does not
depend on t) cross sections to the corresponding ones for a proton,
normalized with A2 and A respectively. The ratios are plotted as a
function of A for xP = 0.001 and Q2 = 10 GeV2.

existing HERA data and nuclear geometry. We work strictly in
the small x limit, which makes our formalism simple and
transparent. This paper provides realistic estimates for the
absolute cross sections that could be measured in future nuclear
DIS experiments. We have, however, made several simplifying
assumptions in our calculation, the most important being
(a) the factorized impact parameter dependence, Eq. (2), (b) the
assumption of independent scattering off different nucleons,
Eq. (1), and (c) neglecting nucleon-nucleon correlations.
Including these effects in a physically correct manner and
discussing how they could be studied experimentally is left for
future work. As can be seen from the values of the nuclear
suppression in Figs. 4 and 6, the effects of high densities,
gluon saturation, and unitarity on the incoherent cross section
are large. Thus incoherent diffraction in future nuclear DIS
experiments will be a sensitive probe of small-x physics.
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