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Considerations concerning the fluctuations of the ratios of two observables
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We discuss several possible caveats which arise with the interpretation of measurements of fluctuations in
heavy-ion collisions. We especially focus on the ratios of particle yields, which have been advocated as a possible
signature of a critical point in the QCD phase diagram. We conclude that current experimental observables are
not well defined and are without a proper quantitative meaning.
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I. INTRODUCTION

The investigation of fluctuations and correlations, i.e., an
event-by-event analysis, of high-energy heavy-ion collision
data has been ongoing for several years [1–14]. Recently, this
discussion was refreshed [15–21] in the view that (event-by-
event) fluctuations of multiplicity, or of ratios of multiplicities,
might serve as an observable to pin down the critical behavior
of the collective, and potentially at some point of its evolution-
thermalized, system created when two heavy ions collide.
Thus, the measurement of ratio fluctuations might make it
possible to fix the values of temperature and baryon chemical
potential of a critical point (see, e.g., [22,23]) in the phase
diagram of quantum chromodynamics (QCD). In this paper
we discuss the problems and possible caveats of such an
analysis.

An event-by-event analysis ultimately deals with (joint)
distributions of a certain set of observables. Parameters such as
mean value, variance, skewness, and kurtosis can be employed
to describe the shape of an obtained distribution. Their values,
as the obtained distribution itself, will depend on many
experimental factors. More complicated measures are often
lacking a clear interpretation. In particular, we will investigate
the commonly used measure of dynamical ratio fluctuations.

It is not the aim of this paper to suggest an improved
observable or method capable of locating a critical point
of strongly interacting matter, or one that could potentially
be indicative of new physics. The goal of this paper is to
discuss caveats of the existing methods which are usually not
mentioned in the literature. The paper is organized as follows.
In Sec. II we formulate some rather general statements about
the particularities of an event-by-event analysis. In Sec. III we
then focus on a particular method and discuss some difficulties
one might face with its interpretation. A discussion of specific
experimental and theoretical studies can be found in Sec. IV.
Some concluding remarks are summarized in Sec. V.

II. GENERAL CONSIDERATIONS

Let us start by making a rather general observation. The
statistical properties of a sample of events depend on the rules

chosen to select this sample from an even larger sample of
events and on the degree of completeness of the information
available about each member of this sample. In the context
of heavy-ion collision physics these two aspects translate
into centrality class construction from minimum bias data
and an experiment’s capabilities of particle identification and
momentum measurement. We will elaborate on these aspects
in the following.

A. Centrality selection

We first discuss centrality selection. Two heavy ions collide
with relativistic momenta. Being extended objects, they can do
so in a variety of different ways. Roughly the following rule
should apply (in the average sense): The larger the interaction
region, the more particles of each species are produced.
However, the initial state of the collision cannot be observed
directly. All that can be observed is the final state. From this one
can then infer the likelihood of a certain initial state. Yet, each
single possible final state observable will generally suggest a
slightly different initial state. Hence, the need arises to average
over centrality classes. The problem is then, within any such
a centrality class will be events with rather different initial
states, altering the true correlation between two observables.
Results will depend on, in particular, which trigger was
chosen to construct these centrality classes, or subsamples, of
events.

To illustrate this point we refer to Fig. 1. Shown is a result
of a Hadron String Dynamics (HSD) transport simulation,
taken from [24]. The two observables shown in Fig. 1 are the
number of participating (or wounded) nucleons NP , and the
multiplicity of charged final-state hadrons N ref

ch in a midrapidity
acceptance window. This analysis is somewhat hypothetical,1

but serves to illustrate a crucial point: Depending on which one
of the two observables is used to define the sample of 20–22%
most central events, two rather different subsamples, indicated
by the vertical and horizontal lines, are created. These two sam-
ples could possibly have rather different statistical properties.

1The number of participating nucleons is not accessible to experi-
mental measurement.
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FIG. 1. (Color online) Illustration of centrality selection being
done in two different ways: once via the number of charged particles
in the final states (N ref

ch ) and once via the number of wounded nucleons
(NP ). This leads to two different subsamples, despite the fact that the
same centrality class (20–22%) was constructed. The different colors
depict the probability. The figure is taken from [24].

The two methods are hence not equivalent, and both introduce
their very own bias. It deserves to be stressed that the smaller
the chosen centrality class intervals (here 2%) are, the more
distinct are the subsamples obtained from two different trigger
conditions.

B. Acceptance in momentum space

The second aspect we want to discuss is particle acceptance.
By this we mean particle identification, momentum measure-
ment, and ultimately the geometric coverage of the interaction
region by the detector. We ignore for now centrality selection
and think of a perfectly prepared initial state and explore
two limiting cases, the first one being the ideal detector. All
final-state particles are observed, and any correlation can be
measured to any degree. The opposite limit would be a very
bad detector, capable of only detecting a particle every once
in a while. Such a detector could surely measure the ratios
of the occurrence of particles of different species (provided
sufficient particle identification capabilities) and hence allows
for a comparison of model results for ratios of averaged particle
multiplicities to actual data [25–27]. However, it would be
completely unable to inform us how the multiplicities of
different particle species within one event are correlated or
how this correlation would change in different segments of
momentum space. Any realistic detector is in-between these
limits.

Also, here Fig. 1 can serve as an illustration. Changing
the acceptance window for charged final-state hadrons N ref

ch ,
which was for the purpose of this analysis located around
midrapidity (while assuming that NP can still be measured
with the same accuracy), will change the marginal distribution

P (N ref
ch ) = ∑

NP
P (NP ,N ref

ch ). In particular, mean value, vari-
ance, skewness, and kurtosis of the marginal distribution
P (N ref

ch ) are affected. The distribution P (N ref
ch ) is often used as

a reference distribution for construction of centrality classes
by collider experiments. That means, depending on the value
N ref

ch of a particular event, one assigns this event to a certain
centrality class.

III. FLUCTUATIONS OF THE RATIO OF
TWO OBSERVABLES

The above considerations served to emphasize the impor-
tance of the way by which a certain data set was constructed
and the degree of completeness of the information available
about each element of ones data set. These two aspects also
determine whether two data sets can really be compared to
each other. We now focus on one method, the measurement
of the fluctuations of the ratio of particle multiplicities, while
leaving it to the reader to decide whether or not some aspects
of this discussion could be shared by other methods.

A. Data distribution

First, a plain observation: Independent of a particular
analysis technique, what is considered here is the ratio of two
observables, each of which will have a certain value in each
event. Directly (as done, e.g., in the STAR experiment [28]) or
indirectly (as done, e.g., in the NA49 experiment [29]) one can
then obtain the ratio of these two observables. In the following
we will focus on the number of particles of a certain species
in each event.

We again consider construction of centrality classes and
the window of particle acceptance available. In general, one
can conclude that the joint (two-dimensional) distribution
Pdata(N1, N2) of the multiplicities of the two species “1” and
“2” of particles will be determined by the choices of solutions
to the two aforementioned aspects, i.e., acceptance and
centrality selection. The distribution of ratios, Pdata(N1/N2),
being constructed from the joint distribution, is then certainly
no exception.

A measure for quantifying the width of the distribution of
ratios Pdata(N1/N2), similar to the ones used by the STAR [28]
and NA49 Collaborations [29], could read

σ 2 = 〈(�N1)2〉
〈N1〉2

+ 〈(�N2)2〉
〈N2〉2

− 2
〈�N1�N2〉
〈N1〉〈N2〉 . (1)

Here 〈(�Ni)2〉 denotes the variance of observable Ni , 〈Ni〉
denotes the mean value of the observable Ni , and 〈�N1�N2〉
denotes the covariance of the observables N1 and N2.

The above discussion about centrality selection and particle
acceptance certainly does not do justice to all the technical
details which will ultimately determine the shape of the joint
distribution Pdata(N1, N2) of the two observables N1 and N2.
Yet, all five terms which make up the measure depend strongly
on many of these aspects. Hence, there is no reason to believe
that the measure σ 2, given in Eq. (1), would not depend on
them.
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B. Mixed-event background

The need arises then to remove the bias introduced.
The mixed-event background subtraction should remove all
“trivial” correlations due to acceptance and centrality selec-
tion, while leaving all “physical” correlations unchanged.
Note, that different mixing procedures have been suggested
[30], but since they do not change the argumentation of
our analysis we do not comment on them separately. Before
focusing on the mixed-event background, let us make another
observation about the measure σ 2. This measure, being so
general, could be applied to any sample as long as the
observables N1, N2 are positive integers, independent of what
N1 and N2 may represent. This implies that the event mixing
procedure, once it is specified, could also be applied to a more
general (or plainly different2) system with observables N1

and N2.
Let us consider a particular event mixing procedure similar

to the one used by the NA49 Collaboration. First, a reference
distribution Pdata(N ) of the observable N = N1 + N2 is con-
structed:

Pdata(N ) =
N∑

N1=0

Pdata(N1, N − N1). (2)

A mixed distribution Pmix(N1, N2) can be obtained by
sampling the reference distribution Pdata(N ) and assigning the
values for N1 and N2 according to a binomial distribution. The
mixed-event background distribution is then

Pmix(N1, N2) = qN1 (1 − q)N2

(
N1 + N2

N2

)
Pdata(N1 + N2),

(3)

where q = 〈N1〉/(〈N1〉 + 〈N2〉) is the probability that a ran-
domly drawn particle is of species 1. The distributions Pdata(N )
and Pmix(N ) are then identical.

Stated differently, once the distribution Pdata(N1, N2) is cho-
sen (or fixed), then the new mixed background Pmix(N1, N2)
is also similarly determined. This is to say, for any generic
distribution P (N1, N2) a mixed background and the measure
of dynamical ratio fluctuations

σ 2
dyn = σ 2

data − σ 2
mix (4)

are equally determined. This is independent of what N1 and N2

represent, and independent of how the original data set came
about.

2An example, unrelated to physics, could come to mind: The number
of kindergartens and supermarkets in every city and town could be
evaluated. Groups of cities sorted according to some criterion, such
as their estimated number of citizens, would form centrality classes.
Our ability to accurately determine the number of kindergartens and
supermarkets would correspond to particle acceptance. This might
not be a particular thoughtful example, yet it shows that such an
analysis is not restricted to heavy-ion physics. And one still faces
the same problem of having to give interpretation to the fluctuation
measures, Eqs. (1) and (4).
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FIG. 2. (Color online) Illustration of a perfectly correlated data
distribution (top). The mixed-event background (bottom) shows
a wider distribution. The measured dynamical ratio fluctuations
associated with the original distribution are then negative.

C. Illustrations

We are considering the example of a bivariate nor-
mal distribution (BND), with five parameters: marginal
variances 〈(�N1)2〉data and 〈(�N2)2〉data, their covariance
〈�N1�N2〉data, and two mean values, 〈N1〉data and 〈N2〉data.
Having specified these values, and having decided which
event-mixing procedure should be applied, the measures
σ 2

data, σ 2
mix, and σ 2

dyn can be straightforwardly obtained. This
implies the existence of a four-dimensional hypersurface in
this parameter space representing BNDs with an equal amount
σ 2

dyn of dynamical ratio fluctuations.
Let us explore the limit of a BND, Fig. 2 (top), with

completely correlated observables N1 and N2. The correlation
coefficient

ρ = 〈�N1�N2〉√
〈(�N1)2〉〈(�N2)2〉

(5)

between them is then ρdata(N1, N2) = 1. The ratio of N1

and N2 here in this example is then always equal to unity.
The same will not be true for the mixed-event background,
Fig. 2 (bottom), where the correlation will be weaker,
ρmix(N1, N2) < 1. Following the above event-mixing proce-
dure, one then quickly finds σ 2

data = 0, σ 2
mix > 0, and σ 2

dyn < 0.
In other words, despite the fact that the ratio is always one, the
measure, discussed in Eqs. (1) and (4), suggests a degree of
negative dynamical ratio fluctuations for this distribution.

Also other limiting cases could be explored. Here we
mention the class of BNDs with covariance 〈�N1�N2〉 = 0,
as illustrated in Fig. 3. The distribution Pdata(N1, N2) then
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FIG. 3. (Color online) Illustration of uncorrelated
(〈�N1�N2〉data = 0) data distribution leading to a correlated
(〈�N1�N2〉mix �= 0) mixed background (top) and resulting dynamic
ratio fluctuations σdyn (bottom).

factorizes into the product of two normal distributions
Pdata(N1, N2) = Pdata(N1)Pdata(N2). For the example shown
in Fig. 3, a BND with mean values 〈N1〉data = 〈N2〉data = 50
and covariance 〈�N1�N2〉data = 0 was chosen. In Fig. 3
the resulting covariance of the mixed-event background
〈�N1�N2〉mix (top) and the measure3 of dynamical ratio
fluctuations σdyn (bottom) are shown in their dependence on the
variances 〈(�N1)2〉data and 〈(�N2)2〉data. In general, one finds
〈�N1�N2〉mix �= 0 after event mixing, i.e., the mixed-event
background now contains correlations, which the original
sample did not.

IV. DISCUSSION

Having formulated rather general statements about the
particularities of an event-by-event analysis of heavy-ion
collision data, and having discussed a specific fluctuation
measure, we feel the need to add a few more specific
comments.

Measurements of fluctuations and correlations of particle
multiplicities are often mentioned with regard to the detection
of a critical point in the QCD phase diagram or other
predictions for the properties of yet to be observed new states
of matter. Certain aspects of distributions are supposed to

3Following the convention we present this number as σdyn =
sgn(σ 2

dyn)
√

|σ 2
dyn| · 100%.

shed light on their (temporary) formation. Given the caveats
discussed throughout this paper the authors are less optimistic.

The effects discussed above are hard to quantify as this
would have to be done specifically and systematically. The
biases introduced by a particular centrality selection criterion
and a given particle acceptance would have to be studied
separately for each observable. Focus should be put on
the different solutions realized in the two main groups of
experimental setups, fixed target and collider geometries.
This was not the aim of this paper. Yet some examples can
be quoted. Here we want to refer to a recent review paper
[17], summarizing the Ph.D. thesis of V. Konchakovski. In
particular, we mention Secs. VI and VIII.

The first example we want to quote is the correlation coef-
ficient [31,32] between the multiplicities of charged hadrons
in two narrow, symmetrically around midrapidity, arranged
acceptance intervals, usually termed “forward-backward cor-
relations.” These correlations have been studied in their
dependence on choice of centrality trigger and size of centrality
classes [17,24,33]. A wider definition of centrality classes
leads to a stronger correlation between forward and backward
hemispheres. A larger system will have many particles in
both acceptance windows. A smaller system will obviously
have less particles. Combining systems of different sizes
into one sample will lead to (strong) correlations in this
sample from geometric considerations alone. A different
choice of the centrality trigger will result in a different central-
ity dependence of the ones observable. No unambiguous (final
state) measure is available to select only events of the “same
(initial) system size” into one sample.

For the second example we want to return to the fluctuations
of hadron multiplicity ratios. An HSD simulation of heavy-ion
collisions has been performed for several center-of-mass
energies. At low center-of-mass energy the data was analyzed
twice; once for the NA49 acceptance for 3.5% most central col-
lisions selected via the projectile spectator nucleon signal and
once for the STAR acceptance for 5% most central collisions
selected via the reference charged hadron multiplicity distribu-
tion. From the above considerations, differences between these
two setups are to be expected. The situation is summarized as
follows [17]: For some ratios of the multiplicities of selected
hadrons, stronger differences between the two samples emerge
than for others. Given our difficulty in interpreting the measure
of dynamical ratio fluctuations, we find it hard to make a
positive conclusion about the apparent numerical similarity of
the results of the NA49 [34] and STAR [35] Collaborations.

It is equally hard to disentangle different contributions to
ones fluctuation and correlation signals. The fact remains
that correlation must not be confused with causation. We
cordially acknowledge the commonly quoted motivation for
performing statistical analysis of heavy-ion collision data.
However, the (conjectured) effects to be investigated, or hoped
to be discovered and established, are not the only factors
determining the statistical properties of ones data sample.

The view that a (sharp) nonmonotonic behavior of a suitably
chosen observable evaluated on a suitably constructed and
modified data set can straightforwardly be taken as evidence
for new physics (e.g., the detection of a critical point) is not
held by the authors.
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V. SUMMARY

This discussion largely fell into two parts, each of which
tried to raise two points. First, the results of any event-by-event
analysis depend strongly on how one constructs subsamples
from minimum bias data. Minimum bias data from different
experimental setups can vary quite strongly, and no initial
state can be observed. Secondly, and equally important, is
an experiment’s capability to record accurate and detailed
information about each event. The patchier the data set, the
less detailed and conclusive any analysis of it, or comparison
to another data set, can be.

We then discussed a particular procedure. Here we also
tried to raise two points. First, a lot of information is
discarded in favor of a single number, σ 2

dyn. This number might
not be very indicative of a system’s properties. Secondly,
plainly constructing a reference distribution from a given
data distribution according to some set of rules does not

necessarily help to subtract correlations. Unfortunately, no
reference (data) sample (where a certain effect is simply
not contained) is available in high-energy heavy-ion collision
physics.

Given the above considerations we find it hard to compare
and interpret results from different experiments. Especially the
dependence on the center-of-mass energy of the colliding ions
might then carry little information.
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