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Isobaric yield ratios in heavy-ion reactions, and symmetry energy of neutron-rich
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The isobaric yield ratios of the fragments produced in the neutron-rich 48Ca and 64Ni projectile fragmentation
are analyzed in the framework of a modified Fisher model. The correlations between the isobaric yield ratios
(R) and the energy coefficients in the Weiszäcker-Beth semiclassical mass formula (the symmetry-energy term
asym, the Coulomb-energy term ac, and the pairing-energy term ap) and the difference between the chemical
potentials of the neutron and proton (µn − µp) are investigated. Simple correlations between (µn − µp)/T ,
ac/T , asym/T , and ap/T (where T is the temperature), and ln R are obtained. It is suggested that (µn − µp)/T ,
ac/T , asym/T , and ap/T of neutron-rich nuclei can be extracted using isobaric yield ratios for heavy-ion collisions
at intermediate energies.
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I. INTRODUCTION

The construction of a new generation of radioactive
nuclear beam facilities has stimulated much research into
isospin physics [1]. In heavy-ion reactions at intermediate
energy, multifragmentation of the reaction system is generally
observed in violent collisions and there is evidence that both
subsaturated and supersaturated densities can be explored in
such collisions [2–4]. Work in this area has concentrated on
exploring the nuclear equation of state (EOS) and the liquid-
gas phase transition in nuclear matter [5–8]. Isotopic yields
in heavy-ion collisions provide a good probe for studying the
nature of the disassembling nuclear systems. Many studies
on fragment emission have attempted to use fragment yield
distributions, either singly or by comparison to those of similar
reactions, to explore the symmetry energy of the emitting
source at different densities and temperatures [2,4,6,7,9–20].
The nuclear symmetry energy of a finite nucleus is an important
parameter in the EOS of an asymmetric nucleus and in various
processes in astrophysics and nuclear astrophysics. But the
symmetry energy is difficult to measure experimentally and
there are large differences in the theoretical results between
different models and even within the same model with different
parameters [1].

In a recent work analyzing isobaric yields [21], the ratio
of the symmetry-energy coefficient to temperature asym/T as
a function of fragment mass A was studied in a modified
Fisher model (MFM) [22,23]. The Coulomb-energy coefficient
to temperature (ac/T ) and the pairing energy to temperature
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(ap/T ) were also extracted at the same time. For the symmetry-
energy term, the extracted values from experiments are in
good agreement with those calculated for the final fragments
in the ground states. The pairing effect is clearly observed
in experiments and strongly supports the hypothesis that the
observed effect originates at the end of the statistical cooling-
down process of the excited fragments. A comparison between
the Coulomb coefficients extracted experimentally and those
calculated shows significant differences.

In this article, on the basis of the theory of a modified
Fisher model [22,23], which was adopted in Ref. [21],
the correlation between the logarithm of the isobaric yield
ratio ln R and asym/T , ac/T , ap/T , and (µn − µp)/T for
fragments produced in 140A MeV 48Ca + 9Be and 64Ni + 9Be
reactions (experimental data are taken from Refs. [24,25])
are analyzed. Coefficients of the volume energy, the surface
energy, the Coulomb energy, the symmetry energy, and the
pairing energy in the Weiszäcker-Beth semiclassical mass
formula and (µn − µp)/T for fragments will be extracted
using these correlations.

II. ISOBARIC YIELD RATIOS IN THE MODIFIED
FISHER MODEL

Following the modified Fisher model theory [6,22,23], the
yield of a fragment Y (A, I ) with mass number A and I =
N − Z, is given by

Y (A, I ) = CA−τ exp{[W (A, I ) + µnN + µpZ]/T

+N ln(N/A) + Z ln(Z/A)}, (1)

where C is a constant. The A−τ term originates from the
entropy of the fragment, and the last two terms are from the

064620-10556-2813/2011/83(6)/064620(5) © 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.064620


CHUN-WANG MA, FANG WANG, YU-GANG MA, AND CHAN JIN PHYSICAL REVIEW C 83, 064620 (2011)

entropy contributions for the mixing of two substances in the
Fisher droplet model [26]. µn and µp are the neutron and
proton chemical potentials, respectively, and W (A, I ) is the
free energy of the cluster at temperature T . W (A, I ) is given by
the generalized Weiszäcker-Beth semiclassical mass formula
[27,28] at a given temperature T and density ρ:

W (A, I ) = −Esym − ac(ρ, T )Z(Z − 1)/A1/3

+ av(ρ, T )A − as(ρ, T )A2/3 − δ(N − Z), (2)

where the indices v, s, c, and sym represent volume, surface,
Coulomb, and symmetry energies, respectively. The sym-
metry energy Esym can be divided into a volume-symmetry
term Sv and a surface-symmetry term Ss , i.e., Esym =
Sv(ρ, T ) + Ss(ρ, T ), in which Sv(ρ, T ) = avsym(ρ, T )I 2/A

and Ss(ρ, T ) = assym(ρ, T )I 2A2/3 [29,30]. Following the
semiempirical mass formulas, the pairing energy δ(N,Z) is
given by [31]

δ(N,Z) =

⎧⎪⎨
⎪⎩

ap(ρ, T )/A1/2 (odd-odd),

0 (even-odd),

−ap(ρ, T )/A1/2 (even-even).

(3)

The yield ratio for fragments R(I + 2, I, A) between
isobars differing by 2 units in I is defined as

R(I + 2, I, A) = Y (A, I + 2)/Y (A, I )

= exp{[W (I + 2, A) − W (I, A)

+ (µn − µp)]/T

+ Smix(I + 2, A) − Smix(I, A)}, (4)

where Smix(I, A) = N ln(N/A) + Z ln(Z/A). To simplify the
description, the density and temperature dependence of the
coefficients in Eq. (2) is written as ai = ai(ρ, T ) (where i =
v, s, c, ssym, vsym, and p represent the coefficients of the
volume energy, the surface energy, the Coulomb energy, the
surface-symmetry energy, the volume symmetry energy, and
the paring energy, respectively). The temperature dependence
of ai at low T has been studied [29].

Inserting Eq. (2) into Eq. (4), one gets

R(I + 2, I, A) = exp{[(µn − µp) − 4asym(I + 1)/A

+ 2ac(Z − 1)/A1/3 − δ(N + 1, Z − 1)

+ δ(N,Z)]/T + �(I + 2, I, A)}, (5)

where �(I + 2, I, A) = Smix(I + 2, A) − Smix(I, A). Simi-
larly, one can define the fragment yield ratio R(I + 4, I, A)
between isobars differing by 4 units in I following Eq. (4) as

R(I + 4, I, A) = Y (A, I + 4)/Y (A, I )

= exp{[W (I + 4, A) − W (I, A)

+ 2(µn − µp)]/T + Smix(I + 4, A)

− Smix(I, A)}, (6)

and inserting Eq. (2) into Eq. (6), one gets

R(I + 4, I, A) = exp{[2(µn − µp) − 8asym(I + 2)/A

+ 2ac(2Z − 3)/A1/3 − δ(N + 2, Z − 2)

+ δ(N,Z)]/T + �(I + 4, I, A)}. (7)

Equations (6) and (7) assume that as and av are the same
for isobars, and omit the surface-symmetry-energy term as
Ref. [21]. In this case, avsym is written as asym according to
Ref. [21].

For isobars with I = −1 and I = 1 (which are mirror
nuclei), �(1,−1, A) = 0, and the contributions from the
symmetry term and the mixing entropy term in Eq. (5) drop
out and the pairing term also cancels out because these isobars
are even-odd nuclei. Taking the logarithm of the resultant
equation, one obtains

ln[R(1,−1, A)] = [(µn − µp) + 2ac(Z − 1)/A1/3]/T . (8)

Following Eq. (4), an isobar with odd I is an odd-even
nucleus and the pairing energy is zero, so one gets

ln[R(I + 2, I, A)]

= [(µn − µp) − 8asym/A + 2ac(Z − 1)/A1/3]/T

+�(I + 2, I, A). (9)

Considering ratios of isobars with I − 2, I , and I + 2, and
assuming isobars with I in R(I, I − 2, A) and isobars with
I + 2 in R(I + 2, I, A) are isotopes, one can reach

(8asym/A + 2ac/A
1/3)/T

= ln[R(I, I − 2, A)] − ln[R(I + 2, I, A)]

−�(I, I − 2, A) + �(I + 2, I, A). (10)

In Eq. (10), isobars with I − 2 are taken as the reference nuclei.
Following Eq. (6) and taking isobars with I as the reference

nuclei, one gets

ln[R(I + 4, I, A)] = [(µn − µp) − 8(I + 2)asym/A

+ 2ac(2Z − 3)/A1/3]/T

+�(I + 4, I, A). (11)

Taking isobars with I − 2 as the reference nuclei, the dif-
ference between 2 ln[R(I + 2, I, A)] and ln[R(I + 4, I, A)]
can be written as

(8asym/A + 2ac/A
1/3)/T

= ln[R(I + 2, I, A)] − ln[R(I + 4, I, A)]

−�(I + 2, I, A) + �(I + 4, I, A). (12)

It can be found that

ln[R(I + 2, I, A)] − ln[R(I + 4, I, A)]

+ ln[R(I + 4, I + 2, A)] − �(I + 4, I + 2, A)

−�(I + 2, I, A) + �(I + 4, I, A) = 0. (13)

Similarly, taking isobars with I − 2 as the reference nu-
clei, the difference between 2 ln[R(I, I − 2, A)] − ln[R(I +
2, I, A)] reads

[(µn − µp) + 2acZ/A1/3]/T

= 2 ln[R(I, I − 2, A)] − ln[R(I + 2, I, A)]

− 2�(I, I − 2, A) + �(I, I + 2, A). (14)

In Ref. [21], [(µn − µp)]/T for different reaction sys-
tems is expressed as [(µn − µp)/T ]i = [(µn − µp)/T ]0 +
�µ(Z/A)/T , in which (Z/A) = (Zp + Zt )/(Ap + At ), and
p and t represent the projectile and the target nuclei. Taking
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FIG. 1. (Color online) Correlations between (8asym/A +
2ac/A

1/3)/T for different isobars with I and A of fragments in the
140A MeV 48Ca + 9Be reaction. The lines are the fitting results using
Eq. (10).

one reaction system as the reference and fitting the different
reaction systems, �µ(Z/A)/T for each reaction system can be
fixed. Then asym/T and ac/T are extracted from the values of
(µn − µp)/T for each reaction system. Here, asym/T , ac/T ,

and (µn − µp)/T can be extracted using Eqs. (10), (12), and
(14) only for one projectile fragmentation reaction.

Using Eqs. (8), (10), (12), and (14), we analyze the yield
ratios of isobars produced in the 140A MeV 48Ca + 9Be
and 64Ni + 9Be reactions [24,25]. In Figs. 1 and 2, the
correlations between ln[R(I, I − 2, A)] − ln[R(I + 2, I, A)]
and the mass number (A) of fragments [Eq. (10)], and the
correlations between ln[R(I + 2, I, A)] − ln[R(I + 4, I, A)]
and A of fragments [Eq. (12)] are plotted. These correlations
are fitted using a function y = (8asym/A + 2ac/A

1/3)/T ,
in which A is the argument and asym/T and ac/T are
parameters. The values for ln[R(1,−1, A)] − ln[R(3, 1, A)]
show a large difference to the values for ln[R(I, I − 2, A)] −
ln[R(I + 2, I, A)]. For isobars with I � 3, the values for
ln[R(I, I − 2, A)] − ln[R(I + 2, I, A)] overlap.

In Figs. 3 and 4, the correlations between 2 ln[R(I, I
− 2, A)] − ln[R(I + 2, I, A)] and 2Z/A1/3 of isobars [using

FIG. 2. (Color online) Correlations between (8asym/A +
2ac/A

1/3)/T for different isobars with I and A of fragments in the
140A MeV 64Ni + 9Be reaction. The lines are the fitting results using
Eq. (10).

FIG. 3. (Color online) Correlations between 2 ln[R(I, I −
2, A)] − ln[R(I + 2, I, A)] and 2Z/A1/3 of fragments produced in
the 140A MeV 48Ca + 9Be reaction. The lines are the fitting results
using Eq. (14).

Eq. (14)] are depicted. The correlations are fitted using a
function y = [(µn − µp) + 2acZ/A1/3]/T . The values for
[(µn − µp) + 2acZ/A1/3]/T for isobars with I = −1 and
I = 1 show large differences, but these decrease and there
is an overlap as I increases.

In Fig. 5, the correlations between ln[R(1,−1, A)] −
ln[R(I + 2, I, A)] for isobars with I and 2Z/A1/3 [using
Eq. (15)] for fragments are displayed. The correlations
are fitted using Eq. (14). The values for [(µn − µp) +
2acZ/A1/3]/T for isobars with I = −1 and I = 1 show large
differences, but these decrease and there is an overlap as I

increases.
Omitting the difference between (µn − µp)/T for nuclei

with different I , and taking isobars with I = −1 as the
reference nuclei, the difference between ln[R(1,−1, A)] −
ln[R(I + 2, I, A)] can be written as

(8Iaasym/A + 2ac/A
1/3)/T

= ln[R(1,−1, A)] − ln[R(I + 2, I, A)] + �(I, I + 2, A).

(15)

FIG. 4. (Color online) Correlations between 2 ln[R(I, I −
2, A)] − ln[R(I + 2, I, A)] and 2Z/A1/3 of fragments produced in
the 140 A MeV 64Ni + 9Be reaction. The lines are the fitting results
using Eq. (14).
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FIG. 5. (Color online) Correlations between ln[R(1,−1, A)] −
ln[R(I + 2, I, A)] for isobars with different I and A of fragments in
the 140 A MeV 48Ca + 9Be reactions. The lines are the fitting results
using Eq. (15).

In Fig. 5, the correlations between ln[R(1,−1, A)] −
ln[R(I + 2, I, A)] for isobars with different I and A for
fragments are plotted. The correlations are fitted using Eq. (15).
The values for ln[R(1,−1, A)] − ln[R(I + 2, I, A)] for differ-
ent isobars increase as the I of isobars increases.

Following the same methods in Ref. [21], the pairing term
ap/T for isobars with I = 0 and I = 2 are rewritten here:

ap/T ∼ (sgn) 1
2A1/2

{
ln[R(2, 0, A)] − 1

2 {ln[R(1,−1, A)]

+ ln[R(3, 1, A)] − �(3, 1, A)} − �(2, 0, A)
}
, (16)

and for isobars with I = 2 and I = 4,

ap/T ∼ (sgn) 1
2A1/2

{
ln[R(4, 2, A)] − 1

2 {ln[R(1,−1, A)]

− 3 ln[R(3, 1, A)] + 3�(3, 1, A)} − �(4, 2, A)
}
.

(17)

Similarly, one can have

ap/T ∼ (sgn) 1
2A1/2

{
ln[R(2, 0, A)] − 1

2 {ln[R(1,−1, A)]

− 3 ln[R(3, 1, A)] + �(3, 1, A)} − �(2, 0, A)
}
(18)

and for isobars with I = 2 and I = 4,

ap/T ∼ (sgn) 1
2A1/2

{
ln[R(4, 2, A)]

− 1
2 ( ln{R(3, 1, A) − 3 ln[R(5, 3, A)]}

−�(3, 1, A) + 3�(5, 3, A)) − �(4, 2, A)
}
, (19)

and

ap/T ∼ (sgn) 1
2A1/2

{
ln[R(4, 2, A)]

− 1
2 {ln[R(3, 1, A)] + ln[R(5, 3, A)]

+�(3, 1, A) + �(5, 3, A)} − �(4, 2, A)
}
. (20)

For an (odd,odd) nucleus sgn = 1 and for an (even,even) nu-
cleus sgn = −1. The approximations assumed in Eqs. (16) and
(17) are (µn − µp)/T , asym/T , and ac/T in ln[R(3, 1, A)] and
ln[R(4, 2, A)] and are the same as those in ln[R(1,−1, A)].
Similar approximations are made in Eqs. (18), (19), and (20).
In Fig. 6, correlations between ap/T and A of fragments

FIG. 6. (Color online) Correlations between ap/T and A for
fragments produced in the 140 A MeV 48Ca + 9Be reaction. (a), (b),
(c), (d), and (e) are results obtained using Eqs. (16), (17), (18), (19),
and (20), respectively.

produced in the 140 A MeV 48Ca + 9Be reactions are plotted.
ap/T of isobars with I = 0 and I = 2 are extracted using
Eqs. (16)–(20), respectively. In Eq. (16), the chemical term,
symmetry term, and Coulomb term of R(2, 0, A) are assumed
to be equal to those of R(1,−1, A). In Eq. (18), (µn − µp)/T ,
asym/T , and ac/T of R(2,0,A) are assumed to be equal to those
of R(3, 1, A). For (even,even) isobars with I = 0 and I = 2,
the extracted ap/T using Eq. (16) is bigger than that using
Eq. (18), while for (odd,odd) isobars the extracted ap/T using
Eq. (16) are smaller than those using Eq. (18).

Due to lack of data for cross sections of mirror nuclei in
the 64Ni projectile fragmentation, figures like Figs. 5 and 6
are not plotted for 64Ni. From Figs. 1 to 6, it can be seen
that the correlations between isobaric yield ratios and (µn −
µp)/T , asym/T , ac/T , and ap/T can fit the measured data
well. But for isobars with big I , there are not enough data
to form chains and it is impossible to extract the values for
asym/T and ac/T for these very neutron-rich isobars.

The method discussed above has the great advantage that
the analysis can be performed in a single reaction and there is
no need to calibrate �µ(Z/A) as in Ref. [21]. The extracted
values of (µn − µp)/T , asym/T , ac/T , and ap/T are, at
a specific temperature, associated with the incident energy.
(µn − µp)/T , asym/T , ac/T , and ap/T are all temperature
dependent. To study the dependence of (µn − µp)/T , asym/T ,
ac/T , and ap/T on temperature, projectile fragmentation at
different energies should be investigated.

III. SUMMARY

In summary, the coefficients of the Coulomb energy ac/T ,
symmetry energy asym/T , pairing energy ap/T , and (µn −
µp)/T have been studied by analyzing the yield ratios (R)
of isobars in projectile fragmentation in the framework of
the modified Fisher model. Very simple correlations between
(µn − µp)/T , ac/T , asym/T , ap/T , and R are obtained. It is
found that these correlations can fit the experimental results
well and can be used to extract the symmetry energy of the
neutron-rich nuclei.
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