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Application of the Bruyères Jeukenne-Lejeune-Mahaux model potential to composite nuclei
with a single-folding approach
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A single-folding (SF) model analysis has been performed for α and deuteron elastic scattering from 58Ni,
90Zr, 116Sn, and 208Pb at incident energies between 10 and 100 MeV/nucleon with the Lane-consistent Bruyères
Jeukenne-Lejeune-Mahaux model nucleon-nucleus potential. The energy dependence of a set of only three
potential parameters was derived, and the resulting global optical model potentials were found to account well
for α and deuteron elastic scattering within their studied energy ranges. The energy dependence of a real potential
form factor is found to be important for describing α-nucleus scattering within large energy ranges. Corrections
due to the compositeness of projectiles to the SF potentials were studied and were compared with theoretical
estimations through the renormalization factor. Systematic differences in renormalization factors between α

particles and deuterons were observed.
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I. INTRODUCTION

One of the major tasks for nuclear physics is to understand
the properties of composite nuclei from the interactions
between their constituent nucleons. Microscopic or semimi-
croscopic nucleus-nucleus optical model potentials (OMPs),
which combine nucleon-nucleon or nucleon-nucleus interac-
tions and nuclear structure information by folding models, are
the most studied quantities for this purpose [1–3]. Problems
in this subject involve nonlocality of optical potentials, Pauli
principle, and three-body effects, which are essential parts of
nuclear physics.

For the first approximation, the OMP of a projectile-target
system can be expressed with the single-folding (SF) model
[1,4],

U (R) =
∫

UNT(|R + r|)ρN (r) d r, (1)

where ρN (r) is the nucleon (proton and/or neutron) density
distribution of the projectile at r with respect to its center
of mass (c.m.), UNT(|R + r|) is the nucleon-target OMP
evaluated at |R + r| from the c.m. of the target nucleus,
and R is the vector from the c.m. of the target to that of
the projectile. UNT is the interaction between a free nucleon
with a target nucleus. When applying SF model potentials
to composite nuclei, corrections due to compositeness of
projectiles were found to be necessary. These corrections
can largely be represented by renormalization of the SF
potentials. Many studies have shown that real SF potentials
have to be reduced, for example, around 10% for deuteron
[5,6] and around 20% for 3He and α particles [4,7], with
respect to their phenomenological counterparts. Theoretically,
these reductions can be attributed to internal motions of the
constituent nucleons, the three-body effects, and the Pauli
principle [4] or to nonlocality of optical model potentials and
finite sizes of projectiles [8]. However, systematic studies of
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corrections to the imaginary SF potentials and to the real SF
potentials within sufficiently large energy ranges are scarce. In
this paper, we investigate this problem by analyzing α-particle
elastic scattering from 58Ni, 90Zr, 116Sn, and 208Pb at incident
energies between 40 and 386 MeV. Results of Ref. [4] show
that, at higher energies, where effects of the Pauli principle can
be neglected, it is the effect of internal motions of constituent
nucleons that is mainly responsible for the reduction of
SF potentials. Because of the much smaller binding energy
of the deuteron, corrections for the deuteron-nucleus SF
potentials are expected to be different from those for the
α-nucleus potentials. To make the comparison, we analyze
elastic scattering of deuterons from 58Ni, 90Zr, and 208Pb at
incident energies from 20 to 200 MeV in the same manner.

This paper was also motivated by our quest for a systematic
α-nucleus OMP. Numerous studies have been devoted to α-
nucleus scattering [8–17], but satisfactory global OMPs of an α

particle within sufficiently large energy and target mass ranges
have not been reported. Recently, at a low-energy region, the
improved semimicroscopic global α-nucleus optical potentials
[18] by Demetriou et al. were reviewed and were extended to
a target mass from around 50 to 120 and incident energies
from around 13 to 50 MeV. These results were elaborated on
in Ref. [19] by Avrigeanu et al. in which a regional optical
potential set was derived and was checked against α-nucleus
scattering and (α, p), (α, n), and (α, γ ) reactions. At a higher-
energy region, Nolte et al. derived a global α potential for
incident energies higher than 80 MeV [20] in which energy
dependence of geometry parameters, namely, the radius and
diffuseness parameters of Woods-Saxon form factors, were
not taken into account. In this paper, we will show that an
energy dependence of these parameters is needed if a global
or regional OMP for an α particle is to be derived within
sufficiently large energy ranges.

Phenomenological systematic nucleon-nucleus potentials
are usually used in single-folding model calculations [21].
However, energy dependence of geometry parameters in
systematic nucleon potentials were usually ignored [22,23].
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These potentials, when applied in SF model calculations, will
not be able to give a good account of the α-nucleus scattering
over sufficiently large energy ranges. Thus, the systematic
nucleon-nucleus OMP with the Jeukenne-Lejeune-Mahaux
(JLM) + Bruyères (JLMB) model [24,25], which have finite-
range parameters naturally built in, which allow control of the
form factor of the folding-model potentials, is very suitable in
SF model analysis of α-nucleus scattering. Compared to the
original JLM model [26,27], Lane consistency is improved
in the JLMB model, which is important for N �= Z nuclei.
Systematics of normalization factors of nucleon potentials
were derived in the JLMB model, which gave a good account
of nucleon elastic scattering and reaction cross sections. The
ability of describing free nucleon interactions with target
nuclei for nucleon-nucleus potentials is important in studies of
compositeness of projectiles with a SF model.

Only three parameters, namely, the finite-range parameter
and renormalization factors of the real and imaginary SF po-
tentials (see Sec. II), were used in this paper. We will show that,
with this minimum set of parameters, we can get a reasonable
account of α and deuteron elastic scattering and total reaction
cross sections within rather large energy ranges. It is well
known that effects of couplings between the elastic-scattering
channel and the other reaction channels (e.g., inelastic scat-
tering and breakup and transfer reactions) on optical model
potentials cannot be simply represented by renormalization of
the potentials [28–31]. The study of these effects is out of
the scope of this paper. Here, we are interested in the bulk
properties of interactions between light composite particles
with heavy targets. Thus, the experimental data are not meant
to be best described with the present method, for which, hybrid
methods with both phenomenological imaginary potentials
and renormalized folding-model real potentials are often used
in studies of elastic scattering of composite particles [2,3,9,13].
The questions in this paper are (i) to what extent can this min-
imum set of parameters reproduce experimental data within
sufficiently large ranges of incident energy and target mass,
and (ii) how do these parameters depend on incident energies?

This paper is organized as follows: A description of the
SF model is given in Sec. II, and procedures of optical model
analysis of the experimental data is described in Sec. III, where
systematic optical model potential parameters for deuteron
and α particles are obtained and are checked with angular
distributions of elastic scattering and total reaction cross
sections with optical model calculations. Comparisons with
phenomenological systematic potentials are also made in this
section. Discussions on corresponding nucleon-nucleus scat-
tering, volume integral per interaction pair of the systematic
OMPs, and transparency of nuclei to protons, deuterons, and
α particles are made in Sec. IV. A summary and conclusions
of this paper are made in Sec. V.

II. THE SF MODEL POTENTIAL

When applied to α-nucleus systems, the SF potential in
Eq. (1) can be specified as

Uα
SF(R,E) =

∑
i=p,n

∫
ρα

i (r)Ui2(|s|, Ei) d r, (2)

where E is the incident energy in the laboratory system. s =
R + r is the vector from the c.m. of the target to position r .
The proton and neutron densities in 4He at a position r , ρα

i (r)
(i = p, n), are assumed to be equal and are taken to have
Gaussian shapes with parameter b = 1.1932 fm (version C in
Table I of Ref. [9]). This form of density distribution is found
to be most realistic for an α particle [2,9]. The corresponding
root-mean-square (rms) radius of an α particle is 1.461 fm,
which is very close to its experimental value 1.47 ± 0.02 fm
[9]. For a deuteron-target system, the SF potential is as follows:

Ud
SF(R,E) =

∑
i=p,n

∫
φ∗

0 (r)[Ui2(|s|, Ei)]φ0(r) d r, (3)

where s = R ± r/2 with r being the vector between the proton
and the neutron in the deuteron, the upper and lower signs are
for neutron and proton, respectively, and φ0(r) is the ground-
state wave function of the deuteron, which is a solution of the
Schrödinger equation with a Gaussian p-n potential Vnp(r) =
−V0 exp(−r2/r2

0 ) with V0 = 72.15 MeV and r0 = 1.484 fm.
This potential reproduces the experimental deuteron binding
energy of 2.226 MeV. The rms radius of this wave function is
3.857 fm. For simplicity, only the S component in the ground
state of the deuteron, which is normalized to 1, is used. In both
Eqs. (2) and (3), incident energies for the corresponding proton
and neutron scatterings from the target nucleus are assumed
to be

Ei=p,n = E/AP , (4)

where AP is the mass of the α particle or deuteron in atomic
mass units.

The nucleon-target potentials Ui2 in Eqs. (2) and (3) are
calculated with the Lane-consistent JLMB model [25], which
was derived from the nucleon potential in nuclear matter (NM)
with the improved local density approximation (iLDA) [24,
27],

Ui2(s, Ei) = 1

(t
√

π)3

∫
UNM[ρ(r ′), α(r ′), Ei]

ρ(r ′)

× exp(−|s − r ′|2/t2)ρ(r ′) d r ′, (5)

where ρ(r ′) = ρp(r ′) + ρn(r ′) is the NM density at position r ′
from the c.m. of the target and α(r ′) = [ρn(r ′) − ρp(r ′)]/ρ(r ′).
The range of Gaussian form factor t can take different
values for real and imaginary potentials, denoted as tr and
ti , respectively. These form factors do not change volume
integrals of the nucleon-nucleus potentials and those of
the corresponding nucleus-nucleus OMPs, but allow one
to fine-tune the geometry of the potentials so as to better
reproduce experimental data. The UNM/ρ(r ′) term in Eq. (5)
is often taken to be the equivalent nucleon-nucleon interaction
between a nucleon in a projectile with a nucleon in a target
nucleus at position r ′ with local NM density ρ(r ′) [32,33]. With
the form of Eq. (5) we explicitly mean that we are adopting the
target position prescription of the iLDA, which is suggested
to be the best prescription for heavy targets [24]. In the JLMB
model, the NM potential for a given NM density ρ = ρp + ρn
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and asymmetry α = (ρn − ρp)/(ρn + ρp) is as follows:

UNM(Ei)ρ,α = λV (Ei)[V0(Ẽi) ± λV 1(Ei)αV1(Ẽi)]

+ iλW (Ei)[W0(Ẽi) ± λW1(Ei)αW1(Ẽi)], (6)

in which the + and − signs are for neutron and proton
potentials, respectively. The nucleon energies Ẽi , used in
calculations of the isoscalar (V0 and W0) and isovector (V1

and W1) potentials, are Ec.m.
p − VC(s) and Ec.m.

n , respectively,
and

Ec.m.
i = EiAT

AT + 1
(i = p, n), (7)

with AT being the mass of the target nucleus in atomic
units, are the c.m. energies of the nucleon-target systems. For
Coulomb corrections to proton incident energies [26,27], the
Coulomb potential encountered by a proton is evaluated by
assuming a uniform charge distribution of the target nucleus
with charge radius RC = rC × A

1/3
T where rC = 1.123A

1/3
T +

2.35A
−1/3
T − 2.07A−1

T (in femtometers) [26]. Details of the
calculations for the isoscalar and isovector potentials and their
corresponding normalization factors λV , λW , λV 1, and λW1

can be found in Refs. [24,25]. The parameters D and E0 in
Eqs. (14) and (22) of Ref. [24] are taken to be 126.25 MeV2

and 9 MeV, respectively, instead of 625 MeV2 and 10 MeV,
respectively, in their original paper [34]. These corrected
values are used in the program MOM [35].

The SF potentials have to be renormalized to better repro-
duce experimental data. Thus, the optical model potentials
responsible for elastic scattering of the α particle and the
deuteron in the present paper are as follows:

U (R,E) = NrRe[USF(R,E)]

+ iNiIm[USF(R,E)] + VC(R), (8)

where Nr and Ni are the renormalization factors for the
real and imaginary potentials, respectively. The Coulomb
potential VC is calculated by assuming a uniformly distributed
charge sphere of radius RC = rC(A1/3

T + A
1/3
P ) for α-nucleus

scattering and RC = rCA
1/3
T for deuteron-nucleus scattering

with rC = 1.3 fm. So eventually, we have four free parameters,
tr , ti , Nr , and Ni , in our model. It is the task of this paper to
study the energy dependence of these parameters. Note that,
since the main purpose of including deuteron elastic scattering
into the present analysis is to compare the values of its OMP
parameters and their energy dependence with those of the α

particle, the spin-orbit potential for the deuteron is not taken
into account in this paper.

Proton, neutron, and NM density distributions in target
nuclei needed in the calculations of the JLMB model potentials
were obtained from Hartree-Fock (HF) calculations based on
the SkX parametrization [36]. This parameter set accounts
for the differences of binding energies for mirror nuclei [37],
interaction cross sections [38], and nuclear charge distributions
[39]. Recently, density distributions with this parameter set
have also been used in transfer reactions [40]. The rms
radii for proton, nucleon, and charge distributions from
these calculations are listed in Table I. For comparison, the
same quantities from the HF-Bogoliubov (HFB) calculations
with the finite-range density-dependent Gogny force used in

TABLE I. Comparison between density distributions used in
Ref. [25] [HFB and HF + random-phase-approximation (RPA)
calculations] and in the present analysis (HF) and their experimental
values [41].

〈r2
n〉1/2 〈r2

p〉1/2 〈r2
ch〉1/2

(fm) (fm) (fm)

58Ni expt. 3.700 3.686 3.772
58Ni HFB 3.702 3.688 3.758
58Ni HF 3.675 3.683 3.776
90Zr expt. 4.289 4.204 4.280
90Zr HFB 4.267 4.219 4.270
90Zr HF 4.264 4.191 4.260
116Sn expt. 4.692 4.546 4.619
116Sn HFB 4.656 4.562 4.610
116Sn HF 4.629 4.543 4.621
208Pb expt. 5.593 5.453 5.503
208Pb HF + RPA 5.653 5.465 5.515
208Pb HF 5.597 5.441 5.498

Ref. [25] and their corresponding experimental values are
also shown. One sees that all calculations reproduce the
experimental results reasonably well.

III. ANALYSIS OF 4He AND DEUTERON
ELASTIC SCATTERING

A. Experimental data

By following the suggestions of Bauge et al. that the iLDA
adopted in the JLMB model may not be a sufficiently good
prescription for light targets [24], we limit our study to heavy
targets with A � 40. Also, since the JLMB model parameters
were derived from data with proton energies larger than around
10 MeV, we set the lower limit of the energy range in our
analysis to 10 MeV/nucleon. The upper limit of the energy
range is set at 100 MeV/nucleon. Beyond which, neglect
of the relativistic effect in our calculations is expected to be
nontolerable. Based on the considerations above, the targets
selected in this paper are 58Ni, 90Zr, and 208Pb, for which
experimental data exist that cover large ranges of incident
energies. Additionally, α-particle elastic scattering from 116Sn
at 240, 288, 340 and 386 MeV is included as a complement
to the 90Zr data at this energy range. The experimental data
and their references are listed in Table II. All of them were
taken from the nuclear reaction database EXFOR/CSISRS [70]
except for those of α elastic scattering from 208Pb at 40, 60,
and 80 MeV, which were digitalized from the original paper.

B. Procedures of data analysis

For each set of data, 25 sets of SF potentials were calculated
with tr and ti values, which vary from 0.8 to 2.0 fm with
steps of 0.05 fm. Throughout this paper, the ti values were
assumed to be the same as tr because we found that constraints
of elastic-scattering angular distributions on the former is
relatively weaker than that on the latter. These parameters
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TABLE II. Experimental data (incident energies in MeV) and
their references included in the present paper.

System Elab Ref. Elab Ref. Elab Ref.

4He + 58Ni 43 [42] 49 [43] 52.4 [44]
58.9 [44] 82 [44] 85.6 [44]
58 [45] 104 [46] 139 [47]

172.5 [48] 240 [49] 288 [50]
340 [50] 386 [51]

4He + 90Zr 40 [52] 50.1 [52] 59.1 [10]
79.5 [10] 99.5 [10] 104 [46]

118 [11] 141.7 [12] 386 [51]
4He + 116Sn 240 [53] 288 [50] 340 [50]

386 [51]
4He + 208Pb 40 [54] 60 [54] 80 [54]

58 [55] 104 [46] 139 [47]
288 [50] 340 [50] 386 [51]

d + 58Ni 22 [56] 52 [57] 56 [58]
79 [59] 120 [60] 170 [61]

200 [62]

d + 90Zr 22 [56] 23.2 [63] 28.8 [64]
34.4 [65] 56 [58] 183 [66]

d + 208Pb 52 [57] 56 [58] 58.7 [67]
80 [68] 85 [67] 110 [60]

140 [69]

are designated as tri in the following text. The computer
code JLM was adapted for calculations of the JLMB model
nucleon-nucleus potentials [71]. Renormalization factors, Nr

and Ni , of the potentials with each tri value were found
by fitting experimental data with standard minimum χ2

(divided by the number of data points) method. Experimental
uncertainties were used if they were available, otherwise,
uniform uncertainties of 10% were applied for all data
points. Since different measurements have different systematic
uncertainties, we also allow normalizations of experimental
data No to vary in the fittings. The optical model fittings
were performed by using computer code SFRESCO, which is
a combination of FRESCO [72] and the search routine MINUIT

[73]. To minimize the dependence on their initial values, nine
pairs of initial values for Nr and Ni were used in the fittings. So
for each projectile-target system at each incident energy, we
obtain 225 (= 25 × 9) sets of {tri , Nr,Ni,No, χ

2} numbers,
among which, the smallest χ2 value χ2

min was found. We
then take the {tri , Nr,Ni,No} values whose corresponding χ2

values are not larger than η × χ2
min as reasonable parameters.

Local potential parameters, which account for the projectile
scattering from one target nucleus at one incident energy, can
then be obtained by averaging these reasonable parameters
weighted with their corresponding (1/χ2)2 values. Standard
deviations of these local parameters were obtained simulta-
neously. Various η values within the range of 1.1 � η � 1.5
were applied, and the local potential parameters were found
to be nearly independent of it, thus, we chose η = 1.2 in our
analysis. The resulting local potential parameters and their

TABLE III. Local potential parameters and their corresponding
values of χ 2 and volume integral per interaction pair for α particles,
where E are in MeV, tri are in femtometers, and Jr and Ji are in
MeV fm3.

E tri Nr Ni χ 2 Jr Ji

α + 58Ni 43.0 1.39 0.71 0.81 24.2 −305.3 −69.7
49.0 1.29 0.72 0.77 16.9 −307.9 −70.2
52.4 1.43 0.72 0.77 7.9 −305.9 −71.9
58.9 1.48 0.76 0.77 9.2 −320.9 −73.7
58.0 1.41 0.77 0.87 10.4 −322.7 −82.7
67.7 1.45 0.77 0.86 7.6 −318.9 −81.7
82.0 1.50 0.74 0.92 6.5 −297.9 −86.1
85.6 1.37 0.75 0.97 4.3 −299.4 −91.1

104.0 1.43 0.73 1.05 18.5 −283.2 −101.2
139.0 1.70 0.79 1.00 5.2 −287.3 −100.4
172.0 1.60 0.77 0.95 4.7 −261.6 −97.1
240.0 1.50 0.76 1.23 3.2 −225.2 −127.4
288.0 1.80 0.79 0.89 14.3 −213.8 −93.3
340.0 1.84 0.90 1.16 19.1 −217.4 −123.1
386.0 1.75 0.88 1.12 20.1 −191.2 −122.8

α + 90Zr 40.0 1.31 0.77 0.74 35.4 −332.0 −56.5
59.1 1.42 0.76 0.79 18.9 −317.7 −70.3
79.5 1.36 0.75 0.96 19.3 −301.4 −83.9
99.5 1.40 0.75 1.01 19.8 −292.8 −90.3

104.0 1.45 0.74 1.02 2.2 −283.7 −92.5
118.0 1.45 0.75 1.00 10.1 −281.8 −92.7
141.7 1.57 0.78 0.98 3.8 −278.6 −94.2
386.0 1.83 0.89 1.08 15.8 −195.7 −117.3

α + 116Sn 240.0 1.65 0.80 1.12 4.1 −239.7 −111.1
288.0 1.96 0.79 0.90 11.8 −214.9 −90.4
340.0 1.96 0.88 1.06 20.7 −214.7 −109.8
386.0 1.87 0.87 1.07 23.2 −191.1 −114.9

α + 208Pb 40.0 1.52 0.81 0.92 0.1 −345.3 −56.8
58.0 1.35 0.77 0.87 25.9 −317.1 −64.2
60.0 1.50 0.81 0.94 0.6 −333.3 −69.7
80.0 1.50 0.74 0.97 1.1 −296.9 −73.9

104.0 1.55 0.77 1.19 8.5 −296.7 −93.2
139.0 1.49 0.84 1.22 14.0 −304.2 −102.8
288.0 1.93 0.78 0.89 21.7 −213.0 −85.3
340.0 1.95 0.87 1.03 21.5 −214.1 −103.0
386.0 1.93 0.91 1.16 40.9 −202.9 −120.9

corresponding χ2 values and volume integrals per interaction
pair are listed in Tables III and IV for α particles and deuterons,
respectively.

It is well known that OMPs from the analysis of elastic-
scattering data at low energies suffer from continuum and
discrete ambiguities (see, e.g., Chap. 12 of Ref. [1]). No
apparent continuum ambiguities were found in this paper
by examining the correlations of potential parameters, for
instance, between tri and Nr . However, distinguished discrete
ambiguities in Nr do show up for low-energy scattering data.
For these cases, the physical families of Nr had to be selected
before the reasonable parameters were collected, by tracing
their families to a higher-energy region, where the discrete
ambiguities disappeared.
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TABLE IV. Local potential parameters and their corresponding
values of χ 2 and volume integral per interaction pair for deuterons,
where E are in MeV, tri are in femtometers, and Jr and Ji are in
MeV fm3. The exceptionally large χ 2 for 208Pb at 140 MeV is caused
by the very small experimental error bar obtained from the nuclear
database.

E tri Nr Ni χ 2 Jr Ji

d + 58Ni 20.0 0.92 0.88 1.25 13.5 −381.2 −103.2
22.0 0.91 0.92 1.20 17.4 −391.9 −103.4
52.0 1.24 0.95 1.15 10.7 −365.9 −110.2
56.0 1.13 0.96 1.20 7.5 −362.7 −116.6
79.0 1.40 1.09 1.21 7.1 −377.9 −122.6

120.0 1.35 1.04 1.20 2.4 −307.4 −124.0
170.0 1.30 1.14 1.30 29.7 −275.3 −136.3
200.0 1.13 1.19 1.41 6.1 −252.2 −154.7

d + 90Zr 22.0 1.06 0.87 1.16 17.7 −371.3 −91.8
23.2 1.03 0.90 1.19 10.4 −381.9 −96.5
28.8 0.97 0.93 1.03 14.8 −385.3 −90.6
34.4 0.97 0.96 1.14 12.7 −390.7 −100.1
56.0 1.27 0.95 1.18 8.7 −359.1 −107.7

183.0 1.30 1.19 1.28 4.0 −271.4 −135.5

d + 208Pb 52.0 1.38 0.87 1.31 19.4 −333.3 −102.6
56.0 1.21 0.85 1.26 15.1 −321.5 −99.2
58.7 1.17 0.88 1.27 18.7 −327.3 −101.7
80.0 1.50 0.95 1.26 14.9 −331.0 −108.3
85.0 1.15 0.96 1.18 10.8 −325.2 −103.5

110.0 1.43 1.02 1.26 5.1 −316.4 −115.9
140.0 1.33 1.06 1.33 1430.8 −293.3 −126.8

C. Energy dependence of potential parameters

In this section, we fit the local potential parameters with
some functions of incident energy to get the global potential
parameters for α particles and deuterons. Note that functions
reported in the following subsections were chosen primarily
to reflect the energy variations of these potential parameters.
There are no specific physical considerations behind them
except that we always avoid choosing functions that may
extend the parameters for values that are very wrong, such
as negative values, to physical intuitions.

1. Energy dependence of tr i

The most significant effect of tri is in the form factors of
the resulting SF potentials. As an example, in Fig. 1, we show
how the SF potential, which corresponds to α elastic scattering
90Zr at 141.7 MeV, depends on values of tri . One can see that
the diffuseness of the potential increases, and correspondingly,
its rms radius decreases, with an increase in tri . The same is
found for the imaginary potential.

The local and global values of tri for α- and deuteron-
nucleus potentials are shown in Fig. 2 as functions of Ec.m./AP .
The values of tri seem to saturate at 1.9 fm for α particles and
saturate or reach their maximum values at around 1.35 fm for
deuterons. Note that, in Ref. [27], these finite-range parameters
were estimated to be smaller than 2.4 fm, which is reasonably
well satisfied by the present results. We represent the global
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FIG. 1. SF potential for 4He elastic scattering from 90Zr at
141.7 MeV calculated with different values of the range parameter tri .

values of tri for an α particle by

tαri(ec.m.) = 1.93 − 0.552

1 + exp[(ec.m. − 48.6)/15.2]
, (9)

and for a deuteron by

tdri(ec.m.) = 0.592 + 2.21e−0.0114ec.m. (1 − e−0.0185ec.m. ), (10)

where

ec.m. = Ec.m.

AP

= AT

AP (AP + AT )
Elab. (11)

The increase in tri values, which corresponds to an increase
in the potential diffuseness and a decrease in the potential
radius for the same projectile-target system, with the increase
in incident energies shown in Fig. 2 for α potentials agrees
with the results of many other investigations, for example,
those in Refs. [44,50]. This result clearly suggests that energy
dependence of the geometry parameters has to be taken into
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208Pb
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FIG. 2. Energy dependence of tri for 4He and deuteron with heavy
targets.
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account properly if a systematic study of α-nucleus scattering
within a wide energy range is to be made. This makes the α

particle different from a proton and a neutron, for which global
optical potentials could be obtained within rather large energy
ranges with fixed tr and ti values [24,25]. Our result for the
deuteron qualitatively agree with the phenomenological global
deuteron potential by Daehnick et al., whose real potential
diffuseness parameter increases linearly with the increase
in incident energy [74]. Energy dependence of geometry
parameters might be common for composite projectiles. To
revisit the existing phenomenological global potentials for
deuterons [75] and for 3He and 3H [7,76,77] with respect to
this point would be interesting.

2. Energy dependence of Nr and Ni

The local values of Nr and Ni are shown as symbols in
Fig. 3 for α particles and deuterons. Their global values,
as functions of Ec.m./AP , represented by Eqs. (12)–(15), are
shown as dashed curves in the same figure,

Nα
r (ec.m.) = 0.887 − 0.123

1 + e(ec.m.−73.0)/2.23
, (12)

Nα
i (ec.m.) = 0.615 + 1.34e−0.0101ec.m. (1 − e−0.0178ec.m. ), (13)

Nd
r (ec.m.) = 1.45 − 0.557e−e2

c.m./11750, (14)

Nd
i (ec.m.) = 1.64 − 0.690

1 + e(ec.m.−73.0)/80.8
. (15)

Nr values of the α particle change from around 0.75 to
around 0.89 from lower to higher energies. This corresponds
to reductions in the SF potentials from 25% to 11%. By
taking effects of energy dependence of constituent nucleons
and three-body terms into account, Perkin et al. [4] estimated
the reduction to be 14.2% for the α potential. This is very
close to the reduction factor of 15% obtained by Jackson
and Johnson [8], which was found to be a consequence of
nonlocality of the nucleon-nucleus potential and finite size

d-A
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d-A

0.8

1.0

1.2

N
r

α-A

58Ni
90Zr

116Sn
208Pb

0.8

1.0

1.2

1.4

 0  30  60  90

N
i

Ec.m./Ap (MeV)

α-A

FIG. 3. Energy dependence of Nr and Ni for an α particle and a
deuteron with heavy targets.

of the projectile. However, both theories underestimate the
α-potential reduction factors at lower energies. As discussed
in Ref. [4], Pauli principle also contributes to these reduction
factors, and its effect increases as incident energy decreases.
The quoted reduction factors from both theories, however, do
not include effects of Pauli principle. By keeping this fact in
mind, the Nr values for the α particles obtained in this paper
seem to qualitatively agree with both theoretical estimations.
Note that renormalization factors of an α particle in the
double-folding model analysis with realistic nucleon-nucleon
interactions, such as CDM3Y6 [78] were found to be around
1.1–1.2 [3,9,78]. They should not be contradicted by the Nr

values obtained in this paper because of the difference in
nucleon potentials used.

Theoretical understanding of the absolute values of Ni and
their energy dependence may be more challenging. The JLMB
model nucleon-nucleus potential is known to account well
for the free nucleon-nucleus scattering and reactions [24,25];
they effectively include effects of couplings to other channels,
such as excitations of the target nucleus. These couplings
are likely to be quite different when the nucleon is bound in
another nucleus [2]. Because of this consideration, the energy
dependence of Ni for the α particle and its value close to
unity within 20% seems to be rather surprising. Note that the
averaged value of Ni being close to unity was also found for
1p-shell nuclei by Trache et al. [33].

Systematic differences in Nr and Ni values are clearly seen
between α and deuteron potentials. Reductions of the real
SF potentials for deuteron-nucleus scattering are observed at
low-energy regions. These reduction factors also quantitatively
agree with the theoretical predictions of Refs. [4,8]. However,
the Nr values for the deuteron are larger than unity when
Ec.m./AP is larger than around 40 MeV, which is not predicted
by both theories. The Ni values for deuterons are systemati-
cally larger than those for α particles, and they increase with
an increase in incident energies. Because of the weak-binding
nature of the deuteron, one would expect that these phenomena
may, at least partially, relate to the energy dependence of
the effects of couplings to continuum states of the deuteron
in the scattering processes. However, quantitative theoretical
explanations are needed. It is also worth noting that many
studies have shown that coupling effects to optical potentials
cannot simply be represented by uniform renormalization of
the potentials over the entire radial ranges [28,31]. It would be
interesting to see whether there are some relations between Nr

and Ni values and the binding energies of incident particles.
This would be useful for applications of the SF model with
the JLMB model potential for other composite projectiles. For
this purpose, it would be interesting to analyze the 3He and 3H
elastic scattering in the same manner.

D. Applications of the global potentials

1. Angular distributions of differential cross sections

Comparisons between experimental angular distributions of
differential cross sections for α- and deuteron-nucleus elastic
scattering and theoertical calculations with both local (solid
curves) and global potential parameters (dashed curves) are
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FIG. 4. Comparison between optical model calculations and experimental data of 4He elastic scattering from 58Ni, 90Zr (triangles for the
116Sn target at 288 and 340 MeV), and 208Pb at different energies. The solid and dashed curves were calculated with local and global potential
parameters, respectively. Different data sets are offset by factors of 10n with an n variable for optimum view. The 58Ni data at 25 MeV, 90Zr
data at 25 MeV, and 208Pb data at 23 MeV are from Refs. [79–81]. Experimental error bars are not shown in these figures.

shown in Figs. 4 and 5. In general, experimental data can be
satisfactorily described, including data at intermediate ener-
gies that show the well-known nuclear rainbow phenomena
(see Fig. 6 for a clearer view). The global potential parameters
give results as close as the local ones. Comparisons with
experimental data that were not included in the global analysis
at low-energy ranges were also performed. To see the angular
distributions at higher energies more clearly, which are usually

measured at very limited angular ranges, we translate the c.m.
angles θc.m. into


c.m. = (1 + E1/4 × e−θc.m./w) × θc.m., (16)

in Figs. 4 and 5, where w is taken to be 30◦. The units of θc.m.

and 
c.m. are degrees. Although this translation of angles will
make it difficult to read some information, for instance, the
rainbow angle at a certain energy directly from the figures,
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FIG. 6. Comparison between optical model calculations and
experimental data for α elastic scattering at around 140 MeV as an
example of a detailed view for the degree of agreement with model
calculations and data. Note that the c.m. angles are θc.m. in this figure.

we take it as the best way to present several data, which cover
large enough energy ranges, in the same figure. Figure 7 shows
the effect of these transformations: The maximum scattering
angles are transformed from around 30◦ in this figure to around
90◦ in Fig. 4.

2. Total reaction cross sections

Total reaction cross sections (σR) are also useful to constrain
the OMP parameters. These data were not included in the
present paper. Instead, we use these data to check the validity
of the global potentials. We compare the optical model
predictions of total reaction cross sections for the α and
deuteron interactions with 58Ni, 116Sn, and 208Pb and their
experimental values. The results are shown in Figs. 8 and 9 for
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FIG. 7. Comparison between optical model calculations and
experimental data for α elastic scattering at 340 MeV. Note that
the c.m. angles are θc.m. in this figure.
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FIG. 8. Comparison between optical model calculations of total
reaction cross sections and experimental data for the α particle. The
target nuclei are indicated in the figure. The experimental data are
from Refs. [83,84].

α particles and deuterons, respectively. Very good agreement
between theoretical calculations and experimental data were
found for α-nucleus systems. Theoretical values of σR agree
rather well with the experimental data for the d-58Ni system,
however, they underestimate those for the d-116Sn system by
around 5% and for the d-208Pb system by around 10%. Note
that similar phenomena (i.e., the increase in underestimation
of σR by theoretical calculations with the increase in the
target masses) has also been observed in proton-nucleus
systems [24]. The reasons for these underestimations and
their increase in target mass numbers shown for proton- and
deuteron-nucleus systems and not for α-nucleus systems are
not clear at the moment. Note that, for the 116Sn target, only α
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FIG. 9. Comparison between optical model calculations of total
reaction cross sections and experimental data for the deuteron. The
target nuclei are indicated in the figure. The experimental data are
from Refs. [85–87].
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scattering data at energies larger than 240 MeV were included
in the derivation of the global potential parameters. Good
agreements between theoretical and experimental σR values of
the α-116Sn system at low energies and of the d-116Sn system
indicate that the global potential derived in this paper is reliable
in the heavy target region.

3. Comparisons with phenomenological potentials

Comparisons between the global parameters in Eqs. (9),
(12), and (13) and the phenomenological global α potential
of Nolte et al. (the Nolte potential) [20] are made in Figs. 6
and 7 for angular distributions and in Fig. 8 for total reaction
cross sections. Similar comparisons were not shown in Figs. 4
and 5 to keep these figures clean. Comparisons with volume
integrals per interaction pairs of the global potentials with
those of Atzrott et al. [13] are made in Sec. IV B. Since
the Nolte potential was derived only for a target mass
up to 90, it is understandable that it is not suitable for
heavier targets, such as 208Pb. Also, since the Nolte potential
was derived within a rather limited energy range around
140 MeV, geometry parameters of Woods-Saxon potentials
were assumed to be independent of incident energy. As we
discussed in Sec. III C, to ignore energy dependence of these
parameters will make the Nolte potential fail to reproduce
experimental data at higher energies, as clearly seen in
Fig. 7. The total reaction cross sections from optical model
calculations with the Nolte potential and the global potential
reported in this paper, however, are rather close, and both
potentials reproduce experimental data well. This may suggest
that total reaction cross-sectional data are not sensitive to form
factors of optical model potentials.

Similar comparisons between systematics in Eqs. (10), (14),
and (15) and those of Daehnick et al. for the deuteron (the
Daehnick potential) [74] are made in Figs. 9 and 10 for angular
distributions and total reaction cross sections, respectively.
These two potentials give similar angular distributions. But
total reaction cross sections with the Daehnick potential are
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FIG. 10. Comparison between optical model calculations and
experimental data for deuteron elastic scattering at 56 MeV. Note
that the c.m. angles are θc.m. in this figure.

systematically larger than those with the potentials obtained
in this paper. Both systematics, in general, cannot give sat-
isfactory reproductions for total reaction cross-sectional data.
The discrepancies may be caused by the fact that couplings to
breakup channels, which are important for deuteron-induced
reactions, are out of the scope of the optical model adopted in
both studies.

IV. DISCUSSIONS

A. Nucleon-nucleus elastic scattering

As discussed in Sec. III C, tri for the α-nucleon systems in-
creases as the incident energy increases. At high energies, this
value reaches around 1.9 fm. On the other hand, the finite-range
parameters used in the JLMB model for the global description
of nucleon-nucleus elastic-scattering data are tr = 1.25 and
ti = 1.35 fm. It is necessary to check whether the resulting
nucleon-nucleus OMPs with tri values in this paper can
still reasonably reproduce the experimental nucleon-nucleus
scattering at higher energies. This is important because,
otherwise, the SF model will lose its initial meaning. We
examine this problem by using, as an example, proton elastic
scattering from 90Zr at 65 MeV, which corresponds to α energy
of 260 MeV and the global tri value of 1.77 fm. Comparisons
with angular distributions of experimental data and the optical
model calculation with parameter set (1) tr = 1.25 fm and
ti = 1.35 fm and (2) tr = ti = 1.77 fm are shown in Fig. 11.
One can see that the amplitudes of differential cross sections
at larger angles with parameter set (2) are smaller than those
with set (1); however, the phases of experimental angular
distributions, especially at smaller angles, seem to be better
reproduced by set (2). The total reaction cross section with
parameter set (1) is 1208.35 mb, while that with set (2) is
1261.94 mb. They differ by only 4%, which is smaller than
typical experimental uncertainties. Thus, we justified that, even
with relatively large tr and ti values, the JLMB model can still
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FIG. 11. JLMB model description of proton elastic scattering
from 90Zr with different finite-range Gaussian parameters. The
experimental data are from Ref. [88].
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give a reasonable account of the nucleon-nucleus scattering
data.

B. Volume integrals of the global potentials

Volume integrals per interaction pair of the real and
imaginary parts Jr and Ji , respectively, of the global α and
deuteron potentials derived in this paper are shown in Fig. 12
for 58Ni, 90Zr, and 208Pb. These quantities are defined as [2]

Jr (E) = 1

AP AT

∫
NrRe[USF(R,E)] d R, (17)

and

Ji(E) = 1

AP AT

∫
NiIm[USF(R,E)] d R. (18)

The same quantities for the proton and neutron at the same c.m.
energy per nucleon are also shown. Jr values for the α potential
agree very well with those obtained by Atzrott et al. [13],
the averaged difference between common studied systems in
both works is smaller than 3%. The averaged differences in
Ji values, however, are 4%, 13%, and 20% for 58Ni, 90Zr,
and 208Pb, respectively. Since phenomenological imaginary
potentials were used in Ref. [13] to get excellent reproductions
of the α elastic-scattering data, these deviations may suggest
some defeat in the present approach. Possible improvement of
the present approach may be found if the constraint that ti is
equal to tr is released.

C. Transparency of nuclei

It is known (e.g., by analyzing reaction cross-sectional data
at intermediate energies with 12C, 16O, and 40Ca nuclei [89,
90]) that nuclei are more transparent to protons and deuterons
than to α particles. In terms of S-matrix elements SL, where
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potentials for a proton (solid curves), a neutron (dashed curves) with
the JLMB model, and a deuteron (open triangles) and α (solid squares)
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FIG. 13. Moduli of the S matrix for proton, deuteron, and α-
particle elastic scattering from 58Ni at 80 MeV/nucleon calculated
with the JLMB model and the global parameters obtained in this
paper.

L is the angular momentum related to the projectile-target
relative motion, this phenomenon suggests that, with the same
target masses and incident energies per nucleon, the SL of α

particles should be smaller than that of protons and deuterons
at small L values. As an example, in Fig. 13, we plot the
moduli of SL from optical model calculations for the elastic
scattering of proton, deuteron, and α particles from 58Ni at
80 MeV/nucleon. The proton potential was obtained by using
the JLMB model systematics, and the deuteron and α potentials
were calculated with global potential parameters reported in
this paper. One sees that our results agree with the known facts
mentioned at the beginning of this subsection.

V. SUMMARY AND CONCLUSIONS

SF models with the JLMB nucleon-nucleus potentials were
applied in the analysis of α and deuteron elastic scattering from
heavy ions. Energy dependence of a minimum set of potential
parameters tri , Nr , and Ni were derived, and global optical
model potentials were obtained for both projectiles. Optical
model calculations with the global potential parameters agree
well with both angular distributions of elastic scattering and
total reaction cross sections for α particles. The results of
this paper suggest that a global optical model potential up to
100 MeV/nucleon for an α particle is possible if the energy
dependence of potential form factors is taken into account
appropriately.

Corrections to the SF model potentials caused by com-
positeness of projectiles were studied through renormalization
factors Nr and Ni . The Nr values for the α particle qualitatively
agree with theoretical estimations, while agreements in the Nr

of the deuterons are seen only at low energies. Systematic
differences were found between α and deuteron projectiles in
their Nr and Ni values and their energy dependence, which
may be related to the very different binding energies and
structures of these two projectiles. Theoretical studies of the
effects of the compositeness of projectiles on SF potentials
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and their relations with renormalization factors studied in this
paper are appealing.
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