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4He microscopic optical model potential
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The 4He microscopic optical model potential is obtained by Green’s function method through nuclear matter
approximation and local density approximation based on the effective Skyrme interaction. The microscopic
optical model potential is analyzed and utilized to calculate the reaction cross sections and elastic scattering
angular distributions for the target nuclei in the mass range 12 � A � 209 with incident 4He energy up to
400 MeV. The theoretical results are compared with the experimental data.
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I. INTRODUCTION

The study of the microscopic optical model potential
(MOP) is one of the most fundamental subjects in the nuclear
reaction theory. As the MOP is generated theoretically based
on the nucleon-nucleon (N -N ) interaction and does not need
to adjust parameters to fit the available experimental data
like the phenomenological optical model potential does, it
has great significance in many branches of nuclear reaction
physics, especially in the study of the colliding systems for
which the elastic scattering measurement is absent or difficult,
such as in the case of neutron-rich or proton-rich β-unstable
nuclei.

The 4He MOP is a tool for the understanding of 4He
elastic scattering and calculations of α-induced reaction cross
sections as well as the α-particle emission from compound
reactions. It is of great value for estimating the radiation-
damage effect in accelerator-driven system (ADS) and in the
research of nuclear astrophysics. The double-folding model
(DFM) [1] is generally utilized in the studies of 4He MOP.
In the DFM, the optical model potential is generated by
doubly folding an effective N -N interaction with the mass
distributions of both the target nucleus and the projectile. At
present, there are some 4He optical model potentials [2–4]
whose real parts are constructed by doubly folding the M3Y
N -N interaction or its density- or energy-dependent versions
[5–7]. However, the imaginary parts of these potentials are
obtained in the phenomenological way. Furumoto et al. [8]
and Zou et al. [9] provide two double-folding potentials
of 4He for 12C, 16O, 28Si, and 40Ca, and the real and the
imaginary parts of both potentials are obtained in the DFM
approach. Furumoto et al. adopt the so-called JLM interaction
as the complex N -N interaction, and Zou et al. use the
Dirac-Brueckner-Hartree-Fock G-matrix interaction as the
N -N interaction. However, two renormalization parameters
are introduced in each double-folding potential to modify the
real and imaginary potential strength, respectively, and both the
double-folding potentials are finally obtained by adjusting the
renormalization parameters to fit the available experimental
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data. The renormalization parameters vary with different
energy and different target nucleus. The renormalization
parameters of Furumoto et al. modify the real and imaginary
potential strength by 22% to 55%, and the parameters of Zou
et al. modify the real and imaginary potential strength by 24%
to 95%.

In the present paper, the 4He MOP is obtained in a
different approach. The MOPs of nucleon, deuteron, and
3He are obtained by the Green’s function method [10–12].
As the nucleon optical potential is identified with the mass
operator of the one-particle Green’s function [13], the nucleon
microscopic optical potential is obtained by calculating the
mass operator through nuclear matter approximation and local
density approximation based on some Skyrme interactions
[10]. The MOPs of deuteron and 3He are also obtained from
the mass operator of the Green’s function [11,12]. It is shown
that the theoretical results calculated by the MOPs of nucleon,
deuteron, and 3He can successfully reproduce the experimental
data. Encouraged by the success, the Green’s function method
is utilized to obtain the 4He MOP in this paper. By this
method, the 4He MOP is obtained from the four-particle
Green’s function based on a Skyrme interaction, and the
nuclear matter approximation and local density approximation
are also used. The first-order mass operator of the four-particle
Green’s function denotes the real part of the 4He MOP, and
the imaginary part of second-order mass operator denotes the
imaginary part of the 4He MOP. The 4He MOP obtained is
used to calculate the reaction cross sections and the elastic
scattering angular distributions for the target nuclei in the
mass range 12 � A � 209 with incident 4He energy up to
400 MeV, and the results are compared with experimental
data.

In Sec. II, the formulation of the 4He MOP is presented.
Section III is the comparison and analysis of the calculated
results and experimental data. Finally, Sec. IV gives a
summary.

II. THEORETICAL MODEL

The Hamiltonian of the system composed of the target
nucleus and the projectile, which only refers to the two-body
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interaction, can be expressed as

H = H0 + H1, (1)

where

H0 =
∑

i

(ti + Ui), (2)

H1 = 1

2

∑
i �=j

Vij −
∑

i

Ui, (3)

where ti is the single-particle kinetic energy operator, Ui

is the single-particle mean field, and H1 is the residual
interaction.

The four-particle Green’s function is expressed as

iG(α1α2α3α4, β1β2β3β4; t1 − t2) = 〈φ0| T
[
Uη(∞,−∞)ξα4 (t1)ξα3 (t1)ξα2 (t1)ξα1 (t1)ξ+

β1
(t2)ξ+

β2
(t2)ξ+

β3
(t2)ξ+

β4
(t2)

] |φ0〉
〈φ0| Uη(∞,−∞) |φ0〉

= 〈φ0| T
[
Uη(∞,−∞)ξα4 (t1)ξα3 (t1)ξα2 (t1)ξα1 (t1)ξ+

β1
(t2)ξ+

β2
(t2)ξ+

β3
(t2)ξ+

β4
(t2)

] |φ0〉L , (4)

where |φ0〉 is the eigenstate of H0; T is the time-ordering symbol; ξα1 , ξα2 , ξα3 , and ξα4 are the particle annihilation operators in
interaction representation; ξ+

β1
, ξ+

β2
, ξ+

β3
, and ξ+

β4
are the particle creation operators; and L denotes that only the linked diagrams

are reserved. Uη(∞,−∞) is the time-evolution operator expressed as

Uη(∞,−∞) =
∞∑

n=0

(−i

h̄

)n 1

n!

∫
dτ1

∫
dτ2 · · ·

∫
dτn exp [−η(|τ1| + |τ2| + · · · + |τn|)] T {H1(τ1)H1(τ2) · · · H1(τn)} , (5)

where η is the infinitesimal introduced from adiabatic approximation.
The four-particle Green’s function satisfies the Dyson equation [14–17]:

iG(α1α2α3α4, β1β2β3β4; ω) = iG(0)(α1α2α3α4, β1β2β3β4; ω) + i

h̄

∑
ρλθεµνδγ

iG(0)(α1α2α3α4, ρλθε; ω)[Uρλθε,µνδγ

−M(ρλθε, µνδγ ; ω)]iG(µνδγ, β1β2β3β4; ω), (6)

where

G(0)(α1α2α3α4, β1β2β3β4; ω) = δα1β1δα2β2δα3β3δα4β4h̄

[(
1 − nα1

)(
1−nα2

)(
1−nα3

)(
1−nα4

)
ω−εα1−εα2−εα3−εα4 + iη

− nα1nα2nα3nα4

ω−εα1−εα2−εα3−εα4−iη

]
,

(7)

nα =
{

1, below the Fermi surface,

0, above the Fermi surface,
(8)

Uρλθε,µνδγ is the mean field, and M(ρλθε, µνδγ ; ω) is the mass operator which can be expanded into

M(ρλθε, µνδγ ; ω) = M (1)(ρλθε, µνδγ ; ω) + M (2)(ρλθε, µνδγ ; ω) + · · · . (9)

For the scattering process, the mass operator M(α1α2α3α4, α1α2α3α4; ω) of the four-particle Green’s function is identified with
the MOP for 4He.The Eq. (4) can be expanded into perturbation series:

iG(α1α2α3α4, β1β2β3β4; t1 − t2) = iG(0)(α1α2α3α4, β1β2β3β4; t1 − t2) + iG(1)(α1α2α3α4, β1β2β3β4; t1 − t2)

+ iG(2)(α1α2α3α4, β1β2β3β4; t1 − t2) + · · · . (10)

It is considered only up to the second order in this paper so as to get the first- and second-order mass operators. The corresponding
Feynman diagrams include one zeroth-order diagram, 14 first-order diagrams given in Fig. 1, and 222 second-order diagrams.

When studying the 4He MOP, 4He is considered as a cluster and the nucleon-nucleon direct interaction in 4He is not considered.
Because the Feynman diagram in Fig. 1(b) describes the direct interaction of the nucleons in 4He, only the Feynman diagrams
in Fig. 1(a) contribute to the first-order term of the four-particle Green’s function. By performing the Fourier transformation, the
first-order term of the four-particle Green’s function can be expressed as

iG(1)(α1α2α3α4, β1β2β3β4; ω) = i

h̄
iG(0)

α1α2α3α4
(ω)

[
Uα1β1 −

∑
ρ

Vα1ρ,β1ρnρ

]
iG

(0)
β1α2α3α4

(ω)δα2β2δα3β3δα4β4 + i

h̄
δα1β1 iG

(0)
α1α2α3α4

(ω)

·
[
Uα2β2 −

∑
ρ

Vα2ρ,β2ρnρ

]
iG

(0)
α1β2α3α4

(ω)δα3β3δα4β4 + i

h̄
δα1β1δα2β2 iG

(0)
α1α2α3α4

(ω)
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·
[
Uα3β3 −

∑
ρ

Vα3ρ,β3ρnρ

]
iG

(0)
α1α2β3α4

(ω)δα4β4 + i

h̄
δα1β1δα2β2δα3β3 iG

(0)
α1α2α3α4

(ω)

·
[
Uα4β4 −

∑
ρ

Vα4ρ,β4ρnρ

]
iG

(0)
α1α2α3β4

(ω), (11)

where

Vαρ,βρ = 〈αρ| V |βρ〉A = 〈αρ| V |βρ〉 − 〈αρ| V |ρβ〉 .

(12)

A denotes antisymmetrization and V is the two-body nucleon-
nucleon interaction.

Equation (11) must satisfy the first-order term of the Dyson
equation, which is expressed as

iG(1)(α1α2α3α4, β1β2β3β4; ω)

= i

h̄
iG(0)

α1α2α3α4
(ω)

[
Uα1α2α3α4,β1β2β3β4

−M (1)(α1α2α3α4, β1β2β3β4; ω)
]
iG

(0)
β1β2β3β4

(ω). (13)

Under the mean-field approximation,

Uα1α2α3α4 = Uα1 + Uα2 + Uα3 + Uα4 = M (1)
α1α2α3α4

, (14)

so M (1)
α1α2α3α4

gives the real part of the 4He MOP. By comparing
Eqs. (11) and (13), the real part of the 4He MOP can be
obtained:

M (1)
α1α2α3α4

=
∑

ρ

Vα1ρ,α1ρnρ +
∑

ρ

Vα2ρ,α2ρnρ

+
∑

ρ

Vα3ρ,α3ρnρ +
∑

ρ

Vα4ρ,α4ρnρ. (15)

In the right-hand side of Eq. (15), each term is just the
contribution of the real part of the microscopic optical potential
for each nucleon [10] in 4He.

Under the mean-field approximation, 176 of the second-
order Feynman diagrams are offset. Figure 2 gives the residual

FIG. 1. First-order Feynman diagrams of the four-particle Green’s function.

064618-3



GUO, XU, LIANG, HAN, AND SHEN PHYSICAL REVIEW C 83, 064618 (2011)

FIG. 2. The residual second-order diagrams
of the four-particle Green’s function.
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FIG. 3. Radial dependence of 4He MOP
for 58Ni. (a) The real parts. (b) The imaginary
parts.

second-order Feynman diagrams. The Feynman diagrams in Figs. 2(b) and 2(c) describe the direct interactions of the nucleons
in 4He. In Fig. 2(c), when the τ1 and τ2, which denote the time when the interactions occur, interchange with each other, another
12 Feynman diagrams describing the direct interactions of the nucleons in 4He will be given. All of these Feynman diagrams
describing the direct interactions of the nucleons in 4He can be ignored. The Feynman diagrams in Fig. 2(d) describe the indirect
interactions of the nucleons in 4He, which can make 4He break up. The Feynman diagrams in Fig. 2(d) are also ignored. Then
only the Feynman diagrams in Fig. 2(a) contribute to the second-order term of the four-particle Green’s function.

By performing Fourier transformation, the second-order term of the four-particle Green’s function can be expressed as

iG(2)(α1α2α3α4, β1β2β3β4; ω)

= −iG(0)
α1α2α3α4

(ω)
i

h̄

⎡
⎣1

2

∑
ρδλ

Vα2λ,δρVδρ,β2λ

ω − εα1 − εα3 − εα4 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

⎤
⎦ iG

(0)
α1β2α3α4

(ω)δα1β1δα3β3δα4β4

− iG(0)
α1α2α3α4

(ω)
i

h̄

⎡
⎣1

2

∑
ρδλ

Vα1λ,δρVδρ,β1λ

ω − εα2 − εα3 − εα4 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

⎤
⎦ iG

(0)
β1α2α3α4

(ω)δα2β2δα3β3δα4β4

− iG(0)
α1α2α3α4

(ω)
i

h̄

⎡
⎣1

2

∑
ρδλ

Vα3λ,δρVδρ,β3λ

ω − εα1 − εα2 − εα4 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

⎤
⎦ iG

(0)
α1α2β3α4

(ω)δα1β1δα2β2δα4β4

− iG(0)
α1α2α3α4

(ω)
i

h̄

⎡
⎣1

2

∑
ρδλ

Vα4λ,δρVδρ,β4λ

ω − εα1 − εα2 − εα3 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

⎤
⎦ iG

(0)
α1α2α3β4

(ω)δα1β1δα2β2δα3β3 ,

(16)

where,

ω = εα1 + εα2 + εα3 + εα4 . (17)

Here the energy of each nucleon in 4He is a quarter of the energy of the incident 4He, namely,

εα1 = εα2 = εα3 = εα4 = ω

4
. (18)

FIG. 4. Radial dependence of 4He MOP
for 208Pb. (a) The real parts. (b) The imaginary
parts.
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FIG. 5. The volume integral per nucleon
of 4He MOP for different nuclei against the
incident energy. (a) The real parts. (b) The
imaginary parts.

Equation (16) satisfies the second-order term of the the Dyson equation, which is expressed as

iG(2)(α1α2α3α4, β1β2β3β4; ω)

= − i

h̄
iG(0)

α1α2α3α4
(ω)M (2)(α1α2α3α4, β1β2β3β4; ω)iG(0)

β1β2β3β4
(ω). (19)

The second-order mass operator of the four-particle Green’s function can be obtained by comparing Eq. (16) with Eq. (19),

M (2)
α1α2α3α4

(E) = 1

2

∑
ρδλ

Vα1λ,δρVδρ,α1λ

εα1 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ) + 1

2

∑
ρδλ

Vα2λ,δρVδρ,α2λ

εα2 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

+ 1

2

∑
ρδλ

Vα3λ,δρVδρ,α3λ

εα3 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ) + 1

2

∑
ρδλ

Vα4λ,δρVδρ,α4λ

εα4 − ερ − εδ + ελ + iη
nλ(1 − nδ)(1 − nρ)

= M (2)
α1

(
E

4

)
+ M (2)

α2

(
E

4

)
+ M (2)

α3

(
E

4

)
+ M (2)

α4

(
E

4

)
. (20)

The imaginary part of the second-order mass operator M (2)
α1α2α3α4

(E) is considered as the imaginary part of the 4He MOP. According
to the formula of the principal value integral

1

x + iη
= P

(
1

x

)
− iπδ(x), (21)

the imaginary part of the 4He MOP can be obtained as follows:

W = ImM (2)
α1α2α3α4

(E) = −π

2

∑
ρδλ

Vα1λ,δρVδρ,α1λnλ(1 − nδ)(1 − nρ)δ(εα1 − ερ − εδ + ελ) − π

2

∑
ρδλ

Vα2λ,δρVδρ,α2λnλ(1 − nδ)

× (1 − nρ)δ
(
εα2 − ερ − εδ + ελ

) − π

2

∑
ρδλ

Vα3λ,δρVδρ,α3λnλ(1 − nδ)(1 − nρ)δ
(
εα3 − ερ − εδ + ελ

)

−π

2

∑
ρδλ

Vα4λ,δρVδρ,α4λnλ(1 − nδ)(1 − nρ)δ
(
εα4 − ερ − εδ + ελ

) = ImM (2)
α1

(
E

4

)
+ ImM (2)

α2

(
E

4

)

+ ImM (2)
α3

(
E

4

)
+ ImM (2)

α4

(
E

4

)
, (22)

where ImM (2)
α1

(E
4 ), ImM (2)

α2
(E

4 ), ImM (2)
α3

(E
4 ), and ImM (2)

α4
(E

4 ) are
the contributions of the imaginary parts of the MOP for the
nucleons [10] in 4He respectively. An important conclusion is
obtained from Eqs. (15) and (22) that, as the indirect interaction
of the nucleons in 4He is ignored, the 4He MOP is the sum of the
microscopic optical potentials for its constituent nucleons. The
interaction V in Eq. (12) is given by the extended Skyrme force
GS2 as in Refs. [10–12]. This force can describe successfully
some ground-state properties, such as effective mass, single-

particle energy, and so on [18]; moreover, it is the best one
to be applied to fit the experimental data of nuclear reaction,
which is shown in the next section.

In the nuclear matter, the nucleon wave function in Eq. (12)
is given by the plane wave

ϕα(−→r ) = 1√
�

ei
−→
kα ·−→r χσα

χτα
, (23)
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FIG. 6. The root mean square radii of
4He MOP for different nuclei against incident
energy. (a) The real parts. (b) The imaginary
parts.

where χσα
and χτα

are the spin and isospin wave functions,
respectively, and � is the volume.

When the distribution of the nucleons in 4He is considered,
the 4He MOP can be obtained by folding the microscopic
optical potentials of its constituent nucleons in the ground
state of 4He. In the relative coordinate representation, the 4He
MOP can be expressed as

V4He(R) = 〈φ4He|Vn

(−→
R + 1

2
−→
ξ1 + 1

2
−→
ξ3

)
+Vn

(−→
R − 1

2
−→
ξ1 + 1

2
−→
ξ3

)
+Vp

(−→
R + 1

2
−→
ξ2 − 1

2
−→
ξ3

)
+Vp

(−→
R − 1

2
−→
ξ2 − 1

2
−→
ξ3

)|φ4He〉, (24)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−→
R = 1

4 (−→r1 + −→r2 + −→r3 + −→r4 ),
−→
ξ1 = −→r1 − −→r2 ,
−→
ξ2 = −→r3 − −→r4 ,

−→
ξ3 = 1

2 [(−→r1 + −→r2 ) − (−→r3 + −→r4 )],

(25)

with
−→
R indicating the position of the center of mass of the 4He

and −→r1 , −→r2 , −→r3 , and −→r4 indicating the position of the nucleons
in 4He. Vn and Vp are the microscopic optical potentials for the
neutrons and the protons in 4He, respectively, with a quarter

FIG. 7. Comparison of the calculated reaction cross sections for
4He + 58Ni reaction using GS2 (solid line), Ska (dash-dotted line),
SII (dotted line), SkT5 (dashed line), SLy9 (dash-dot-dotted line), and
SkI5 (short-dashed line) with experimental data (symbols) [28,29].

of the incident 4He energy. The expressions of Vn and Vp

are taken as those in Ref. [10]. φ4He is the ground-state wave
function of 4He, which can be expressed as

φ4He =
(

β3

4π3

) 3
4

e− β

4 (ξ 2
1 +ξ 2

2 )− β

2 ξ 2
3 , (26)

where β = 0.4395.
The local density approximation [19,20] is also used to

obtain the MOP for finite nuclei as in Refs. [10–12].

III. CALCULATED RESULTS AND ANALYSIS

The 4He MOP obtained is analyzed and used to predict
the reaction cross sections and elastic scattering angular
distributions for different target nuclei from 12C to 209Bi.

The radial dependence of the real and imaginary parts
of the 4He MOP for 58Ni and 208Pb at incident energies of
50, 100, 150, 200, 250, and 300 MeV is shown in Figs. 3
and 4. In Figs. 3(a) and 4(a), the absolute value of the real
part decreases with increasing radius and incident energy.
In Figs. 3(b) and 4(b), the absolute value of the imaginary
part increases with increasing energy of incident 4He, and the
dominant contribution of the imaginary part changes from the
surface absorption to the volume absorption as the incident
energy increases.

The volume integrals per nucleon of the real and imaginary
parts of the 4He MOP for 12C, 58Ni, 116Sn, and 208Pb are
shown in Fig. 5, which decrease with increasing mass number.
The volume integral per nucleon of the real part is linearly
dependent on the incident energy and decreases as the energy
of the incident 4He increases, while the volume integral per
nucleon of the imaginary part increases with increasing energy.

The root mean square radii of the real and imaginary parts
of the MOPs for 12C, 58Ni, 116Sn, and 208Pb are also given in
Fig. 6. It is shown the root mean square radii of the MOPs
increase with increasing mass number, and keep basically as a
constant for each target nucleus.

The 4He reaction cross sections for 12C, 16O, 28Si, 40Ca,
58,60Ni, 112,116,120,124Sn, 208Pb, and 209Bi are calculated using
different Skyrme forces including GS2, SkP [21], Ska [22],
SII [23], SkT1-SkT9 [24], SLy0-SLy10 [25,26], and SkI1-
SkI5 [27]. The comparisons between the calculated results
and the experimental data [28–33] show that the calculated
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FIG. 8. Comparison between the calculated reaction cross sections (solid line) and experimental data (symbols) [28–33] for 4He + 12C,
16O, 28Si, 40Ca, 58,60Ni, 112,116,120,124Sn, 208Pb, and 209Bi reactions. Different data sets are added by 0, 0.5, 1, 1.5, 2, and 2.5.

result by GS2 is the best in fitting the experimental data.
The comparisons of the calculated results of 4He reaction
cross sections for 58Ni using GS2, Ska, S, SkT5, SLy9, and
SkI5 with the experimental data are given in Fig. 7 as an
example. It is shown that the calculated result by GS2 fits the
experimental data best. Therefore, GS2 is adopted to calculate
the microscopic optical potential for 4He in this paper.

The comparisons between calculated results of the 4He
reaction cross sections and the experimental data for 12C,

FIG. 9. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid line) at incident 4He energy of 25.0 MeV
compared with experimental data (symbols) [34]. The results are
divided by 100, 101, 102, . . ..

16O, 28Si, 40Ca, 58,60Ni, 112,116,120,124Sn, 208Pb, and 209Bi are
given in Fig. 8. The figure shows that the calculated results
for 28Si, 40Ca, 58,60Ni, 112,116,120,124Sn, 208Pb, and 209Bi are
in good agreement with the experimental data. The shapes
of the calculated curves of reaction cross sections for 12C
and 16O are similar to those of the experimental data, but the
magnitudes of the calculated results and the experimental data
have discrepancy. Figure 8 also shows there is a general trend
that the reaction cross sections increase with increasing mass
number of the target nuclei and that the reaction cross sections
for heavy nuclei increase with increasing incident energy from
threshold up to 200 MeV, while for light nuclei the reaction

FIG. 10. Calculated elastic scattering angular distributions in the
Rutherford ratio (solid line) at incident 4He energy of 25.2 MeV
compared with experimental data (symbols) [35]. The results are
divided by 100, 101, 102, . . ..
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FIG. 11. Calculated elastic scattering angu-
lar distributions (solid line) at incident 4He
energy of 104 MeV compared with experimental
data (symbols) [32,36,37]. The results are di-
vided by 100, 101, 102, . . ..

cross sections increase first and then decrease with increasing
incident energy.

The calculated results of the differential cross sections
relative to Rutherford cross sections for 62,64Ni, 63,65Cu,
64,66,68,70Zn, and 70,72Ge at incident 4He energy of 25.0 MeV
are compared with the experimental data [34] in Fig. 9.
The theoretical results are in reasonable agreement with the
experimental data. The calculated results of elastic scattering
angular distributions of 4He for 94Mo, 107Ag, and 116,122,124Sn
at incident energy of 25.2 MeV are also compared with the
experimental data [35] in Fig. 10, and good agreement can be
observed.

The comparisons of the calculated results of elastic scat-
tering angular distributions for different target nuclei from
20Ne to 208Pb with experimental data [32,36,37] at incident
4He energy of 104.0 MeV are given in Fig. 11. For the

FIG. 12. Calculated elastic scattering angular distributions (solid
line) at incident 4He energy of 240 MeV compared with experimental
data (symbols) [38–41]. The results are divided by 100, 101, 102, . . ..

targets from 20Ne to 60Ni, a good agreement is obtained for
the angle below 50◦, while for the larger angle, there are
a few discrepancies between the magnitudes of calculated
results and the experimental data. For the other targets, the
calculated results are in good agreement with experimental
data.

The calculated results of the elastic scattering angular
distributions for 16O, 46,48Ti, 58Ni, 116Sn, and 197Au at incident
4He energy of 240.0 MeV are compared with the experimental
data [38–41] in Fig. 12. Except for 46Ti at larger angles, The
theoretical values are in good agreement with the experimental
data for all the targets.

The elastic scattering angular distributions for different
targets from 12C to 208Pb at incident 4He energy 386.0 MeV
were measured [42]. The comparisons of present calculated

FIG. 13. Calculated elastic scattering angular distributions
(solid line) at incident 4He energy of 386.0 MeV compared
with experimental data (symbols) [42]. The results are divided
by 100, 101, 102, . . ..
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FIG. 14. Calculated elastic scattering angular distributions (solid
line) at different incident 4He energies compared with experimental
data (symbols) [43–46] for 4He + 12C reaction. The results are
divided by 100, 101, 102, . . ..

results with the experimental data in Fig. 13 show that a
reasonable agreement is obtained.

The calculated results of differential cross sections relative
to Rutherford cross sections for elastic scattering of 4He from
12C at incident energies from 120 to 400 MeV are compared
with the experimental data [43–46] in Fig. 14. The calculated
results are in reasonable agreement with the experimental
data.

FIG. 15. Calculated elastic scattering angular distributions (solid
line) at different incident 4He energies compared with experimental
data (symbols) [36,43,47,48] for 4He + 24Mg reaction. The results
are divided by 100, 101, 102, . . ..

FIG. 16. Calculated elastic scattering angular distributions (solid
line) at different incident 4He energies compared with experimental
data (symbols) [37,40,42,49–51] for 4He + 58Ni reaction. The results
are divided by 100, 101, 102, . . ..

The comparison between the calculated elastic scattering
angular distributions and experimental data [36,43,47,48] for
24Mg at incident 4He energies from 39.0 to 172.5 MeV is
given in Fig. 15. It is shown that for the angle less than
50◦, the calculated results are in good agreement with the
experimental data, while for the larger angle, there are a few

FIG. 17. Calculated elastic scattering angular distributions in
the Rutherford ratio (solid line) at different incident 4He energies
compared with experimental data (symbols) [35,52–55] for 4He +
107Ag reaction. The results are divided by 100, 101, 102, . . ..
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FIG. 18. Calculated elastic scattering angular distributions (solid
line) at different incident 4He energies compared with experimental
data (symbols) [40,42,56] for 4He + 116Sn reaction. The results are
divided by 100, 101, 102, . . ..

discrepancies between the magnitudes of calculated results
and the experimental data.

The calculated results of elastic scattering angular distribu-
tions for 58Ni at incident 4He energies from 29.0 to 386.0 MeV
are compared with the experimental data [37,40,42,49–51] in
Fig. 16. The calculated results are in reasonable agreement
with the experimental data.

FIG. 19. Calculated elastic scattering angular distributions (solid
line) at different incident 4He energies compared with experimental
data (symbols) [32,56] for 4He + 124Sn reaction. The results are
divided by 100, 101, 102, . . ..

FIG. 20. Calculated elastic scattering angular distributions (solid
line) at different incident 4He energies compared with experimental
data (symbols) [32,42,56,57] for 4He + 208Pb reaction.

The calculated results of differential cross sections relative
to Rutherford cross sections for 107Ag at incident 4He
energies from 15.0 to 43.0 MeV are compared with the
experimental data [35,52–55] in Fig. 17. It shows a good
agreement.

The elastic scattering angular distributions for natural target
Sn at incident 4He energies of 23.3 and 27.7 MeV [56] and for

FIG. 21. Calculated elastic scattering angular distributions
in the Rutherford ratio (solid line) at different incident
4He energies compared with experimental data (symbols)
[30,33,53] for 4He + 209Bi reaction. The results are divided
by 100, 101, 102, . . ..
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the corresponding isotope targets 116Sn at incident energies of
240.0 and 386.0 MeV [40,42] and 124Sn at incident energies
of 50.5 and 104.0 MeV [32] were measured respectively. The
calculated elastic scattering angular distributions for isotope
targets 116Sn and 124Sn at different energies are compared
with these experimental data in Fig. 18 and 19. It is shown
that the calculated results are in good agreement with the
experimental data except for the data for natural target Sn at
the angles larger than 160◦.

The comparisons between the calculated results of elas-
tic scattering angular distributions and experimental data
[32,42,56,57] for 208Pb at incident 4He energies from 23.6
to 386.0 MeV are shown in Fig. 20. The calculated results are
in good agreement with the experimental data.

Figure 21 shows the comparison of the calculated results of
differential cross sections relative to Rutherford cross sections
for 209Bi at incident 4He energies from 19 to 104 MeV with
the experimental data [30,33,53]. The calculated results are in
good agreement with experimental data.

It can be found that there is a bit of discrepancy between the
calculated results and experimental data of the reaction cross
sections for 12C and 16O and some elastic scattering angular
distributions for light nuclei at larger angles. The reasons for
that are as follows: First of all, the light nuclei show strong
nuclear structure effect; also, the recoil effect is obvious for
light nuclei; in addition, the traditional Skyrme interactions
are developed by fitting the ground-state nuclear properties,
maybe they need to be adjusted to adapt to the case of nuclear
reaction.

IV. SUMMARY

The 4He MOP is obtained by Green’s function method.
The real part and the imaginary part of the 4He MOP are
obtained by the first-order mass operator and the imaginary
part of second-order mass operator of the four-particle Green’s
function, respectively. The radial dependence, the volume
integral per nucleon and the root mean square radii of the
MOP are calculated, and the trend of the results is reasonable.
The reaction cross sections and elastic scattering angular
distributions for target nuclides in the mass range 12 � A �
209 with incident energies up to 400 MeV are also calculated
by the MOP, and compared with the experimental data. The
calculated results are in good agreement with the experimental
data generally.

There is a bit of discrepancy between a few of the calculated
results and the experimental data. This may suggest that a
new set of Skyrme interactions, which cannot only describe
the ground-state nuclear properties, but also well reproduce
the nuclear reaction data, need to be developed to improve the
model calculation. This will be studied in the future.
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