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Nucleon drift and diffusion mechanisms in central collisions of asymmetric heavy ions at near-barrier
energies are investigated in the framework of a stochastic mean-field approach. Expressions for diffusion and
drift coefficients for nucleon transfer deduced from the stochastic mean-field approach in the semiclassical
approximation have similar forms familiar from the phenomenological nucleon exchange model. The variance
of fragment mass distribution agrees with the empirical formula σ 2

AA(t) = Nexc(t). The comparison with
the time-dependent Hartree-Fock calculations shows that below barrier energies, the drift coefficient in the
semiclassical approximation underestimates the mean number of nucleon transfer obtained in the quantal
framework. Motion of the window in the dinuclear system has a significant effect on the nucleon transfer
in asymmetric collisions.
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I. INTRODUCTION

In heavy-ion collisions with bombarding energies per
nucleon in the order of nucleon binding energy, the mean-field
approach, in terms of time-dependent Hartree-Fock equations
(TDHF), provides a good approximation for describing the
average behavior of the collision dynamics [1–5]. For example,
the mean-field approximation gives a good description of
energy dissipation and nucleon drift in deep inelastic heavy-ion
collisions (DICs). However, the collective motion is treated in
a nearly classical, deterministic manner and the fluctuations
of collective variables are severely underestimated [4,5].
Therefore, in the mean-field approach, it is not possible to
describe energy distributions and fragment mass and charge
distributions in DICs. There are other reactions, such as heavy-
ion fusion at near-barrier energies, spinodal dynamics leading
to nuclear fragmentation [6], in which dynamics of density
fluctuations play a dominant role. Much work has been done
to improve the transport approach for describing dynamics
of density fluctuations beyond the mean-field approximation.
Basically, there are two different sources of density
fluctuations: (i) fluctuations induced by binary collisions [7–9]
and (ii) mean-field fluctuations. Fluctuations and dissipation
induced by collisional mechanisms are important at the
intermediate and high energies. Transport description can be
extended in a stochastic approach by including the binary
collision term and its fluctuating part in an analogous manner
to the Langevin treatment of Brownian motion. In the
semiclassical limit, this model is known as the Boltzmann-
Langevin approach. On the other hand, as indicated in a
recent work [10], the mean-field fluctuations originating from
the quantal and thermal fluctuations at the initial state become
the dominant source of density fluctuations at low energies.
The theory that includes mean-field fluctuations is referred to
as the stochastic mean-field (SMF) approach.

In recent works, the SMF approach was employed to extract
transport coefficients associated with relative momentum and

nucleon exchange in low-energy heavy-ion collisions [11,12].
Also, some applications of the SMF approach have been
carried out for analyzing the early development of spinodal in-
stabilities [13,14]. Microscopic transport coefficients extracted
from the SMF have similar forms with those familiar from the
phenomenological nucleon exchange model [15–17], but they
provide a more refined description of one-body dissipation and
the associated fluctuation mechanism. In these initial inves-
tigations, for simplicity, we calculated transport coefficients
for symmetric central collisions. It is worth mentioning that
the variances of the fragment mass distributions calculated
with the microscopic diffusion coefficient extracted from the
SMF approach compares very well with the empirical result
σ 2

AA(t) = Nexc(t), where σ 2
AA and Nexc(t) denote the mass

variance and the total number of nucleon exchange between
projectile and target nuclei up to time t , respectively. This ob-
servation provides another convincing support for the validity
of the SMF approach. In symmetric collisions, the mass and
charge numbers of the fragment do not change on average; i.e.,
the mean value of the nucleon drift coefficient vanishes.

In this work, we investigate the nucleon exchange mecha-
nism in central collisions of the asymmetric 40Ca + 90Zr sys-
tem. In Sec. II, we study nucleon drift in the basis of the TDHF
and compare the results with those obtained from the semiclas-
sical limit of the SMF approach. We illustrate the influence of
the neck motion on nucleon flux through the window area. In
Sec. III, we present a brief description of the SMF approach
and transport coefficients for nucleon exchange. In Sec. IV,
we investigate the nucleon diffusion and variances of fragment
mass distributions, and conclusions are given in Sec. V.

II. NUCLEON DRIFT AND WINDOW DYNAMICS

As an extension of the previous work, we consider central
collisions of asymmetric systems at low energies. For not
too heavy systems, collisions above the Coulomb barrier
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FIG. 1. (Color online) Snapshots of the nucleon density profiles
on the reaction plane, ρ(x, y, z = 0), are indicated by contour plots
for the central collision of the 40Ca + 90Zr system at Ec.m. = 97 MeV
in units of fm−3. The black dot is the center of mass point. The
red lines indicate the positions of the window x0, and v0 = dx0/dt

denotes velocity of the window.

lead to fusion, and below the barrier energies, colliding
nuclei exchange a few nucleons and re-separate. In order to
investigate the dynamics of nucleon exchange, we introduce
the window between projectile-like and target-like nuclei
according to the procedure outlined in [11,18]. Figure 1
illustrates density profiles at the reaction plane, ρ(x, y, z =
0, t), and the window location in collisions of the 40Ca + 90Zr
system at center-of-mass energy Ec.m. = 97 MeV at three
different times. The Coulomb barrier is VB = 97.7 MeV. In this
figure and in the rest of this paper, we perform the numerical
calculations with the three-dimensional TDHF code developed
by P. Bonche and his collaborators with the SLy4d Skyrme
effective force [19]. Since the total nucleon number remains
constant, we can take the mass number of the target-like nuclei
as the independent variable. The mass number of target-like
nuclei is determined by integrating the density distribution
over the left side of the window,

AT (t) =
∫∫

dx dpx

2πh̄
�(x0 − x)f (x, px, t), (1)

where x0(t) denotes the position of the neck window. The
quantity �(x0 − x) denotes the step function and f (x, px, t)
is the reduced Wigner function along the collision direction.
Definition of the mass number of target-like nucleus is

equivalent to

AT (t) =
∫

dx�(x0 − x)ρ(x, t), (2)

where ρ(x, t) = ∫
dpx/(2πh̄)f (x, px, t) denotes the reduced

density of nucleons.
The Wigner function f (r, p, t) is defined as a partial

Fourier transform of the single-particle density matrix accord-
ing to

f (r, p, t) =
∫

d3s exp

(
− i

h̄
p · s

)
ρ

(
r + s

2
, r − s

2
, t

)
,

(3)

where the single-particle density matrix is defined as

ρ(r, r ′, t) =
∑
iσ τ

φ∗
iσ τ (r, t)ni(στ )φiστ (r ′, t). (4)

Here, the sum runs over the occupied single-particle wave
functions with spin-isospin quantum numbers σ, τ and oc-
cupation numbers ni . We obtain the reduced Wigner function
f (x, px, t) along the collision direction by integrating over the
phase space volume on the window area between the colliding
nuclei,

f (x, px, t) =
∫

dy dz
dpydpz

(2πh̄)2
f (r, p, t). (5)

Using TDHF equations, we can deduce the rate of change
of the mass number of target-like fragments as

d

dt
AT (t) = vA(t), (6)

where vA(t) denotes the nucleon drift coefficient determined
by the net nucleon flux through the window area,

vA(t) = −
∫

dpx

2πh̄

px − p0

m
f (x0, px, t). (7)

Here p0 = m dx0/dt is the velocity of the neck multiplied
by nucleon mass. Even though we employ the reduced
Wigner function for convenience, the expression of the drift
coefficient is fully quantum mechanical. Since the net nucleon
flux is determined by the kinetic term in TDHF, Eq. (7)
does not involve a semiclassical approximation. The reduced
Wigner function f (x, px, t) is an exact Wigner transform
of the reduced density matrix ρ(x + sx/2, x − sx/2, t). The
center of mass of the colliding nuclei in Fig. 1 is located
at (xc.m., yc.m.) = (0, 0). The red vertical lines indicate the
positions of windows x0. As seen from the figure, the position
of the window does not remain constant relative to the center
of mass. The directions of the neck velocities are indicated
with arrows during the approach and re-separation phase of
nuclei. Figure 2 shows the time dependence of the position of
the window relative to the center of mass in collisions of the
40Ca + 90Zr system at three different center-of-mass energies.
As seen from Fig. 2(b), at energies below the Coulomb barrier,
during the approach phase, the neck moves toward the center
of mass and then moves away from the center of mass. We
note that the center-of-mass energy Ec.m. = 110 MeV leads to
fusion. However, as seen in Fig. 2(a), before the system fuses,
the position of the window undergoes a single oscillation.
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FIG. 2. (Color online) The window position is plotted versus time
for the central collisions of the 40Ca + 90Zr system at three different
center-of-mass energies. The center-of-mass point is located at x = 0.

In order to illustrate the effect of window dynamics on
nucleon drift, in Fig. 3 we show time evolution of the mean
mass number of the target-like nuclei,

AT (t) = AT (0) +
∫ t

0
dsvA(s), (8)

as a function of time at three different center-of-mass energies,
Ec.m. = 93 MeV (c), Ec.m. = 97 MeV (b), and Ec.m. = 110
MeV (a). In this figure, dotted lines are obtained by integrating
the density over the left side of the window from Eq. (1) and the
solid lines are obtained by integrating the nucleon flux across
the window from Eq. (7). Dashed lines are the result of flux
calculations from Eq. (7), except window motion is neglected.
We observe that window motion has an important influence on
the net nucleon flux or, in terms of transport language, on the
mass drift coefficient, at both below and above barrier energies.
In this connection, we remark that in the phenomenological
nucleon exchange model, transport coefficients (mass drift and
diffusion) are usually calculated by assuming a fixed window
position relative to the center of mass [16]. There are studies
where the relevance of window motion was addressed [20,21].
As seen in Fig. 3, keeping the window at rest relative to the
center of mass can introduce an error on the order of 50% of
the mean number of transferred nucleons.

A. Nucleon exchange in the stochastic mean-field theory

In the SMF approach [10], the mean-field fluctuations are
incorporated into the dynamical evolution by including the
initial state fluctuations in a stochastic approximation in a
similar manner to the idea presented in Refs. [22–27]. In the
approach, in contrast to the deterministic description of the
standard mean-field approach, an ensemble of single-particle
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FIG. 3. (Color online) Mean number of nucleon transfer to the
target nucleus 90Zr, AT (t) − AT (0), is plotted versus time in central
collisions of the 40Ca + 90Zr system at three different center-of-mass
energies. The dotted curves are calculated directly from Eq. (1), the
solid lines are obtained by integrating the nucleon flux on the right-
hand side of Eq. (7) over time, and the dashed lines are calculated
similarly with solid lines except the motion of the window, second
term of the right-hand side of Eq. (7), is neglected.

density matrices are generated by starting an initial density
distribution. A member of the ensemble of single-particle
density matrices, denoted by λ, can be expanded in terms
of a complete set of single-particle wave functions as

ρλ(r, r ′, t) =
∑
ijστ

φ∗
iσ τ (r, t ; λ)ρλ

ij (στ )φjστ (r ′, t ; λ), (9)

where σ and τ indicate the spin-isospin quantum numbers of
the single-particle wave functions. In the expansion, elements
of density matrices are assumed to be random Gaussian
numbers with mean values,

〈ρλ
ij (στ )〉 = δijn

στ
i , (10)

and variances are determined by

〈δρλ
ij (στ ), δρλ

j ′i ′(σ
′τ ′)〉

= 1
2δjj ′δii ′δττ ′δσσ ′

[
nστ

i

(
1 − nστ

j

) + nστ
j

(
1 − nστ

i

)]
. (11)

Here, nστ
i denotes the average single-particle occupation

factors, which are values 0 and 1 at zero temperature and given
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by the Fermi-Dirac distribution at finite temperatures. Time
evolution of the single-particle wave functions is determined
by the self-consistent mean field h(ρλ) of the corresponding
event,

ih̄
∂

∂t
φiστ (r, t ; λ) = h(ρλ)φiστ (r, t ; λ). (12)

We introduce the Wigner function f λ(r, p, t) correspond-
ing to each event λ of the ensemble of single-particle density
matrices in the same manner as in Eq. (3). Also, we define the
reduced Wigner function f λ(x, px, t) and the mass number of
target-like nuclei Aλ

T (t) in the same manner as in Eqs. (5) and
(1). The time evolution of the mass number of the target-like
fragments in the event λ obeys the equation

d

dt
Aλ

T = −
∫

dpx

2πh̄

px − p0

m
f λ(x0, px, t), (13)

which is similar to Eq. (6) except that the nucleon flux
through the window is calculated by the reduced Wigner
function in that event. It is possible to convert this equation
into a Langevin equation for stochastic evolution of the mass
number of the target-like nuclei. Fluctuations of the nucleon
flux through the window can arise from fluctuations of the
reduced Wigner function originating implicitly from the mass
number dependence δAλ

T (t) = Aλ
T (t) − AT (t) and explicitly

from the fluctuations of single-particle degrees of freedom
δf λ(x0, px, t). Then, the reduced Wigner function can be
written as

f λ(x0, px, t) = f (x0, px, t)

+
(

∂f (x0, px, t)

∂AT

)
δAλ

T (t) + δf λ(x0, px, t).

(14)

Here, AT (t) = 〈Aλ
T (t)〉 and f (x0, px, t) = 〈f λ(x0, px, t)〉 de-

note average quantities taken over the generated ensemble.
For small fluctuations, the ensemble average quantities are
equivalent to the results obtained by ordinary mean-field
approximation. As a result, the Langevin equation for the
nucleon exchange becomes

d

dt
Aλ

T (t) = vA(t) +
(

∂vA(t)

∂AT

)
δAλ

T (t) + ξλ
A(t), (15)

where vA is the drift coefficient for nucleon exchange given
by Eq. (7) in the standard mean-field approach. The quantity
ξλ
A(t) denotes the fluctuating part of the nucleon flux,

ξλ
A(t) = −

∫
dpx

2πh̄

px − p0

m
δf λ(x0, px, t). (16)

The fluctuating part of the flux is considered as a Markovian
Gaussian random force on the nucleon exchange mechanism
determined by a correlation function,〈

ξλ
A(t)ξλ

A(t ′)
〉 = 2δ(t − t ′)DAA(t), (17)

where DAA(t) is the diffusion coefficient associated with nu-
cleon exchange. In the SMF approach, within the semiclassical
approximation, it is possible to deduce expressions for the
diffusion coefficients associated with macroscopic variables

[11,12]. The expression of diffusion coefficient for nucleon
exchange is given by

DAA(t) =
∫

dpx

2πh̄

|px − p0|
m

1

2
�+(x0, px, t), (18)

where the quantity �±(x0, px, t) is defined as

�±(x0, px, t) =
∑
στ

{
f στ

P (x0, px, t)

[
1 − f στ

T (x0, px, t)

�(x0, t)

]

± f στ
T (x0, px, t)

[
1 − f στ

P (x0, px, t)

�(x0, t)

]}
.

(19)

Here, the mean values of the reduced Wigner distributions
f στ

P (x0, px, t) and f στ
T (x0, px, t) are defined in terms of

single-particle wave functions originating from projectile and
target nuclei, respectively. The quantity �(x0, t) denotes the
phase-space volume on the window and it is calculated
with the method explained in Ref. [11]. The expression of
diffusion coefficient has a similar form to that familiar from the
phenomenological nucleon exchange model [16]. However,
the diffusion coefficient extracted from the SMF approach is
not restricted by adiabatic or diabatic conditions, and provides
a more refined description of the nucleon diffusion mecha-
nism. In the phenomenological nucleon exchange model, the
diffusion coefficient is determined by the sum of fluxes from
projectile to target and from target to projectile, while the
nucleon drift coefficient is specified by the net flux through
the window. In the spirit of the nucleon exchange model,
we can infer an approximate expression for the nucleon drift
coefficient as

vA(t) ≈
∫ +∞

−∞

dpx

2πh̄

|px − p0|
m

�−(x0, px, t). (20)

We note that the expressions for the nucleon drift and diffusion
coefficients, Eqs. (18) and (20), are valid in the semiclassical
approximation. In particular, below the barrier energies, the
reduced Wigner functions f στ

P/T (x0, px, t) obtained from the
TDHF calculations exhibit large oscillations in momentum
space. In order to obtain a semiclassical description of
transport coefficients, we need to smooth out these oscillations
in the reduced Wigner functions. Similar to the Gaussian
overlap approximation introduced in Ref. [12], we develop
a smoothing method of the momentum dependence of the
reduced Wigner functions, which is presented in the Appendix.

B. Comparison between quantal and semiclassical nucleon drift

Figure 4 shows the drift coefficients as a function of
time at center-of-mass energies below the barrier, Ec.m. =
93 MeV (c) and Ec.m. = 97 MeV (b), and above the barrier
energy Ec.m. = 110 MeV (a). In the figure, the quantal drift
coefficients calculated from Eq. (7) and the semiclassical
approximation of the drift coefficients calculated from Eq. (20)
are indicated by solid and dashed lines, respectively. The
mean-field approach described by TDHF equations provides
a quantal treatment of the single-particle motion, and hence
we can take the TDHF drift coefficient as a reference. As a
result, nucleon transfer via barrier penetration is included in
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FIG. 4. (Color online) Nucleon drift coefficients are plotted
versus time in central collisions of the 40Ca + 90Zr system at three
different center-of-mass energies. The solid lines and dashed lines
are obtained from Eq. (7) and Eq. (20), respectively.

the quantal drift coefficients. The semiclassical calculations
provide a good approximation for the drift coefficients at
above the barrier energies. However, at below the barrier
energies, semiclassical calculations underestimate the quantal
drift coefficients progressively more and more.

Figure 5 shows comparisons of the mean nucleon transfer
AT (t) − AT (0) calculated from Eq. (8) in the standard mean-
field TDHF and the SMF approaches at the same center-
of-mass energies below the barrier Ec.m. = 93 MeV (c) and
Ec.m. = 97 MeV (b), and above the barrier energy Ec.m. =
110 MeV (a). We observe that, above the barrier energies,
the mean value of the nucleon drift is well described by the
semiclassical approximation. However, at below the barrier
energies, quantal effects become important, and as a result the
semiclassical calculations underestimate the quantal value of
nucleon drift by more than 50% at E = 97 MeV. At E = 93
MeV, drift in the semiclassical calculation goes in the opposite
direction. Figure 6 shows the comparison of asymptotic values
of the mean numbers of nucleon transfers in the TDHF and
SMF calculations as a function of center-of-mass energy.
Below barrier energies, the asymptotic values (t → +∞) are
the mean numbers of nucleon transfer after re-separation. On
the other hand, over the barrier energies, for the asymptotic
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FIG. 5. (Color online) Mean number of nucleon transfer to target
nucleus AT (t) − AT (0) is plotted versus time in central collisions of
the 40Ca + 90Zr system at three different center-of-mass energies. The
solid lines are obtained by taking time integral of the TDHF drift from
Eq. (7), and the dashed lines are calculated from the semiclassical
expression Eq. (20) of the nucleon drift coefficient.

values we take the maximum number of nucleon transfer at
the initial stage of the fusion. Below the barrier energies,
quantal effects cause the large differences in the mean number
of nucleon transfers between the TDHF and the semiclassical
calculations.

III. DIFFUSION COEFFICIENT AND VARIANCE OF
FRAGMENT MASS DISTRIBUTION

In this section, we calculate the variance, σ 2
AA(t) =

〈(Aλ
T )2〉 − 〈Aλ

T 〉2, of fragment mass distribution in central
collisions of the 40Ca + 90Zr system. It follows from the
Langevin Eq. (15) that the variance σ 2

AA(t) is determined by

d

dt
σ 2

AA(t) = 2α(t)σ 2
AA(t) + 2DAA(t), (21)

where α(t) = ∂vA(t)/∂AT .
The solid lines in Fig. 7 illustrate the diffusion coefficients

as a function of time at center-of-mass energies below the
barrier, Ec.m. = 93 MeV (c) and Ec.m. = 97 MeV (b), and
above the barrier energy Ec.m. = 110 MeV (a). The solid
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FIG. 6. (Color online) The asymptotic values (t → ∞) of the
mean numbers of nucleon transfer are plotted versus center-of-mass
energy in collisions of the 40Ca + 90Zr system. The Coulomb barrier
VB is indicated by the arrow. At energies above the barrier, where
fusion occurs, the maximum numbers of nucleon transferred, for
instance the maximum value seen in Fig. 5(a), are indicated. The
solid lines and dashed lines are calculated from the standard TDHF
Eq. (1) and the SMF approaches Eq. (20), respectively.

lines are obtained by Eq. (18), while the dashed lines are
calculated by neglecting motion of the window. We observe
from this figure that, contrary to behavior of drift coefficients,
the motion of the window does not affect diffusion coefficients
appreciably. The time dependence of drift coefficients vA(t) in
central collisions of the asymmetric 40Ca + 90Zr system at
three different center-of-mass energies is illustrated in Fig. 4.
In particular, below the barrier energies, the time dependence
of the drift coefficients in both the TDHF and SMF approaches
arises mainly from time dependence of the window area and
time dependence of nucleon density on the window area.
Furthermore, because of the very small value of the mean
nucleon transfer, the mass asymmetry degree of freedom is far
from equilibrium. Therefore, the reduced mass dependence
of the drift coefficients is expected to be very small. In the
following, we neglect the contribution from the drift term and
solve the variance equation (21) to find

σ 2
AA(t) = 2

∫ t

0
DAA(s) ds. (22)

Figure 8 shows variances of fragment mass distribution at
the same center-of-mass energies below the barrier Ec.m. =
93 MeV (c) and Ec.m. = 97 MeV (b), and above the barrier
energy Ec.m. = 110 MeV (a), as a function of time. The solid
lines in the figure are the result of integration over the diffusion
coefficients, while solid dots indicate the total number of
exchange nucleon Nexc(t) until time t . The empirical relation
σ 2

AA(t) = Nexc(t) follows from the nucleon exchange model
and has been widely used to analyze the experimental data
of deep-inelastic collisions [28,29]. Figure 8 illustrates, as in
the previous investigations for symmetric heavy-ion collisions
[12], that there is a good agreement between the empirical
formulas and the calculations based on the SMF approach.
Even at energies below the Coulomb barrier, the semiclassical
calculations based on the SMF approach compare well with
the empirical description Nexc.
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FIG. 7. (Color online) Nucleon diffusion coefficients are plotted
versus time in central collisions of the 40Ca + 90Zr system at three
different center-of-mass energies. The solid lines are obtained from
Eq. (18), while the dashed lines are calculated by neglecting motion
of the window.

IV. CONCLUSION

We investigate nucleon drift and diffusion mechanisms
in central collisions of the asymmetric 40Ca + 90Zr system
in frameworks of the standard mean-field and the SMF
approaches. In the SMF approach, we do not carry out
stochastic mean-field calculations, but we extract diffusion
coefficient associated with nucleon exchange in a semiclassical
approximation, which has a form similar to that familiar from
the phenomenological nucleon exchange model. Using this
similarity, we also infer an expression for the nucleon drift
coefficient in the semiclassical approximation. In the standard
mean-field approach provided by the TDHF equations, we can
only calculate the nucleon drift including quantum mechanical
effects in the single-particle level, but we cannot describe
nucleon diffusion in this framework. At energies below the
Coulomb barrier, colliding nuclei exchange a few particles
and re-separate. Above the barrier energies, since collisions
lead to fusion, we limit our calculations of nucleon exchange
during the early stages of the collisions. Our calculations
show that not only the size of the window between nuclei
but also motion of the window relative to the center of mass
play an important role in the nucleon drift mechanism. In the
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FIG. 8. (Color online) Variances of fragment mass distributions
are plotted versus time in collisions of the 40Ca + 90Zr system at
three different center-of-mass energies. The dotted lines denote total
number of exchanged nucleons until a given time t , while the solid
lines are calculated from Eq. (22).

phenomenological nucleon exchange model, the motion of the
window relative to the center of mass is often neglected. We
observe that below the barrier energies, the semiclassical drift
coefficient underestimates the nucleon drift deduced from the
standard mean-field description with TDHF equations. This
is mainly due to the fact that barrier penetration of the single
particles is not included in the semiclassical description of
nucleon drift. However, in collisions with energies above the
Coulomb barrier, the semiclassical expression for the nucleon
drift provides a good approximation for the quantal drift
deduced from the TDHF framework. Employing the diffusion
coefficient extracted from the SMF approach, we calculate the
variances of fragment mass distribution at energies below and
above the barrier. In such calculations for central collisions,
we cannot compare the results with experiments, but can
compare them with the empirical relation σ 2

AA(t) = Nexc(t). As
in the symmetric collisions we investigated earlier [11,12], our
calculations with semiclassical diffusion coefficients for the
asymmetric system compare well with the empirical relation
at energies both below and above the Coulomb barrier. This
empirical result has been used to analyze data in DICs above
the barrier energies [28,29]. However, it is not clear whether

such empirical relation σ 2
AA(t) = Nexc(t) is also valid below the

Coulomb barrier, where quantal effects may become important
in nucleon exchange mechanisms, as we observe in nucleon
drift coefficients. Therefore, in the present calculations, we
cannot draw any conclusions about the possible quantal effects
on nucleon diffusion coefficients and the resulting variances
of fragment mass distributions at energies below the Coulomb
barrier.
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APPENDIX

We consider the reduced Wigner function

f στ
T (x0, px, t) =

∫
dy dz

∫
dsx exp

(
− i

h̄
pxsx

)

×
∑
i∈T

φ∗
iσ τ

(
x + sx

2
, y, z, t

)

×φiστ

(
x − sx

2
, y, z, t

)
, (A1)

which is associated with the single-particle wave functions of
the target nucleus. It can be rewritten as

f (x0, p) =
∫

ds exp(−ips/h̄)F (x0, s), (A2)

where

F (x0, s) =
∫

dy dz
∑

i

φ∗
i

(
x0 + s

2
, y, z

)

×φi

(
x0 − s

2
, y, z

)
. (A3)

In these expressions, for simplicity we introduce the notation
f (x0, p) ≡ f στ

T (x0, px, t) and φi(x0, y, z) ≡ φiστ (x0, y, z, t)
with single-particle wave functions originating from the target
nucleus. At energies below the Coulomb barrier, the reduced
Wigner function f (x0, p) exhibits rapid oscillations on the
window and can take negative values due to quantal effects. In
order to smooth out these oscillations, we need to approximate
the quantity F (x0, s) in terms of a smooth function as a
function of s, which should be consistent with the following
two constraints:

(1) F ∗(x0, s) = F (x0,−s), hence the real part must be an even
function and the imaginary part must be odd function.

(2) lims→∞ F (x0, s) = 0.

A possible choice consistent with these requirements is
to approximate F (x0, s) in terms of a Gaussian function. In
order to determine the centroid and the width of the Gaussian
representation, in Eq. (A3) we expand the single-particle wave
functions around s = 0 up to the second order to find

F (x0, s) ≈ ρ(x0)

(
1 − iβs − α

4
s2

)
. (A4)
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Here, the quantities α and β are given by

β = jx(x0)

ρ(x0)
, (A5)

α = 1

ρ(x0)

[
p2

x(x0) + τx(x0)
]
. (A6)

In these expressions, the reduced mass density, the current
density, the squared-momentum density, and the kinetic energy
density are defined as

ρ(x) =
∫

dy dz
∑

i

φ∗
i (x, y, z)φi(x, y, z), (A7)

jx(x) =
∫

dy dz
1

2i

∑
i

(φ∗
i 
x φi − φi 
x φ∗

i ), (A8)

p2
x(x) = −1

2

∫
dy dz

∑
i

(φ∗
i 
2

x φi + φi 
2
x φ∗

i ), (A9)

τx(x) =
∫

dy dz
∑

i

| 
x φi |2. (A10)

In mean-field calculations, the expectation value of kinetic
energy is computed by using either the reduced kinetic energy
density τx(x) or the reduced squared-momentum density
p2

x(x), since these quantities satisfy a sum rule relation,∫ ∞

−∞
p2

x(x)dx =
∫ ∞

−∞
τx(x) dx. (A11)

We note that the reduced kinetic energy density, τx(x), is
positive for all x values. However, the reduced squared-
momentum density, p2

x(x), can take small negative values in the
vicinity of the window below barrier energies. As an example,
Fig. 9 shows the quantities τx(x) and p2

x(x) in central collisions
of the 90Zr and 40Ca system at a center-of-mass energy of
Ec.m. = 97 MeV and at time t = 10.5 × 10−22 s. We observe
that the quantity p2

x(x) for target as well as projectile can take
small negative value in the vicinity of window position x0.
Consequently, the parameter α can take negative values.
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FIG. 9. (Color online) Quantities p2
x(x) (solid line) and τx(x)

(dashed line) are plotted versus position x in collisions of the
40Ca + 90Zr system at Ec.m. = 97 MeV and at time t = 10.5 × 10−22

s for target and projectile. The neck position x0 is indicated by an
arrow on the figure.

In the Gaussian approximation, in order to produce the
correct second-order Taylor expansion, we introduce a new
parameter γ = α − 2β2. When α > 0 and γ > 0, we can
approximate the quantity F (x0, s) in terms of a single Gaussian
as

F (x0, s) ≈ ρ(x0) exp
(
−iβs − γ

4
s2

)
. (A12)

By taking the Fourier transform, we obtain a Gaussian form
for the reduced Wigner function as well,

f (x0, p) = 2ρ(x0)
√

π

γ
exp

[
− (p − h̄β)2

h̄2γ

]
. (A13)

When the quantity α < 0, we can write the expansion
Eq. (A4) as

F (x0, s) ≈ ρ(x0)

(
1 − iβs + |α|

4
s2

)
. (A14)

There are many possibilities to approximate F (x0, s) in terms
of Gaussian functions that have the same second-order Taylor
expansion with Eq. (A14) and that are consistent with the two
constraints indicated above. We consider a double-Gaussian
approximation according to

F (x0, s) = ρ(x0) exp (−iβs)

×
[

2 exp

(
−|γ |

8
s2

)
− exp

(
−|γ |

2
s2

)]
,

(A15)

which leads to the Wigner function given by

f (x0, p) = ρ(x0)

√
2π

|γ |
{

4 exp

[
−2(p − h̄β)2

h̄2|γ |
]

− exp

[
− (p − h̄β)2

2h̄2|γ |
]}

. (A16)

Figure 10 shows an illustration of the reduced Wigner
functions given by Eqs. (A13) and (A16) by employing the
same β and the same magnitude of γ . We observe that for
γ < 0, the reduced Wigner function exhibits a negative tail,
which is closely related to the quantal behavior of the Wigner
function. In the calculations presented in this work, relatively
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FIG. 10. (Color online) Reduced Wigner functions, Eq. (A13) and
Eq. (A16), are plotted in arbitrary units with parameters ρ(x0) = 1,
β = 0.5, and γ = ±0.5.
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small negative tails in the reduced Wigner functions do not
make a significant effect on the semiclassical expressions of
the nucleon diffusion and drift coefficients given by Eqs. (18)
and (20). Substituting Eq. (A13) and/or (A16) for the reduced
Wigner functions originating from target and projectile into
Eq. (18), we obtain the nucleon diffusion coefficient as

DAA = �(ρP , βP , γP ) + �(ρT , βT , γT )

+�(γP , γT ) (A17)

for γP > 0 and γT > 0,

DAA = 2�(ρP , βP , |γP |/2) − �(ρP , βP , 2|γP |)
+�(ρT , βT , γT ) + 2�(|γP |/2, γT )

−�(2|γP |, γT ) (A18)

for γP < 0 and γT > 0, and

DAA = 2�(ρP , βP , |γP |/2) − �(ρP , βP , 2|γP |)
+ 2�(ρT , βT , |γT |/2) − �(ρT , βT , 2|γT |)
+ 4�(|γP |/2, |γT |/2) + �(2|γP |, 2|γT |)
− 2�(|γP |/2, 2|γT |) − 2�(2|γP |, |γT |/2)

(A19)

for γP < 0 and γT < 0. The functions � and � are defined as

�(ρ, β, γ ) = h̄

2m
ρ

[√
γ

π
exp

(
−β2

γ

)
+ β erf

(
β√
γ

)]
,

(A20)

�(γP , γT ) = −2h̄

m

ρP ρT

�

√
γP γT

γP + γT

× exp

(
−β2

P

γP

− β2
T

γT

)[
1+

√
π (γP βT +γT βP )√
γP γT (γP +γT )

× exp

(
(γP βT + γT βP )2

γP γT (γP + γT )

)

× erf

(
γP βT + γT βP√
γP γT (γP + γT )

)]
, (A21)

where the error function is given by

erf(x) = 2√
π

∫ x

0
e−y2

dy. (A22)

Employing the formula given in Ref. [11] for the phase-space
volume �(x0, t) on the window, we obtain for the following
expressions for the nucleon drift coefficient, Eq. (20),

vA = �(ρP , βP , γP ) − �(ρT , βT , γT ) (A23)

for γP > 0 and γT > 0,

vA = 2�(ρP , βP , |γP |/2) − �(ρP , βP , 2|γP |)
−�(ρT , βT , γT ) (A24)

for γP < 0 and γT > 0, and

vA = 2�(ρP , βP , |γP |/2) − �(ρP , βP , 2|γP |)
−2�(ρT , βT , |γT |/2) + �(ρT , βT , 2|γT |) (A25)

for γP < 0 and γT < 0.
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