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Asymmetry dependence of nucleon correlations in spherical nuclei extracted from a
dispersive-optical-model analysis
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Neutron elastic-scattering angular distributions were measured at beam energies of 11.9 and 16.9 MeV
on 40,48Ca targets. These data plus other elastic-scattering measurements, total and reaction cross-sections
measurements, (e, e′p) data, and single-particle energies for magic and doubly magic nuclei have been analyzed
in the dispersive optical-model (DOM), generating nucleon self-energies (optical-model potentials) that can be
related, via the many-body Dyson equation, to spectroscopic factors and occupation probabilities. It is found
that, for stable nuclei with N � Z, the imaginary surface potential for protons exhibits a strong dependence
on the neutron-proton asymmetry. This result leads to a more modest dependence of the spectroscopic factors
on asymmetry. The measured data and the DOM analysis of all considered nuclei clearly demonstrate that the
neutron imaginary surface potential displays very little dependence on the neutron-proton asymmetry for nuclei
near stability (N � Z).
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I. INTRODUCTION

Mean-field quantum-mechanical orbits account for a large
fraction of the properties of valence nucleons. The spectro-
scopic factors, the overlap integral between the A and the
A − 1 (or A + 1) wave functions for hole (particle) states,
provide a quantitative measure of the strength residing in
these independent-particle-model (IPM) orbits. For closed-
shell stable nuclei, (e, e′p) measurements at NIKHEF have
demonstrated that �65% of the strength is found in the
IPM orbits [1]. The remaining strength has been moved to
higher and lower energies by the influence of both long- and
short-range correlations.

Short-range correlations are dominated by p-n interac-
tions [2–4] and produce high-momentum components below
the Fermi energy [5] and push strength from IPM orbits
out to very large energies (by many hundreds of MeV) [6].
The strong p-n interactions, a consequence of the tensor
force, imply a dependence of these short-range correlations
on the proton-neutron asymmetry. Protons will feel stronger
correlations in a neutron-rich nucleus and vice versa. This
asymmetry dependence is predicted to give rise to a modest
asymmetry dependence of the occupation probabilities in
infinite nuclear matter [7,8].

Long-range correlations, associated with the coupling
to the collective motion of nucleons, spread strength out
more modestly, i.e., out to roughly 50 MeV from the IPM
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value. Experimentally, the asymmetry dependence for protons
appears to be much stronger than expected on the basis of short-
range correlations [9]. Although a theoretical understanding
is lacking, it is clear that the enhancement over the short-
range effects occurs in the domain where surface excitations
dominate.

Experimental spectroscopic factors derived from the
eikonal analysis of heavy-ion knockout reactions apparently
exhibit a very strong asymmetry dependence [10,11]. The
extreme example is for 32Ar, where the 0d5/2 valence neutron
hole level has a spectroscopic factor of about 21% of the
IPM value. More recent measurements of transfer reactions
generate spectroscopic factors that are in contradiction with
these results [12] and indicate only a small or moderate
dependence on nucleon asymmetry.

Current and future radioactive beam facilities will have
to exclusively rely on hadronic reactions to extract such
information since more weakly interacting probes such as the
(e, e′p) reaction can not be employed. In view of the present
disagreement between the interpretation of the transfer and
knockout measurements, it is important to identify methods
that can uniquely determine correlation effects exhibited, for
example, by spectroscopic factors as well as identify the origin
of the implied correlations. This issue is already conspicuous
because spectroscopic factors derived from different optical
potentials in the analysis of transfer reactions generate differ-
ences as large as 30%, although the asymmetry dependence is
similar [12].

Information about correlations is contained in the nu-
cleon self-energy, which is a nonlocal and energy-dependent
one-body potential that determines the nucleon single-particle
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propagator from the Dyson equation [13]. The nucleon self-
energy is complex and its real part can be obtained from
its imaginary part by a dispersion relation and a correlated
Hartree-Fock contribution that is energy independent. The
Dyson equation generates both the properties of the system
when a nucleon is added to the ground state or when one is
removed. The nucleon self-energy, therefore, determines the
elastic nucleon scattering cross section when it is iterated to
all orders into the corresponding T matrix. The solution of
the Dyson equation also generates the bound-state energies
that can be reached by adding or removing a particle from the
ground state, as well as the corresponding overlap functions
that are normalized by the spectroscopic factors. Finally, the
solution of the Dyson equation also generates the hole spectral
function or removal probability (energy) density for energies
in the continuum of the A − 1 system.

Traditionally, the term optical-model potential has been
employed to describe a complex, energy-dependent, usually
local, one-body potential that describes the elastic scattering of
a nucleon for positive energies. In the dispersive optical model
developed by Mahaux and Sartor [14], the optical-model (OM)
potential is also considered for negative energies and causality
is enforced by a dispersion relation, which links the real and
imaginary potentials. With this model, the OM potential can
be fit to both elastic-scattering data as well as bound-state
properties. The fitted potential can be considered as a local
approximation to the self-energy with a scaled imaginary
potential. The latter scaling is also a consequence of the
local approximation (Sec. III A). Ultimately, a real nonlocal
potential is required before the full utility of the self-energy
can be realized. It was shown recently [15] that replacing
the energy-dependent local Hartree-Fock contribution to the
real OM potential by a nonlocal potential (without energy
dependence) allows for an interpretation of the DOM potential
as a proper self-energy provided a well-defined reverse scaling
is made to the imaginary part [14,15]. Because of their intimate
connection, we will employ the two terms self-energy and
optical potential interchangeably in the following.

An accurate determination of the nucleon self-energy both
above and below the Fermi energy for a wide range of
nuclei is essential for the reliable extraction of correlation
effects as expressed in terms of spectroscopic factors when
hadronic reactions are employed. We point again to the
present uncertainty of at least 30% based on the choice of
the optical potential used in the analysis of the (d,p) transfer
reactions [12] as a case in point. We also note that, in the
adiabatic wave approximation [16] employed for the analysis
of this reaction, proton and neutron optical potentials are used
at half the deuteron energy to describe the deuteron distorted
wave, as well as overlap functions for the added or removed
neutron. Since these quantities are part of the DOM framework,
the future analysis of transfer reactions may profit from a
unified approach and yield a more consistent description of
spectroscopic factors.

Given the disagreement between the asymmetry depen-
dences of spectroscopic factors deduced in knockout and
transfer reactions, the DOM provides an alternative route
to explore this physics. From experimental studies of the
asymmetry dependence of the DOM potential one can, via the

Dyson equation or the approximate expressions of Mahaux and
Sator, deduce the asymmetry dependence of the spectroscopic
factors.

In a standard DOM analysis, one parametrizes the real and
imaginary potentials based on theoretical expectations and past
experimental work and constrains these parameters via fits
to elastic-scattering measurements, reaction and total cross
sections, and bound-state data. Our previous work on the Ca
isotopes [17] showed that the imaginary surface potential for
protons increased strongly with neutron excess. This implied
a modest decrease in the spectroscopic factors of the valence
levels with asymmetry, i.e., protons experience stronger
correlations with increasing neutron number for neutron-rich
systems. This trend is qualitatively consistent with those
deduced from heavy-ion knockout reactions, but the magnitude
is significantly smaller, which is much more in line with the
results from transfer reactions and microscopic calculations
using the Faddeev random-phase approximation [18].

The overall nucleon asymmetry dependence of the magni-
tude of the imaginary surface potential has been parametrized
in global optical-model fits [19–21] according to

W sur = W sur
0 ± W sur

1
N − Z

A
, (1)

where the plus sign refers to protons and the minus to neutrons.
This form is based on the Lane potential [22] and can easily be
justified for the volume imaginary potential, but its application
to the imaginary surface potential is not obvious. This
parametrized dependence implies that neutrons experience an
equally strong asymmetry dependence as protons, but of the
opposite sign, implying that neutron correlations decrease with
increasing neutron excess. However, it was shown that this
approach leads to inconsistencies, and it was suggested [9]
that neutrons have a much smaller asymmetry dependence than
protons. Other global DOM analyses have been performed, but
these pertain only to positive energy data [23,24].

In order to extend our understanding of the asymmetry
dependences of both proton and neutron correlations, we
have extended our DOM analyses in two ways. First, for
the Ca isotopes, we have made measurements of neutron
elastic scattering and total reaction cross sections on 48Ca.
The former are discussed in Sec. II and the latter have recently
been published in Ref. [25]. This work allows us to compare
neutron correlations in 40Ca and 48Ca. Second, we have
extended our analysis to include heavier closed-shell nuclei.
We have obtained elastic scattering, total and reaction cross
sections, and some (e, e′p) data from previously published
works for both protons and neutrons. The nuclei studied
include the Ca, Ni, Sn, and Pb isotopes and some N = 28
and 50 isotones. Details of the data sets are discussed in
the Appendix. A complete description of the present DOM
procedure is provided in Sec. III. We have fitted the data
globally in four mass regions and present the comparison with
data in Sec. IV.

An important difference between the work presented
here and our previous work is that we do not impose any
parametrized asymmetry dependence of the imaginary surface
potential such as Eq. (1) or the other form tried in our earlier
work [9]. Instead, in this DOM analysis, we fit the magnitude
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of this potential for each nucleus and each nucleon type
separately. An analysis of the resulting potentials is performed
in Sec. V. From the fitted magnitudes, we deduce the
overall asymmetry dependences of the imaginary potentials in
Sec. V A and the real potentials in Sec. V B. The consequences
for the asymmetry dependences of the spectroscopic factors
are then presented in Sec. V C. An example of the predictive
power of the method is presented in Sec. VI, which discusses
the behavior of occupation numbers and relies also on the
work of Ref. [15] since occupation numbers are not always
correctly described by the approximate expressions proposed
in Ref. [14]. The example discussed in detail involves the role
of neutron number on the last mostly occupied proton orbit
in Sn nuclei and presents strength functions, spectroscopic
factors, and occupation numbers for the g9/2 orbit. Finally, the
conclusions of this work are drawn in Sec. VII.

II. EXPERIMENT

A. Experimental method

An experiment to measure neutron elastic-scattering differ-
ential cross sections on 48Ca was performed at the Triangle
Universities Nuclear Laboratory (TUNL). In addition to
the 48Ca measurements, data were also taken with a 40Ca
target to compare with previous measurements and check for
consistency.

The measurements were performed with the pulse-beam
neutron time-of-flight technique using the 2H(d,n)3He reaction
to produce neutrons. The experimental setup is almost the same
as that described in detail by El-Kadi et al. [26], and so only
a brief description is given here. Unpolarized deuteron beams
of energies 14.4 and 9.39 MeV were extracted from the FN
tandem Van de Graaff accelerator. The beams were pulsed at
2 MHz with a pulse width of 2.0 ns and had time-averaged
intensities of ∼1.5 pµA. The beam traversed a 5.27-mg/cm2

Havar foil to enter a 3.16-cm deuterium-filled gas cell that was
held at 7.8 bar. The neutrons emitted from the gas cell are
calculated to have mean energies of 16.9 and 11.9 MeV with
energy spreads of 141 and 207 keV, respectively [27].

The target position was located 12.9 cm downstream from
the center of the gas cell. The target location was enclosed
in a right-cylindrical helium balloon structure of radius
7.6 cm and height 22.9 cm. The He balloon was enclosed with
840-µg/cm2-thick Mylar, and helium at atmospheric pressure
flowed throughout the measurement period. The neutrons
entered the balloon at its center perpendicular to its symmetry
axis. The helium helped prevent the oxidation of the Ca targets
and, in addition, reduced the background in the time-of-flight
spectra as the probability of neutron scattering in the helium
surrounding the target is significantly reduced compared to
that obtained with air.

The targets were of cylindrical geometry with a diameter
of 12.7 mm and a height of ∼12 mm. Both the target and
the balloon axes were aligned vertically. A natural Ca and
an enriched 48Ca target with masses of 2.575 and 2.717 g,
respectively, were used in the measurements. The enriched
target was 92.8% 48Ca by atom and the only significant
contaminant of the enriched target was 40Ca. To reduce

the probability of oxidation during the transfer to and from
the He balloon, these targets were enclosed in close-fitting
argon-filled Mylar bags of wall thickness 840 µg/cm2. These
bags were positioned in the center of the balloon using thin
threads. For background subtraction, data were also collected
with an empty bag suspended, in the same manner as the
targets, inside of the balloon.

Scattered neutrons were detected in two heavily shielded
NE-218 liquid-scintillator detectors located in the horizontal
reaction plane and at distances of 3.75 and 2.29 m from the
target. The larger scattering angles were measured with the
closer 2.29-m detector. Tapered copper and tungsten shadow
bars were used to block neutrons emitted directly from the gas
cell. A third, fixed scintillator detector was located at 10◦ and
was used to monitor the neutron yield.

The pulse heights of the detectors were calibrated using the
Compton-edge energies measured with 22Na and 137Cs γ -ray
sources. Hardware thresholds were set at ∼60% of the value
of the 137Cs Compton edge.

For each event, the deposited energy (E), particle iden-
tification determined from the pulse shape PID, and time
of flight were recorded. E-PID gates were used to obtain
neutron γ -ray separation. For each angle-target configuration,
a background spectrum was obtained with the empty bag.
Normalization of this spectrum was obtained either from the
monitor counter or from a beam-current integrator.

Absolute normalization of all cross sections was obtained
from elastic scattering off of hydrogen. Measurements were
performed with both polyethylene and carbon targets when
the two detectors were located at 30◦. This angle was chosen
to maximize the separation of hydrogen scattering from the
elastic- and inelastic-scattering peaks due to carbon. The
carbon spectra were subtracted from the polyethylene results
to yield the spectra for hydrogen scattering. The absolute
normalization was obtained from the hydrogen scattering
yields using the n+p cross sections given in Ref. [28].

B. Results

An example of a typical neutron time-of-flight spectrum ob-
tained with the 48Ca target and the corresponding background
spectrum obtained with the empty bag is shown in Fig. 1(a) for
θlab = 120◦. The difference between these two spectra gives
the contribution from scattering by the 48Ca sample and this is
shown in Fig. 1(b). The arrows indicate the expected centroids
for elastic scattering for A = 12, 16, 40, and 48 target nuclei.
We observe only one significant peak, which corresponds to
scattering from Ca. The yield from the small 40Ca contaminant
of the 48Ca sample is not separable in the data. There is no
measurable yield for scattering from carbon or oxygen that are
found in the Mylar bag. No evidence was found for increased
oxygen loading with time as one would have expected if there
was significant oxidation of the targets during the experiment.
The contribution of 40Ca was removed using known cross
sections [29,30]. For smaller angles, the Ca peak and any
oxygen peak would not be completely resolved. In these cases,
the elastic peak was fit with two Gaussians, one representing
the contribution of 48Ca and the other 16O, with constrained
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FIG. 1. (Color online) (a) Time-of-flight spectra obtained with
16.9-MeV neutrons at θlab = 120◦ with the 48Ca target (solid
histogram) and with the empty bag (dashed-histogram) by the detector
located at 3.75 m. (b) The spectrum after subtraction giving the
contribution from scattering by the 48Ca sample. The expected
centroids of scattering from the indicated target masses are shown
by the arrows.

widths and centroids. The oxygen contribution was found to
be always less than 1%.

All time-of-flight spectra were determined with a software
threshold on the pulse height of the neutron detector of 2 and
2.2 times the value measured for the 137Cs Compton edge for
the 3.75- and 2.29-cm detectors, respectively. These counts
were then corrected for the energy-dependent efficiency of the
detector using the efficiency curves derived in Ref. [27].

To correct the data for multiple scattering in the target
and the target’s finite size, the experiment was simulated
with the transport code GEANT4 [31]. In these simulations,
the distance a deuteron projectile traveled in the 3-cm-long
gas cell before reacting with the deuterium gas particle was
distributed linearly. The neutron energy is linearly dependent
on the distance the deuteron traveled, ranging from 16.759 to
17.041 MeV, or from 11.793 to 12.207 MeV, with the larger
energy corresponding to a reaction at the back of the gas cell.
The spatial distribution of the neutrons, in the axes other than
the beam axis, was assumed to be Gaussian with a full width
at half maximum (FWHM) of 5 mm. The angular distributions
of the neutrons emitted from the gas cell is basically flat
over the ±5◦ region of interest for which interactions with
the target are possible [32]. Thus, the initial direction of
the neutrons was chosen isotropically in this interval. The
neutrons then propagated in a straight line until they entered
the target. The probability of scattering off a 48Ca target
nuclei was proportional to the length of the chord segment
the neutrons passed through in the target. After scattering, the
neutrons propagated in straight lines and, if they arrived at a
detector, a hit was registered. The assumed n+48Ca differential
cross sections were taken from optical-model fits to the raw
experimental angular distributions.

The absolute normalization of the finite-size correction
was achieved by normalizing the simulated differential cross
section to the raw value at an angle where the differential
cross section was relatively flat and, thus, only an insignificant
finite-size correction is expected. For the 11.9-MeV data, this
angle was taken to be 110◦, while for the 16.9-MeV data,
we selected 50◦ and 80◦ for the 2.29- and 3.75-m detectors,
respectively. As expected, the finite-size corrections were by
far the most significant for the sharp minima in the differential
cross section. Finite-size effects fill in these minima, making
them shallower and less sharp.

The corrections for finite size at 11.9 MeV were relatively
small because there were no sharp minima in the differential
cross sections. These corrections were at most 6%, while
the average correction was approximately 1%. The finite-size
corrections at 16.9 MeV were more significant; the correction
in the sharp minimum was 14%. The corrections at other angles
were much smaller, around 1%–3%.

The finite-size-corrected differential cross sections were fit
with the optical model and the total elastic cross section was
deduced. The GEANT4 simulations were then performed using
this cross section to determine the scattering and multiscatter-
ing probabilities. The correction factor was then determined
from the fraction of events in the simulated detector, which
originated from a multiscattering interaction in the target. In
the end, the effects of multiscattering were found to be quite
small. The largest correction was 1.5%, and most corrections
were under 0.5%. The corrections are substantially smaller
than for previous neutron elastic-scattering works [29,30], as
our target was significantly smaller in size.

The results obtained for 40Ca are compared in Fig. 2
to previous angular distributions measured with the same
apparatus [29,30]. The present results are quite consistent
with the earlier measurements, with the largest deviations
being ∼10%.

 [deg]c.m.θ
0 50 100 150

 [
m

b
/s

r]
Ω

/dσ
d

10

210

310

11.9 MeV

16.9 MeV (x60)

FIG. 2. (Color online) Comparison of n+40Ca differential cross
sections measured in this work for neutron energies of 16.9 and
11.9 MeV (filled data points) to those by Honore et al. at
16.9 MeV [30] and Tornow et al. at 11.9 MeV [29] (open data points).
The 16.9-MeV data have been scaled by the indicated factor.
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III. DISPERSIVE-OPTICAL-MODEL ANALYSIS

A. Model description

A complete description of the dispersive optical model
developed by Mahaux and Sartor can be found in Ref. [14]. The
real part of the nucleon self-energy or optical-model potential
can be decomposed into an energy-independent nonlocal part
and an energy-dependent part, which can also be nonlocal, i.e.,

Re�(r, r ′; E) = Re�(r, r ′; EF) + �V(r, r ′; E), (2)

where EF is the Fermi energy and the second term, the
dispersive correction, can be determined from the imaginary
part through the subtracted dispersion relation

�V(r, r ′; E) = + 1

π
P

∫
Im�(r, r ′; E′)

×
(

1

E′ − E
− 1

E′ − EF

)
dE′, (3)

where P stands for the principal value and we note the
convention to employ the same sign for the imaginary part
of the self-energy above and below the Fermi energy [14]. By
definition in Eq. (2), the dispersive correction is zero at the
Fermi energy. The dispersive correction varies rapidly around
EF and causes the valence single-particle levels to be focused
toward the Fermi energy.

Following Perey and Buck [33], the nonlocal energy-
independent term Re�(r, r ′; EF) can be approximated by
a local energy-dependent term, which Mahaux and Sartor
designate as the Hartree-Fock potential VHF(r, E). Strictly, this
is not a Hartree-Fock potential, but it does describe the effects
of the mean field. The energy derivative of VHF is a measure
of nonlocality, which is related to the momentum-dependent
effective mass

m̃(r, E)

m
= 1 − dVHF(r, E)

dE
, (4)

where m is the nucleon mass.
A consequence of the local approximation is that one needs

to use a scaled imaginary potential

W = m̃(r, E)

m
Im � (5)

and a similarly scaled dispersive correction. The imaginary
part of the self-energy is also approximated as a local potential
and, thus, the dispersive correction is correspondingly local.
Mahaux and Sartor argue that this modifies �V by a smooth
function of energy, which can easily be compensated by
correspondingly smooth modification of VHF.

The Fermi energy is defined as

EF = EF
+ + EF

−

2
, (6)

EF
+ = MA+1 − (MA + m), (7)

EF
− = MA − (MA−1 + m), (8)

where EF
+ and EF

− represent the binding energy for adding
or removing a nucleon, or alternatively, the single-particle

energies of the valence particle and hole states.
In addition to the momentum-dependent effective mass, two

other effective masses can be defined. The total effective mass
is given by

m∗(r, E)

m
= 1 − d

dE
[VHF(r, E) + �V(r, E)], (9)

while the energy-dependent effective mass is

m(r, E)

m
= 1 − m

m̃(r, E)

d�V(r, E)

dE
. (10)

At the highest energies considered in this work, relativistic
effects become relevant. We have included a corresponding
lowest-order correction in solving the radial wave equa-
tion [34][

d2

dρ2
+

(
1 − �̃(ρ,E)

Etot − M − m
− �(� + 1)

ρ2

)]
u(ρ) = 0 (11)

with ρ = k r , where k = M
Etot

√
T (T + 2m), T is the laboratory

kinetic energy, Etot is the total energy in the center-of-mass
frame, and M is the target mass. The scaled potential is

�̃ = γ �, γ = 2(Etot − M)

Etot − M + m
. (12)

If un�j (r) are bound-state solutions to the radial wave equation,
then the normalized wave functions corrected for nonlocality
are given by

un�j (r) =
√

m̃(r, En�j )

m
un�j (r). (13)

In this paper, we have employed the following approxi-
mations, developed by Mahaux and Sartor [14], to determine
bound-state properties. For valence states, the spectroscopic
factor, relative to the independent-particle-model value, is

Sn�j =
∫ ∞

0
u2

n�j (r)
m

m(r, En�j )
dr, (14)

and the root-mean-square (rms) radius is

Rrms
n�j =

√∫ ∞

0
u2

n�j (r)r2dr. (15)

For hole states, the occupation probability is approximated by

Nn�j =
∫ ∞

0
u2

n�j (r)

[
1 + m

m̃(r, En�j )

1

π

×
∫ ∞

EF

W(r, E′)
(E′ − En�j )2

dE′
]
dr, (16)

while for particle states, the same approximation gives

Nn�j = −
∫ ∞

0
u2

n�j (r)

[
m

m̃(r, En�j )

1

π

×
∫ EF

−∞

W(r, E′)
(E′ − En�j )2

dE′
]
dr. (17)
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B. Parametrization of the potentials

The parametrization of the real and imaginary optical-
model potentials is the central aspect of a DOM analysis.
The number of free parameters in the fits must be sufficient
to allow one to describe the important physics, but not too
large or fitting becomes impractical in terms of CPU usage.
The functional forms we have used in the this paper are
mostly similar to our previous study [9], which were based on
theoretical expectations and confrontation with data, although
there are some differences that are discussed below.

The imaginary potential is composed of the sum of volume,
surface, and imaginary spin-orbit components

W(r, E) = −W vol(E, r) + 4asurW sur(E)

× d

dr
f (r, rsur, asur) + Wso(r, E), (18)

with Woods-Saxon form factors

f (r, Ri, ai) = 1

1 + e
r−Ri

ai

. (19)

Standard optical-model fits to elastic-scattering data at a
single energy require a surface-type absorption at low bom-
barding energies E � 50 MeV and a volume-type absorption
at high bombarding energies E 	 50 MeV. However, fits
encompassing a large range of energies often have a significant,
but small, surface absorption component extending to energies
much larger than 50 MeV [9,21,35]. One can reconcile these
statements by noting that the addition of a small surface
component to a volume-type component acts to increase the
radius of the volume component.

If the radius of the volume potential is increased by δR, we
find, after a Taylor expansion, that

f (r, R + δR, a) ∼ f (r, R, a) + df

dR
δR (20)

∼ f (r, R, a) − df

dr
δR, (21)

and thus the first-order correction is a surface-type component.
Thus, a gradually decaying surface term above E =

50 MeV can be understood as being associated with a volume-

type component, the radius of which decreases with energy.
Such a feature is found in the Jeukenne, Lejeune, and Mahaux
potential [36,37], which is derived from infinite-matter calcu-
lations coupled with the local-density approximation to get the
potential in the surface region. We have assumed the radius of
the imaginary volume potential to decay with energy as

Rvol(E) = Rvol
0 + δR exp

(
− |E − EF |

ER

)
. (22)

However, an energy dependence of the radius was not used
in the fits as it would require the dispersive correction to
be calculated for each r value, which would be very CPU
intensive. Instead, we make use of the expansion of Eq. (21)
to obtain

W vol(E, r) = W vol
0 (E)f (r, Rvol

0 , avol)

− 4avolW vol
sc (E)

d

dr
f

(
r, Rvol

sc , avol
)
, (23)

where W vol
0 (E) is the energy dependence of the depth of the

volume component, and the surface correction, which accounts
for the energy dependence of the radius, is

W vol
sc (E) = W vol

0 (E)
δR

4avol
exp

(
− |E − EF |

ER

)
. (24)

Thus, in this paper we also have a surface component that
extends well beyond E = 50 MeV; however, unlike other
studies, it is not tied to the “true” surface component at
lower energies, which is important if we are going to separate
the asymmetry dependences of the surface and volume
components. It is also useful to maintain a distinction between
the “true” surface potential at low energies, which is associated
with long-range correlations, and the surface correction at high
energies, which is associated with short-range correlations.

The phase space of particle levels for E 	 EF is signifi-
cantly larger than that of hole levels for E � EF. Therefore, the
contributions from two-particle–one-hole states for E 	 EF

to the self-energy will be larger than that for two-hole–one-
particle states at E � EF. Thus, at energies well removed
from EF, the form of the imaginary volume potential should
no longer be symmetric about EF. Hence, the following form
was assumed for the depth of the volume potential:

W vol
0 (E) = �WNM(E) +

⎧⎨⎩0 if |E − EF | < Evol
p ,

Avol
(
1 ± Cvol N−Z

A

) (|E−EF |−Evol
p )4

(|E−EF |−Evol
p )4+(Bvol)4

if |E − EF | > Evol
p ,

(25)

where �WNM (E) is the energy-asymmetric correction
modeled after nuclear-matter calculations. Apart from this
correction, the parametrization is similar to the Jeukenne
and Mahaux form [38] used in many DOM analyses. For the
asymmetry term, the + and − values refer to protons and
neutrons, respectively. This form of the asymmetry potential
is consistent with the Lane potential [22] and for short-range
correlations can be justified based on the difference between
the n-p and the n-n or p-p in medium nucleon-nucleon
cross sections [9]. Nuclear-matter calculations of occupation

probabilities, which should be closely associated with the
volume component, also suggest that this form is valid except
for extreme asymmetry values [7,8].

We set the parameter Evol
p = 11 MeV to force the imaginary

potential to be zero just in the vicinity of the Fermi energy
(see later). The radii of the volume and surface-correction
components W vol

0 and W vol
sc are taken to be identical:

Rvol
0 = rvol

0 A1/3. (26)
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The energy-asymmetric correction was taken as

�WNM (E) =

⎧⎪⎨⎪⎩
αAvol

[√
E + (EF+Ea )3/2

2E
− 3

2

√
EF + Ea

]
for E − EF > Ea,

−Avol (EF −E−Ea )2

(EF −E−Ea )2+(Ea )2 for E − EF < −Ea,

0 otherwise,

(27)

which is similar to the form suggested by Mahaux and Sartor [14]. Following our previous study [9], we have taken α =
0.08 MeV−1/2 and Ea = 60 MeV. The “true” imaginary surface potential is taken to have the form

W sur(E) =
⎧⎨⎩

0 if |E − EF | < Esur
p ,

Asur

1+exp
( |E−EF |−Csur

Dsur

) exp
( |E−EF |−Esur

p

Bsur

)
−1

exp
( |E−EF |−Esur

p

Bsur

)
+1

if |E − EF | > Esur
p ,

(28)

where, for protons and neutrons (i = n, p), the Esur(i)p
parameter is related to the experimental particle-hole energy
gaps �i via

Esur(i)
p = f�

[�i

2
+ min(�p,�n)

]
, (29)

�i = E
(i)+
F − E

(i)−
F . (30)

In the independent-particle model, f� = 1 and Esur
p rep-

resents the minimum particle energy above the Fermi value,
for which a particle can couple to a two-particle–one-hole
excitation. Similarly, it also characterizes the maximum
energy, relative to the Fermi value, for which a hole can couple
to the a two-hole–one-particle excitation. Thus, between these
two limits, damping of single-particles states is not possible
and the imaginary potential should exhibit a region of width
2Esur

p , where it is exactly zero. Many-body correlations reduce
the width of this gap and, thus, we include the fitting parameter
f�. Mahaux and Sartor had also explored imaginary potentials,
which were zero in the immediate vicinity of the Fermi
energy [14]; however, they assumed a somewhat different
energy dependence.

The mass dependence was taken as

Rsur = rsur
0 A1/3 (31)

and the parameter Asur was individually fit for each nucleus
and nucleon type.

The Hartree-Fock potential is parametrized in the following
way:

VHF(r, E) = −V vol
HF (E) f (r, rHF, aHF) + 4V sur

HF
d

dr

× f (r, rHF, aHF) + Vc(r) + Vso(r, E), (32)

where the Coulomb VC and real spin-orbit Vso terms have
been separated from the volume and surface components.
The volume component contains the energy dependence
representing nonlocality, which is approximated by the cubic
equation

V HF
vol (E) = V HF

0 − αvol(E − EF) − βvol(E − EF)2

− γ vol(E − EF)3. (33)

The value of V HF
0 is constrained for each nucleus and nucleon

type by obtaining the correct Fermi energy. This is essentially
independent of the imaginary potential and their dispersive

corrections, i.e., the dispersive corrections have equal but
opposite effects on E+

F and E−
F and so cancel in the calculation

of the Fermi energy in Eq. (6). We have included an asymmetry
dependence of αvol:

αvol = αvol
0 ± αvol

NZ

N − Z

A
(34)

and

RHF = rHF
0 A1/3. (35)

The Hartree-Fock surface component was found neces-
sary to fit high-energy elastic-scattering data [9] and was
parametrized as

V sur
HF (E) =

{
0 if x < 0,

αsur x2

x2+(γ sur)2 if x > 0,
(36)

where

x = E − EF − βsur. (37)

The Coulomb potential was taken as that of a sharp-surfaced
sphere with radius

RC = rCA1/3. (38)

At high energies, OM potentials generally include an
imaginary spin-orbit potential [39]. Given that this term is
usually assumed to be zero for lower energies, this implies
that the imaginary spin-orbit term is energy dependent. As
such, it should give rise to a dispersive correction to the real
component. Given these considerations, the total spin-orbit
potential was taken as

U so(r,E) = V so(r,E) + iWso(r,E)

= �V so(r,E) +
(

h

mπc

)2

[V so + iW so(E)]

× 1

r

d

dr
f (r, Rso, aso)

� · s
2

,

where (h̄/mπc)2 = 2.0 fm2 and �Vso is the dispersive correc-
tion determined from the imaginary component Wso. As the
imaginary spin-orbit component is generally needed only at
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TABLE I. Fitted and fixed parameter values obtained in this paper for the four indicated fit regions. For entries indicated by a fix, the
quantity was fixed during the fits. For those indicated by an asterisk, a single value, which was taken from the average of initial individual fits,
is used for all fitting regions. The table also contains the number of the equation that defines each individual parameter.

Z = 20, 28, N = 50 Z = 50 Z = 82 Eq.
N = 28

rC (fm) 1.3(fix) 1.3(fix) 1.3(fix) 1.3(fix) (38)
αvol

0 0.51 0.47 0.42 0.38 (34)
αvol

NZ 0.16 0.14(fix) 0.14(fix) 0.13 (34)
βvol (10−4 MeV−1) −6.7 −10.5 −6.9(fix) −7.1 (33)
γ vol (10−6 MeV−2) −1.8 −0.7(fix) 0(fix) 0.6 (33)
αsur (MeV) 7.64 6.17 7.42(fix) 7.21 (36)
βsur (MeV) 7.17 8.00 14.2(fix) 21.2 (37)
γ sur (MeV) 63.9 82.7 92(fix) 121 (36)
rHF

0 (fm) 1.18 1.21 1.24 1.23 (35)
aHF (fm) 0.65 .62 0.75 0.70 (19)
f� 0.8(∗) 0.8(8) 0.8(∗) 0.8(∗) (29)
Bsur (MeV) 10.0 7.0 8.3 15.0 (28)
Csur 33.6 46.8 37.2 30.4 (28)
Dsur 12.2 7.1 10.9 11.5 (28)
r sur

0 (fm) 1.17 1.13 1.20 1.20 (31)
asur (fm) 0.6(fix) 0.6(fix) 0.6(fix) 0.6(fix) (19)
Avol (MeV) 7.94 8.63 8.50(fix) 9.07 (25)
Cvol 4.22(fix) 4.22(fix) 4.22(fix) 4.22 (25)
Bvol (MeV) 40.0 41.2 43.7 40.8 (25)
rvol

0 (fm) 1.35 1.28 1.33 1.28 (26)
δR [fm] 2.38 3.22 4.00 4.60 (24)
avol (fm) 0.6(fix) 0.6(fix) 0.6(fix) 0.6(fix) (19)
ER (MeV) 35.5(∗) 35.5 35.5(∗) 35.5(∗) (24)
α (MeV−1/2) 0.08(fix) 0.08(fix) 0.08(fix) 0.08(fix) (27)
Ea (MeV) 60(fix) 60(fix) 60(fix) 60(fix) (27)
Evol

p (MeV) 11(fix) 11(fix) 11(fix) 11(fix) (25)
V so

0 (MeV) 6.37 5.71 6.32 6.07 (40)
V so

NZ (MeV) −1.31(∗) −1.31(∗) −1.31(∗) −1.31(∗) (40)
r so

0 (fm) 0.98 1.00 1.11 1.11 (41)
aso (fm) 0.70(∗) 0.70(∗) 0.7(∗) 0.7(∗) (19)
Aso (MeV) −3.65(∗) −3.65(∗) −3.65(∗) −3.65 (39)
Bso (MeV) 208(∗) 208(∗) 208(∗) 208(∗) (39)

high energies, we choose the form

W so(E) = Aso (E − EF )4

(E − EF )4 + (Bso)4
. (39)

The dispersive correction �Vso(E) associated with this com-
ponent gives an approximately linear decrease in magnitude
of the total real spin-orbit strength over the energy region
of interest. The mass and asymmetry dependences of the
spin-orbit potential were taken as

V so = V so
0 ± V so

NZ

N − Z

A
, (40)

Rso = rso
0 A1/3. (41)

IV. RESULTS OF FITS

Global fits to elastic-scattering data, total and reaction cross
sections, single-particle energies, rms radii, and spectroscopic
factors were performed for four regions: (1) Ca, Ni isotopes

and N = 28 isotones, (2) N = 50 isotones, (3) Sn isotopes, and
(4) 208Pb. The data sets and their references are listed in the
Appendix . The final fitted parameters for these four regions are
listed in Tables I and II. The fitted elastic-scattering differential
cross sections are shown in Figs. 3–5 and the fitted analyzing
powers are displayed in Figs. 6 and 7. Fitted reaction cross
sections for protons are shown in Fig. 8, while fitted reaction
and total cross sections for neutrons can be found in Fig. 9.
The relative difference in total neutron cross sections between
40Ca and 48Ca was also included in the fitting, and the fitted
results are displayed in Fig. 10. The quality of the fits are at
least as good, if not better, than other global optical-model fits.

In the final fits, constraints on some parameters were made
based on initial fits. In a number of cases, a fitted parameter
was similar in the four fit regions. In some cases, we attempted
to replace these values by an average value from the four fit
regions and, if in the subsequent refit, the χ2 didn’t increase
significantly, then the average value was kept. These values
are indicated by the asterisk symbols in Table I.
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TABLE II. The Fermi energy and fitted values of the magnitudes
of the Hartree-Fock and imaginary surface potentials and the
maximum of the imaginary surface potential for all the nuclei studied.

System EF V HF
0 Asur W sur

max

(MeV) (MeV) (MeV) (MeV)

p+40Ca −4.7 59.2 14.6 6.7
p+42Ca −7.6 61.9 18.5 9.4
p+44Ca −9.5 63.0 19.6 9.9
p+48Ca −13.2 64.8 19.1 9.4
p+50Ti −10.1 65.9 20.7 10.6
p+52Cr −8.5 63.3 16.8 8.6
p+54Fe −7.0 60.7 15.1 7.8
p+58Ni −5.8 60.8 16.4 8.5
p+60Ni −7.2 61.8 17.8 9.1
p+62Ni −8.6 62.8 19.2 9.8
p+64Ni −10.0 63.8 18.2 9.3
p+90Zr −6.8 59.3 9.95 8.7
p+92Mo −5.8 60.1 13.1 11.4
p+112Sn −5.3 59.9 16.9 10.6
p+114Sn −6.1 59.5 18.0 11.4
p+116Sn −6.8 60.0 21.0 13.4
p+118Sn −7.6 60.4 22.2 14.2
p+120Sn −8.2 60.8 26.2 16.7
p+122Sn −9.0 61.4 25.4 16.3
p+124Sn −9.7 61.8 28.2 18.1
p+208Pb −5.9 61.2 35.7 13.1
n+40Ca −12.0 58.7 15.6 7.1
n+48Ca −7.5 54.1 14.2 7.1
n+54Fe −11.3 56.8 15.5 8.0
n+58Ni −10.6 57.0 16.0 8.4
n+60Ni −9.6 56.1 16.3 8.5
n+92Mo −10.3 53.3 10.8 9.4
n+116Sn −8.3 48.8 13.2 8.6
n+118Sn −7.6 47.2 12.9 8.4
n+120Sn −7.6 47.3 12.8 8.3
n+124Sn −7.1 48.8 12.6 8.2
n+208Pb −5.6 47.1 21.6 8.0

In other cases, a parameter could not be adequately
constrained from the available data. This is especially true
for the Sn region where there is a lack of high-energy data to
constrain the imaginary volume potential and the higher-order
energy dependence of the Hartree-Fock potentials. In such
cases, an intermediate value between the neighboring regions
was chosen and fixed in the fits. Such cases are indicated by a
fix in Table I. Also, the parameters rC , avol, and asur were fixed
at reasonable values to reduce the number of fitting parameters.

A perusal of the remaining parameters generally reveals
a consistency between the fits. The parameters aHF, rsur,
Avol, Bvol, V so

0 , and rso are quite similar in the different fit
regions. The parameters αvol

0 , rHF, and δR show systematic
mass dependences. The value of δR = 4.60 fm for the Pb
region may seem large, but over the energy region where the
volume imaginary potential is significant in our fits (Bvol to
200 MeV), the radius of W vol changes by only 1.45 fm.

The spectroscopic factors and rms radii derived from
(e, e′p) measurements on 40Ca, 48Ca, 90Zr, and 208Pb are
compared to the fitted values in Figs. 11 and 12. The rms

radii are well fit and put tight constraints of the values of rHF

and aHF. The fitted spectroscopic factors for the Ca isotopes
are a little too high, approximately twice the experimental σ

values away from, but still consistent with, the experimental
values.

Finally, fitted single-particle energies En�j are shown
in Figs. 13–15. For levels well below the Fermi energy,
the single-particle strength is highly fragmented and the
plotted values represent the mean energy. In Fig. 13, the A

dependence of some single-particle levels is presented. Quite
generally, the energies of the valence hole and particle states in
the immediate vicinity to the Fermi energy are well described.
The more deeply bound proton levels (0d5/2, 1s1/2, 0d3/2) for
the Ni isotopes in Fig 13(b) are not well reproduced. These
levels have a greater experimental uncertainty concerning the
average location of the level strength. There may be even more
deeply bound strength unaccounted for in the experiments,
biasing the quoted result to higher energies. However, the
tensor force, which is not explicitly included in our fits,
may well be responsible for the behavior of the experimental
data [40]. Also, in Fig. 13(a), one observes that the trend in the
0d3/2 proton levels in the Ca isotopes is not a smooth linear
function of A as in the fits. Again, this might be a consequence
of the influence of the tensor interaction.

For the 40Ca and 58Ni systems, the average strength of the
deeply bound 0s1/2 and 0p proton levels is known. These are
compared to the fitted values in Fig. 14. The location of this
strength is described in the fits as well as the shallower levels.
Finally, in Fig. 15, the levels in the vicinity of the Fermi energy
for the double closed-shell nuclei 40Ca, 48Ca, and 208Pb are
compared to the fitted values. The reproduction is adequate,
but certainly not perfect.

V. ANALYSIS OF FITTED POTENTIALS

A. Asymmetry dependences

From the asymmetry dependences of the imaginary po-
tentials, one can infer the asymmetry dependence of the
spectroscopic factors, occupation probabilities, and determine
how nucleon correlations change with increasing neutron or
proton richness. Examples of the fitted energy dependences
of the magnitudes of the imaginary potentials for some
Ca, Sn, and Pb isotopes are shown in Fig. 16. Both the
surface [W sur(E), Eq. (28)] and volume [W vol

0 (E), Eq. (25)]
components for both protons (solid curves) and neutrons
(dashed curves) are shown.

The magnitude of the asymmetry dependence of the
imaginary volume potential can be gauged by the differences
between the proton and neutron volume components in each
panel of Fig. 16. For the N = Z 40Ca nucleus in Fig. 16(d),
the neutron and proton volume potentials are identical by
definition [Eq. (25)]. The magnitude of the asymmetry
coefficient Cvol in Eq. (25) was determined solely from the
208Pb data and applied to all other fits. The 208Pb data is the
most appropriate for determining Cvol as 208Pb has the largest
asymmetry of all systems studied and has significant data for
both neutrons and protons at energies above 50 MeV where
the volume absorption is dominant. The magnitude of Cvol
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FIG. 3. (Color online) Fitted proton elastic-scattering differential cross sections expressed as a ratio to the Rutherford scattering value.
Data from each energy are offset along the vertical axis for clarity. Lowest energy on the bottom and highest energy on the top for each frame.
Individual energies can be obtained from Tables IV–VIII.

is directly related to the difference between the proton and
neutron volume potentials in each of the panels of Fig. 16.

The other quantities Avol and Bvol, parametrizing the
volume potential in Eq. (25), were fit individually for the
(Z = 20, 28 and N = 28) and Pb regions. These values listed
in Table I are quite consistent. Their average value was imposed
on the fits to the Sn and N = 50 regions where there is little
higher-energy data to constrain them.

The asymmetry dependence of the volume component, un-
doubtedly associated with the tensor interaction, is quite mod-
est. On the other hand, we see in Fig. 16 very strong increases in
the proton surface component with increasing neutron number
in the Ca and Sn isotopes. Also, we see very large differences
in the surface component between protons and neutrons for
all but the 40Ca case. In this instance, unlike the volume case,
the agreement between the magnitudes of proton and neutron
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FIG. 4. (Color online) Fitted neutron elastic-scattering differential cross sections for reactions on Ca, Ni isotopes, and 54Fe and 92Mo. Data
from each energy are offset along the vertical axis for clarity. Lowest energy on the bottom and highest energy on the top for each frame.
Individual energies can be obtained from Tables V–VIII.

imaginary surface potential for 40Ca is not forced, but a result
of the fit. The neutron imaginary potentials show only small
dependences on A and asymmetry unlike the protons.

The asymmetry dependence of the W sur
max, the maximum

value of the magnitude of the imaginary surface potential
W sur(E), is plotted for all Sn isotopes studied in Fig. 17. These
maximum values for protons show a substantial increase with
(N − Z)/A, whereas for neutrons there is almost no change.
The proton data could be well fit by a linear relationship;
however, a linear extrapolation to 100Sn [(N − Z = 0)/A]
would give a value of W sur

max close to zero. This seems unlikely
and suggests that the true asymmetry dependence is nonlinear.

The asymmetry dependence for the Z = 20, 28 and N = 28
fits are shown in Fig. 18. Here, the asymmetry dependences are

more complicated than those obtained for the Sn isotopes. For
protons, we see an initial increase with increasing asymmetry,
but, subsequently, the magnitude of the W sur

max saturates at
around 10 MeV. For neutrons, we also see an initial increase
with asymmetry, but for 48Ca, the data point with the maximum
value of asymmetry W sur

max is almost identical to its value for
40Ca, the data point with the minimum asymmetry. This may
suggest an initial rise and then fall of W sur

max with asymmetry, but
the number of data points is small and, thus, this generalization
may be premature.

In fact, it is not clear that an asymmetry parameter is the
most appropriate one to characterize the neutron dependences.
In Fig. 19, W sur

max is plotted as a function of proton number Z for
all the neutron cases studied. Here, we see that the magnitude of

064605-11



J. M. MUELLER et al. PHYSICAL REVIEW C 83, 064605 (2011)

0 50 100 150

R
u

th
σ/σ

-210

1

210

410

610

810

1010

Sn112p+

Sn114p+

Sn116p+

0 50 100 150

Sn118p+

<10 MeVlabE
<20 MeVlab10<E
<40 MeVlab20<E
<100 MeVlab40<E

0 50 100 150

Sn120p+

0 50 100 150

Sn122p+

Sn124p+

 [deg]c.m.θ

0 50 100 150

Ω
/dσd

10

410

710

1010

1310

1510

Sn116n+

Sn118n+

0 50 100 150

Sn120n+

Sn124n+

0 50 100 150

Ω
/dσd

410

910

1410

1910

2410
Pb208n+

0 50 100 150

Pb208n+

 [deg]c.m.θ
 [deg]c.m.θ

0 50 100 150

R
u

th
σ/σ

210

710

1210

1710

2210

2510

Pb208p+

FIG. 5. (Color online) Fitted elastic-scattering differential cross sections for proton and neutron reactions on Sn isotopes and 208Pb. Data
from each energy are offset along the vertical axis for clarity. Lowest energy on the bottom and highest energy on the top for each frame.
Individual energies can be obtained from Tables IX and X.

the imaginary surface potential for neutrons is very similar for
all cases studied and only varies by 20%. Also, the data points
with the same Z values almost completely overlap, suggesting
that, for neutrons, this may be a better way to extrapolate W sur

max
values. For protons, plotting W sur

max versus either Z or N does
not add new insight.

The stronger asymmetry dependence obtained for protons
can also be deduced more directly from some of the data sets.

In standard optical-model fits to an angular distribution from
a single-proton energy, there is often no unique fit. However,
the volume integral of the potentials is generally found to be
similar for all good fits [41]. The magnitude of the integrated
imaginary potential

JW (E) =
∫

dr W (r,E) (42)
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FIG. 6. (Color online) Fitted analyzing powers for proton and neutron reactions on Z = 20, 28 and N = 28, 50 target nuclei. For clarity,
successively larger energies have been shifted further up along the vertical axis. The dashed lines indicate zero analyzing power for each
energy.

for ∼20 MeV protons in Sn and Ca isotopes obtained by
Wassenaar et al. [42] and McCamis et al. [43] is plotted as
a function of A in Figs. 20(a) and 21(a). The data have been
scaled by A−1 to remove the effect of increasing volume with
increasing A. At 20 MeV, the results are dominated by the
imaginary surface potential and the deduced dependences are
similar to the extracted asymmetry dependence of W sur

max in
Figs. 17 and 18, i.e., with increasing neutron number, the
magnitude of the imaginary surface potential increases for Sn
isotopes. For Ca isotopes, there is an initial increase and a

subsequent saturation of the imaginary potential as seen in the
extracted W sur

max in Fig. 18.
Similar trends can also be observed in the proton reaction

cross sections. Figures 20(b) and 21(b) show the A dependence
of the reaction cross sections scaled by A−2/3 to take into
account the change in radius. The results for proton energies
of 25 MeV, which again emphasize the imaginary surface
component, were obtained by Carlson et al. [44,45]. These
figures also display the same trends as found for |JW |/A
and W sur

max. The elastic-scattering and reaction cross-section
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FIG. 7. (Color online) As for Fig. 6, but reactions on Sn isotopes and 208Pb.

data thus present consistent pictures of the asymmetry
dependence.

For the N = 50 region, we only have data for two nuclei
and thus are not able to draw conclusions about the overall
asymmetry dependence. We note that, in Table II, the p+92Mo
value of W sur

max is 30% larger than the p+90Zr values. In this
case, the system with the larger neutron-proton asymmetry has
the smaller value W sur

max. Possibly this is a local fluctuation, but
more data are needed for other N = 50 isotones to draw any
firm conclusions.

B. Real potential

The magnitude of the real Hartree-Fock potential was
determined individually for each nucleus and nucleon type

by requiring the correct Fermi energy. This procedure is
independent of the magnitude of the imaginary potentials. A
typical parametrization of the magnitude of the real nuclear
potential in standard optical-model fits is [20]

V OM(E) = V OM
0 ± V OM

1
N − Z

A
− αvol(E − VC), (43)

where the average Coulomb energy of the nucleon inside of
the nucleus is given by

VC = 1.73 ZZN

RC

, (44)

and ZN is the atomic number of the nucleon. This form is
consistent with the Lane potential [22] and the second term is
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FIG. 8. (Color online) Fits to proton total reaction cross sections. For clarity, data and curves have been progressively shifted up along the
vertical axis with increasing energy. The amount of the shift is indicated for each curve.

associated with asymmetry energy. The quantity αvolVC is the
difference in the nuclear potential between a proton and a neu-
tron for a Z = N nucleus and is called the Coulomb correction.

The systematics of the V HF
0 values extracted from this

work do not need to explicitly use the Coulomb correction
as the energy dependence in Eq. (33) is always with respect
to the Fermi energy, which includes the Coulomb energy. For
example, Mahaux and Sartor [46] noted that the difference

in neutron and proton Fermi energies for 40Ca is VC . More
generally, the Fermi energies can be parametrized as [47]

EF = EF
0 ± EF

1 N − Z

A
+ VC. (45)

Figure 22 shows the EF − VC values from the systems studied
in this work and the lines are fits, to the above equation, giving
EF

0 = −13.9 MeV and EF
1 = −42.9 MeV. To first order, we
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and fitted (curves) total and reaction cross sections for the indicated
neutron-induced reactions. The solid and dashed curves are for the
total and reaction cross sections, respectively. For clarity, some of the
experimental points for the total reaction cross sections have been
suppressed.

can rewrite Eq. (33) to include the asymmetry dependence as

V HF
vol = V HF

00 ± V HF
1

N − Z

A
− αvol(E − EF). (46)

Inserting the Fermi energy from Eq. (45) into the above
equation yields the standard optical-model potential of Eq. (43)
with

V OM
0 = V HF

00 + αvolEF
0, (47)

V OM
1 = V HF

1 + αvolEF
1. (48)

The values of the terms in Eq. (46) can be obtained from
systems where both proton and neutrons are analyzed, i.e.,

V HF
00 = V HF

0 (p) + V HF
0 (n)

2
, (49)

V HF
1

N − Z

A
= V HF

0 (p) − V HF
0 (n)

2
. (50)

Such values are plotted in Figs. 22(b) and 22(c) for the first and
second terms, respectively. The linear asymmetry dependence
of the second term is readily observed in Fig. 22(c) and the
line is a linear fit giving V HF

1 = 37.7 MeV. The value of V HF
00

in Fig. 22(b) is roughly constant for the systems plotted, but
there is a small mass dependence, which is fit with the linear

 [MeV]labE
10 210

)
40σ+

48σ
)/

(
40σ-

48σ( 0

0.05

0.1

FIG. 10. Ratio of the difference to the sum of the total cross
sections of neutrons on 48Ca and 40Ca targets. As a reference, the
dashed line shows the magnitude just from the change in radius
assuming an A1/3 dependence. The curve shows the fit to the
experimental data points from Ref. [25].

relationship

V HF
00 = 60.4 − 0.041A (51)

and is shown by the line in the figure. By using all the fitted
values and taking an average value of 0.45 for αvol from Table I,
we obtain, from Eqs. (47) and (48), V OM

0 = 54.1–0.041A MeV
and V OM

1 = 18.4 MeV, which are close to the values of 52.9
and 13.1 MeV obtained from the global fits of Varner et al. [20].

The term V OM
1 represents the potential part of the asymme-

try energy. When our value for this term is added to the standard
value of the asymmetry kinetic energy for saturated nuclear
matter of 12 MeV [48] (which is 5/9 of the mean nucleon
kinetic energy), a total asymmetry energy of 30–31 MeV is
obtained. This value can be compared to those extracted from
the Seeger’s mass formula [49] or the droplet model [50]
with values of 30.6 and 36.8 MeV, respectively. The sum
of our potential contribution and the standard kinetic-energy
contribution is also in close agreement with the value of
32.4 MeV found by Danielewicz and Lee from the combined
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FIG. 11. (Color online) Plot of the rms radii vs energy of the
single-particle level En�j . The data points are values derived from
the (e, e′p) measurements in Table XII and the curves are fits from
this work. Note the experimental (fitted) radii are plotted vs the
experimental (fitted) En�j values.
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FIG. 12. (Color online) same as in Fig. 11, but for the spectro-
scopic factors relative to the independent-particle-model values.

constraints of a global-mass fit and the mass differences of
isobaric analog states [51].

The nonlocality parameter αvol represents the momentum-
dependent effective mass of m̃/m of 0.49 in the center of the
nucleus for the Ca region. It rises to 0.62 for 208Pb. These
values do seem to approach the typical values of 0.7 from
nuclear-matter calculations [52]. The asymmetry dependence
of αvol from the αvol

NZ term in Eq. (34) can be understood
as specifying different nonlocalities associated with the V HF

00
and V HF

1 components. The isoscalar component (V HF
00 ) has

much stronger nonlocality (energy dependence) than than the
isovector component (V HF

1 ), which is consistent with that
found by Rook [53].

C. Spectroscopic factors

In the independent-particle model, the strength of a single-
particle level is located at a single energy. However, the action
of the correlations spreads this strength out to higher and lower
energies and the energy distribution is described by the spectral
function

S�j (r; E) = 1

π
ImG�j (r, r; E), (52)

and the spectral strength as a function of energy for a given �j

combination is given by

S�j (E) =
∫ ∞

0
dr r2 S�j (r; E). (53)

The propagator G�j is the solution of the Dyson equation
in coordinate space [15]. For a valence level, the strength
function consists of a delta function at the IPM level
energy plus continuum contributions at lower and higher
energies. The spectroscopic factor represents the integral
of the delta-function component and gives the reduction
in the localized strength at the IPM level energy due to
correlations.

Spectroscopic factors can be estimated from the fitted
potentials using Eq. (14). There is more uncertainty in the
absolute values of the spectroscopic factors than in the relative
values, which are of interest when comparing differences
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FIG. 13. (Color online) Comparison of experimental (data points)
and fitted single-particle energies for (a) Ca, (b) Ni, (c) Sn, and
(d) 92Mo levels. The dashed curves indicate the Fermi energies.

between levels or between nuclei or the asymmetry depen-
dence. For example, the parameter α in Eq. (27) is not well
constrained in the fits, and modifications to its value will move
all the spectroscopic factors in the same direction, either to
larger or smaller values, preserving relative values [9,14].
This factor is closely related to the strength of the repulsive
core and the tensor force of the underlying nucleon-nucleon
interaction [8]. Data from the (e, e′p) reaction on 208Pb suggest
a depletion of the Fermi sea and a corresponding reduction of
spectroscopic factors of about 15% or slightly more as being
due to the effect of short-range and tensor correlations [54]
(see also below).

The asymmetry dependence of the extracted nucleon
potentials will induce an asymmetry dependence of the
spectroscopic factors in the DOM. However, there are other
factors that are also important. Let us concentrate on the Sn
isotopes to begin with. The spectroscopic factors deduced
from the fitted potential with Eq. (14) for the valence-hole
levels are plotted in Fig. 23. The spectroscopic strength of
the valence levels is more sensitive to the imaginary surface
potential than are the deeper-lying states. The protons show an
overall decrease in the spectroscopic strength with increasing
A, which is associated with the increase in the imaginary
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surface potential. However, the magnitude of the effect is
moderate; the 65% change in W sur

max from 112Sn to 124Sn
corresponds to only a 14% change in the spectroscopic factor.
To understand this, we plot in Fig. 24 the radial dependence of
the two quantities in Eq. (14) used to calculate this quantity:
the reduced wave function and the energy-dependent effect
mass. At the peak in the surface, the effective masses from
112Sn and 124Sn differ by 30%, but elsewhere by a smaller
amount. [The enhancement above unity at small radii in
Fig. 24 is associated with the volume imaginary potential,
which has only a very small asymmetry dependence (Sec. IV)].
When averaged over the 0g9/2 wave function, this difference
in effective mass corresponds to the above-mentioned 14%
difference.

Beyond the overall decrease, the spectroscopic factor for
116Sn is further lowered as its Esur

p value specifying the gap in
the imaginary potential around the Fermi energy [see Eq. (28)]
is lower than the values for the neighboring Sn isotopes. This
is a consequence of the small �n value for neutrons in this
isotope [see Eq. (30)].

The single-particle energies in the fits do not exactly
reproduce the experimental values. For the proton 0g9/2 orbits
in these Sn isotopes, the fitted energy is, at most, 390 keV
different from these experimental values. To see if this has
a significant effect, we have refit all the data so that, instead
of adjusting the depth of the Hartree-Fock potential to get
the correct Fermi energy, we have now readjusted it to get
the correct 0g9/2 level energy. This refit makes only very
small modifications in the values of the fit parameters. The
spectroscopic factors from these new fits (open data points)
are compared to the older values (filled data points) in Fig. 25.
The differences in the two spectroscopic factors are quite
modest. The largest difference in S, which occurs for the
heavier Sn isotopes, is only 0.04. However, the change in
spectroscopic factor from 112Sn to 124Sn has now increased
to 23%.

 [
M

eV
]

n
jl

E

-20

-10

0
Pb208p+ Pb208n+

0g9/2

0g7/2
1d5/2

1d3/2
0h11/2

0h9/2
2s1/2

1f7/2
0i13/2
2p3/2

1f7/2

1f5/2

0h9/2
0i13/2

0i11/2

2p3/2

2p1/2
0g9/2

0g7/2

0j15/2
2d5/2

2d3/2

exp calc
exp calc

 [
M

eV
]

n
jl

E

-20

-10

0
Ca40p+ Ca40n+

0d5/2

0d3/2
1s1/2

0f7/2

1s1/2
0d3/2

0d5/2

0f7/2

0f5/2

1p1/2
1p3/2

 [
M

eV
]

n
jl

E

-20

-10

0 Ca48p+ Ca48n+

0d5/2

0d3/2
1s1/2

0f7/2

0f5/2
1p3/2

1p1/2

1s1/2
0d3/2

0f7/2

0f5/2

1p1/2
1p3/2

FIG. 15. (Color online) Comparison of experimental and fitted,
neutron and proton, single-particle levels for the double-closed-shell
nuclei 48Ca, 40Ca, and 208Pb. Fermi energies are indicated by the
dashed lines.

In Fig. 25, we also show some extrapolated spectroscopic
factors for proton 0g9/2 levels in 102Sn, 106Sn, 130Sn, and 132Sn.
To obtain these, we used a linear extrapolation of the W sur

max
values in Fig. 17. Although we have expressed reservations
concerning such a linear extrapolation, these extrapolations
will give indications as to the possible largest variations in the
spectroscopic factors across the Sn isotopes. For determining
the particle-hole gaps �p and �n in Eq. (30) for the 102Sn and
106Sn nuclei, some of the separation energies have not been
measured. In these cases, we obtained these quantities from
the mass estimates in Ref. [55]. With the linear extrapolation,
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0 (E) of the imaginary surface
and volume potentials for the indicated
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the spectroscopic factors show an overall decrease in S by
∼0.2 from 100Sn to 132Sn. However, for 102Sn and 132Sn, at or
near a closed neutron shell, the �n values are relatively larger
and there is a relative shift up in the spectroscopic factors, i.e.,
decrease in correlations.

Since the magnitude of the imaginary surface potential
for neutrons is approximately constant, one might expect that
the spectroscopic factors (relative to the independent-particle-
model values) would also be constant. However, one sees a
big drop in Fig. 23 between 120Sn and 124Sn. In the DOM
calculations, this is a consequence of the change in character
of the valence levels: a 2s1/2 level for 120Sn and a 0h11/2

level for 124Sn. The larger centrifugal potential for the larger
� values suppresses the wave function in the center of the
nucleus and, thus, enhances it in the surface region (see Fig. 24
comparing the proton 0p1/2 and 0g9/2 wave functions). Thus,
large � levels, such as the 0h11/2, couple more strongly to
the imaginary surface potential, decreasing the spectroscopic
factor. The magnitude of this effect is comparable to that from
the asymmetry dependence of the imaginary potentials.

The mass dependence of the proton 0d3/2 valence-hole
spectroscopic factors is displayed in Fig. 26 for Ca iso-
topes. This can be compared to the data from the (e, e′p)
reactions indicated by the data points. As mentioned before,
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FIG. 17. (Color online) The maximum of the fitted imaginary
surface potential obtained for Sn isotopes.

the values calculated from the DOM are slightly higher.
Their mass dependence is again strongly anticorrelated
with the imaginary surface potential [see, for example,
Fig. 21(a)].

Spectroscopic factors for valence-hole levels derived from
knockout reactions exhibit a strong dependence on asymmetry.
Gade et al. [10,11] have considered reduction factors, i.e., the
ratio of the measured spectroscopic factor relative to shell-
model predictions. When plotted versus either the separation
energy Esep, i.e., the binding energy of the valence level, or
�Esep, which is E

p
sep − En

sep for proton levels and En
sep − E

p
sep

for neutrons levels, a significant correlation is observed. Both
Esep and �Esep are related to the neutron-proton asymmetry,
and the knockout data imply that the minority species of
nucleons experience stronger correlations when the number
of the majority species is increased. This is qualitatively
consistent with the trend we obtain for protons due to the
asymmetry dependence of the imaginary potentials. However,
the magnitude of the effect is significantly larger for the data
from knockout reactions. The most extreme case is for the
0d5/2 proton level in 32Ar, where the measured spectroscopic
factor from the knockout reactions is ∼21% of the IPM value.

The spectroscopic factors obtained in this paper for the
Z = 20, 28 and N = 28 fits are plotted versus Esep and �Esep

in Figs. 27(a) and 27(b), respectively. We have chosen not to
include the heavier systems as the Gade work is confined to
lighter masses. Because we studied only stable nuclei, we do
not cover as large a range of either Esep or �Esep as Gade
et al. Even so, our results show no significant trends with
either Esep and �Esep. In fact, the expected trends associated
with the asymmetry dependence of the imaginary potential
shown in Fig. 18 have been partly obscured by the fluctuations
due to the different � values of the various valence levels and
by the chosen abscissa coordinates. Our results are consistent
with the much weaker �Esep trend obtained recently by Lee
et al. using transfer reactions [12]. Microscopic calculations
based on the Faddeev random-phase approximation also do
not generate a very pronounced separation-energy dependence
when neutron-rich nuclei are considered [18]. This approach
may shed some light on the extracted increase of the imaginary
part of the surface potential obtained in this paper, since it
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FIG. 18. (Color online) The maximum of the fitted imaginary
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the data points. The curves show smoothed asymmetry dependence
through the points.

explicitly calculates the influence of long-range correlations
on the nucleon self-energy or optical-model potential. The
assumed symmetry around the Fermi energy of the imaginary
DOM surface potential can also be investigated using this
method.

VI. OCCUPATION PROBABILITIES

The occupation probability characterizes the total strength
of a single-particle orbit below the Fermi energy. The
discussion of occupation probabilities requires consideration
of the recent work reported in Ref. [15]. A nonlocal version of
the real HF potential was employed in that work to replace
the local but energy-dependent potential of the traditional
DOM approach, and the Dyson equation is solved to give
the single-particle propagator G�j for a given �j combination.
The advantage of this strategy is that it becomes possible to
interpret the DOM potential directly as a nucleon self-energy.
The calculation of the propagator below the Fermi energy
with the correct normalization is then possible, yielding access
to such properties as the (charge) density distribution and
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FIG. 19. The maximum of the fitted imaginary surface potential
obtained for neutrons for all systems studied plotted as a function of
proton number Z.
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(a) the integrated imaginary potential for protons from the fits to
elastic-scattering data obtained by Wassenaar et al. scaled by A−1 [42]
and (b) the proton reaction cross section measured at 25 MeV by
Carlson et al. [44] scaled by A−2/3.

momentum distribution, provided the appropriate correction
of the dispersive part of the DOM potential is made [14]. For
details, we refer to Ref. [15]. To obtain the occupation numbers
of valence orbits, it is necessary to interpret the wave functions
in Eq. (13) as overlap functions normalized to 1. Multiplying
the one-body density matrix

n�j (r ′, r) = 1

π

∫ EF

−∞
dE ImG�j (r, r ′; E)

= 〈
A

0

∣∣a†
r ′�j ar�j

∣∣A
0

〉
, (54)

with a wave function at r and one at r ′ and integrating
over these variables, yields the occupation number for such
an orbit [15]. One observation of this recent work for
levels in 40Ca is that the conventional DOM expressions
for the occupation numbers given in Eqs. (16) and (17)
may not be sufficiently accurate for levels near the Fermi
energy. While this statement involves deviations of a few
percent in the 40Ca isotope, it is expected to be a more
serious problem when the role of the increased surface
imaginary part in Sn isotopes on proton occupation numbers is
investigated.

We have therefore constructed nonlocal HF potentials for
the protons in Sn isotopes, while keeping the dispersive
part from the DOM fits fixed, apart from the well-defined
nonlocality enhancement [14]. The nonlocality of the potential
is of the standard Gaussian form [33] used in Ref. [15] for 40Ca.
The nonlocal potentials were required to reproduce the position
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and (b) the proton reaction cross section measured at ∼21 MeV by
Carlson et al. [45] scaled by A−2/3.

of the 0g9/2 proton level and, where known, to reproduce the
mean-square radius of the charge distribution [58]. It is well
known that HF calculations only succeed in reproducing the
trend of the mean-square radius of the charge distribution
for Sn isotopes when an A1/6 instead of a conventional
A1/3 radius dependence is employed [59]. By employing
this dependence for the nonlocal HF potential, we are able
to reproduce the mean-square charge radius for 112Sn and
124Sn. It was then only necessary to adjust the depth of the
potential for each isotope in order to generate the required
fit to the position of the g9/2 levels and the charge radii.
The resulting depths exhibit an essentially linear N − Z

dependence.
In Fig. 28, the strength function [Eq. (53)] of the g9/2 orbit

is shown for a relevant selection of Sn isotopes. Again, the
linear extrapolation of W sur

max is used for 102Sn, 106Sn, 130Sn, and
132Sn. For these valence levels, the strength function consists
of a delta function at the IPM level energy plus continuum
contributions at higher and lower energies. Only the negative
continuum contribution is shown in the figure.

The locations of the delta functions are indicated by the
vertical lines, and the height gives the spectroscopic factor (the
integral of delta function). The curves represent the continuum
and are labeled with the corresponding mass number. These
curves representing the strength in the continuum below
the Fermi energy clearly reflect the increase in the surface
absorption derived from the proton elastic-scattering data
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FIG. 22. (Color online) (a) Asymmetry dependence of the Fermi
energy corrected for the average Coulomb energy inside the nucleus
VC . (b) and (c) are derived from the sum and difference of the
magnitudes of the Hartree-Fock potentials extracted for protons and
neutrons. In all cases, the lines are linear fits (see text).

under the standard DOM assumption that surface imaginary
potentials exhibit similar behavior above and below the Fermi
energy [14]. In the energy domain below the Fermi energy
corresponding to the imaginary surface potential, a distinct in-
crease in the strength can be observed with increasing neutron
number. Accompanying this increased strength is a reduction
of the corresponding 0g9/2 spectroscopic factor (triangles in
Fig. 28). Quantitative results are reported in Table III for the
spectroscopic factors (Snl), strength in the continuum (nc

nl),
total occupation number (nnl), where nl refers to the nonlocal
version of the DOM for this series of isotopes. In addition,
the occupation number (nl) and spectroscopic factor (Sl) from
Eqs. (14), (16), and (17) are listed for the local DOM using
parameters from the refits where the 0g9/2 level energies
are exactly reproduced. The increase in the continuum
contribution of the occupation number ends with 130Sn on
account of the larger gap between particle and hole states
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FIG. 23. (Color online) Mass dependence of spectroscopic fac-
tors (relative to IPM values) for valence-hole levels deduced from the
fitted potentials for Sn isotopes.

for the double-closed-shell nucleus 132Sn, as discussed earlier.
We note that the reduction of the g9/2 spectroscopic factor
with increasing neutron number is accompanied by a weaker
reduction of the occupation number. This feature is consistent
with the notion that increased surface absorption leads to
removal of strength to both sides of the Fermi energy so
that the reduction in the occupation should be less (and
approximately half of the reduction of the spectroscopic factor
for each isotope for a level very near the Fermi energy).
While the spectroscopic factors for the 0g9/2 level in the
local DOM are consistent with the nonlocal results, there is a
clear disagreement between the occupation numbers obtained
by the different versions. This confirms the conclusion of
Ref. [15] that occupation numbers obtained from the approx-
imate expressions in Eqs. (16) and (17) may not always be
accurate. This is particularly true for a nominally empty level
such as the g7/2, where the nonlocal version generated an
occupation number of 0.15 in 130Sn, whereas the local result
is 0.33.
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FIG. 24. (Color online) Radial dependence of the energy-
dependent effective mass and the square of the reduced wave function.
Effective masses are shown for 112Sn and 124Sn and wave functions
are shown for the 0g9/2 and 1p1/2 proton levels in 112Sn.
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FIG. 25. (Color online) Comparison of proton 0g9/2 spectro-
scopic factors (relative to IPM values) for Sn isotopes obtained
with the standard fits (filled data points), where the depth of the
Hartree-Fock potential was adjusted to reproduce the Fermi energy,
to those where the depth was adjusted to reduce the correct 0g9/2

level energy (open data points). Predictions are also shown for 102Sn,
106Sn, 130Sn, and 132Sn using a linear extrapolation of W sur

max.

The N − Z behavior of the proton correlations obtained
for Sn isotopes invites consideration of possible future experi-
ments to confirm the trend predicted in Table III. A consistent
analysis of the (d, 3He) reaction employing a finite-range
DWBA approach as in Ref. [57] might be able to shed light
on the behavior of the proton g9/2 spectroscopic factors by
employing light and heavy radioactive Sn isotopes in inverse
kinematics. A serious difficulty will be the construction of
appropriate optical potentials for these exotic reactions. An
alternative experimental approach might be to employ the
(d, n) reaction in inverse kinematics for these exotic isotopes
and study the behavior of the g7/2 spectroscopic factor for the
addition of a proton. The spectroscopic factor for this particle
level tracks the one for the g9/2 hole level reported in Table III
to within a few percent.
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FIG. 26. (Color online) The line connects the calculated mass
dependence for spectroscopic factors (relative to IPM values) for
proton 0d3/2 valence-hole levels deduced from the fitted potentials
for Ca isotopes. The data points are results from (e, e′p) measure-
ments [56,57].
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FIG. 27. (Color online) Spectroscopic factors (relative to the
independent-particle-model value) for valence-hole levels determined
from the fitted potentials. Results are shown for the Z = 20, 28 and
N = 28 and the square and circular points represent neutrons and
protons, respectively. In (a), these are plotted versus the separation
energy of the level, while in (b), they are plotted versus the difference
in proton and neutron separation energies.

We note that the predicted behavior of the proton g9/2

spectroscopic factor as a function of N − Z is still mild
compared to the deduced behavior of the removal strength
using heavy-ion knockout reactions [10,11] in sd-shell nuclei.
The spectroscopic factors implied by these experiments are
much smaller (or larger) far off stability than generated here
for protons in Sn isotopes. An unambiguous test of such
small (or large) spectroscopic factors could be provided by
performing the corresponding elastic-scattering experiments,
at least for protons, in inverse kinematics. Indeed, since the

TABLE III. Spectroscopic factors S (relative to the IPM predic-
tions) and occupation numbers n for the 0g9/2 proton orbit in Sn
isotopes using the nonlocal (nl) and local (l) versions of the DOM.

Isotope Snl nc
nl nnl nl Sl

102 0.80 0.11 0.91 0.86 0.79
106 0.68 0.17 0.85 0.81 0.68
112 0.63 0.20 0.83 0.74 0.63
124 0.50 0.28 0.78 0.62 0.51
130 0.48 0.30 0.78 0.60 0.49
132 0.56 0.25 0.81 0.65 0.56
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FIG. 28. (Color online) Strength functions of the g9/2 proton orbit
in different Sn isotopes obtained with the nonlocal calculations. The
curves represent the continuum contribution of the strength function
and are labeled by the appropriate mass number. Also indicated is
the location of the 0g9/2 quasihole level in the different isotopes. The
height of the corresponding vertical lines identifies the spectroscopic
factor for each isotope.

implied physics is associated with surface phenomena [60],
one would expect that the remaining sp strength occurs in the
domain where surface absorption takes place.

As for the spectroscopic factors, it should be kept in mind
that relative occupancies are better defined than the absolute
values. In Fig. 29, we compare the occupancies for proton
levels in 208Pb found in the present work (lines) using Eqs. (16)
and (17), with those from van Batenburg [54] (data points).
The latter results were derived from (e, e′p) data by assuming
a reasonable static Woods-Saxon potential well and spectral
shape for each occupied proton level exhibiting an increased
width with increasing distance from the Fermi energy. The
remaining unknowns are the integrals over these spectral
distribution, in other words, the corresponding occupation
numbers. The latter are fitted to the data and this procedure
generates the data points of Fig. 29 while capable of accurately
describing the (e, e′p) cross sections for all mean-field
momenta (<270 MeV/c) and binding energies including the
lowest s1/2 level. We note that the single-particle levels used in
Ref. [54] have slightly different energies than the solutions of
the fitted DOM potential, which is reflected in Fig. 29. For the
deep hole states, our occupancies are slightly larger; however,
the relative dependence on the single-particle energy is quite
similar. We note again that Eq. (16) is an approximate result,
as explained earlier in this section, but we find the agreement
with the numbers extracted from experiment encouraging
nevertheless.

VII. CONCLUSIONS

The neutron-proton asymmetry dependence of correla-
tions in nuclei has been studied via a dispersive-optical-
model analysis giving information on the neutron and proton
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FIG. 29. (Color online) Comparison of proton occupation proba-
bilities in 208Pb. The data points are from van Batenburg [54] and the
lines are from this work.

self-energies or optical-model potentials. Elastic-scattering
data for a wide range of masses were obtained from previ-
ously published studies and, in addition, the neutron elastic-
scattering differential cross sections on 48Ca were measured
at incident energies of 11.9 and 16.9 MeV. These data were
supplemented with published measurements of reaction and
total cross sections, the energies of single-particle levels, and
some (e, e′p) measurements of rms radii and spectroscopic
factors of valence-hole states.

In the dispersive optical model, long- and short-range
correlations are described by surface and volume imaginary
potentials (self-energies), respectively. From a comparison of
proton and neutron data on 208Pb, a small asymmetry depen-
dence of the imaginary volume potential was deduced. The
imaginary volume potential was 10% higher for protons. The
surface imaginary component showed quite different asymme-
try dependences between protons and neutrons. The magnitude
of neutron imaginary surface potential was almost independent
of mass and asymmetry. The extracted values were within 24%
of each other from A = 40 to 208. Protons displayed much
stronger dependence, although a universal behavior was not
found. Stable Sn isotopes displayed a large increase (65%)
in the imaginary surface potential with increasing neutron
number. The lighter Z = 20, 28 and N = 28 closed-shell
nuclei showed an initial increase, but subsequent saturation
with increasing neutron number. These results are only for
N � Z and for nuclei close to stability. For N < Z, one would
expect from isospin symmetry that the roles of the protons and
neutrons would be reversed, i.e., the neutron surface imag-
inary potential would have an important asymmetry depen-
dence, whereas for protons, there would be little asymmetry
dependence.

The large observed asymmetry dependence for
protons gives rise to only a modest asymmetry dependence
of spectroscopic factors. The differences in spectroscopic

factors produced by this effect are of a similar magnitude
to that between levels with high- and low-� values. The
asymmetry dependence of spectroscopic factors predicted
by the dispersive-optical-model analysis is consistent with
recent transfer-reaction measurements [12], but significantly
smaller than that suggested by knock-out reactions [10,11].
However, we caution that our results are only for stable nuclei
and additional physics may be relevant for the more exotic
nuclei probed with the knockout reactions, possibly related
to the encroaching continuum [61]. However, we note that
extrapolating the present DOM framework to more exotic
nuclei will provide a benchmark for gauging the magnitude
of any additional physics.

The dispersive-optical-model calculations are local. The
effect of nonlocality was examined by replacing the energy-
dependent real potential by a energy-independent nonlocal
version and solving the Dyson equation for the single-particle
propagator. For levels near the Fermi energy, the resulting
spectroscopic factors are consistent with the values obtained
using the fitted local potential and Mahaux’s approximations.
However, for the occupation probabilities in Sn isotopes, this
is not the case. Nonlocal calculations are necessary for these
quantities.
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APPENDIX: DATA REFERENCES

The elastic-scattering data sets for both protons and
neutrons used in the fitting are listed in Tables IV to X
along with the appropriate references. Data sets with energies
up to 200 MeV were included, and only nuclei for which
there are measurements near 20 MeV, where the imaginary
surface potential peaks, were considered. For the Z = 20, 28
and N = 28 systems, there are 200 sets of elastic-scattering
differential cross sections and 17 sets of analyzing power
measurements. For the N = 50, Sn, and 208Pb systems, we
found 37, 55, and 49 data sets of differential cross sections
and 15, 22, and 22 data sets of analyzing power measurements,
respectively.

Single-particle energies En�j were obtained from
Refs. [62–68]. For the Sn isotopes and N = 50 nuclei, where
no extensive list of single-particle energies could be found, we
only fitted the first valence particle and last hole levels {EF

+
and EF

− [Eqs. (7) and (8)]}.
Reaction and total cross-section data used are listed in

Table XI and (e, e′p) extractions of spectroscopic factors and
rms radii are listed in Table XII.
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TABLE IV. Elastic-scattering data for p + Ca reactions used in
the fits.

E (MeV) dσ
d�

Ay Reference

p+40Ca

17.57 x [69]
19.57 x [39]
21.0 x x [43,70]
25.0 x [43]
26.3 x x [43,71]
30.0 x [43]
30.3 x [72]
35.0 x [43]
40.0 x x [43,73]
45.0 x [43]
48.0 x [43]
49.0 x [74]
61.4 x [75]
65.0 x x [76]
80.2 x x [34,77]
100.6 x x [78]
135.1 x [34]
152.0 x x [79]
160.0 x x [34,77]
181.0 x x [34,77]
200.0 x x [80]

p+42Ca
9.0 x [81]
12.0 x [81]
21.0 x [43]
25.0 x [43]
30.0 x [43]
35.0 x [43]
40.0 x [43]
45.0 x [43]
48.4 x [43]
65.0 x x [76]

p+44Ca
9.0 x [81]
10.75 x [82]
12.0 x [81]
14.15 x [82]
15.61 x [82]
21.0 x [43]
25.0 x [43]
30.0 x [43]
40.0 x [43]
45.0 x [43]
48.4 x [43]
65.0 x x [76]

p+48Ca
8.0 x x [83]
10.0 x x [83]
12.0 x x [83]
14.03 x x [82]
15.05 x x [82]
15.65 x x [82]
21.0 x [43]
25.0 x [43]
30.0 x [43]
35.0 x [43]
40.0 x [43]
45.0 x [43]
48.4 x [43]
65.0 x x [76]
200.0 x x [80]

TABLE V. Elastic-scattering data for n + Ca and p + N = 20
isotone reactions used in the fits.

E (MeV) dσ
d�

Ay Reference

n+40Ca

9.9 x x [29]
11.0 x [84]
11.9 x x [29]
13.9 x x [29,30]
16.9 x x [30]
19.0 x [85]
20.0 x [84]
21.7 x [85]
25.5 x [85]
26.0 x [84]
30.0 x [86]
40.0 x [86]
65.0 x [87]
75.0 x [87]
85.0 x [87]
95.0 x [87]
107.5 x [87]
127.5 x [87]
155.0 x [87]
185.0 x [87]

n+48Ca
7.97 x [88]
11.9 x x This work
16.9 x x This work

p+50Ti
6.0 x [89]
11.0 x x [90]
14.15 x x [82,91]
15.35 x x [82,91]
16.0 x x [20,92]
18.0 x x [90]
18.6 x x [93]
18.6 x [94]
39.9 x [95]
65.0 x x [96]

p+52Cr
10.77 x x [82,91]
14.0 x [97]
15.35 x x [82,91]
16.5 x [93]
17.5 x [98]
18.6 x x [93]
39.9 x [95]

p+54Fe
9.69 x x [99]
12.0 x [100]
16.0 x x [20,92]
17.2 x x [101]
18.6 x [93]
19.6 x [102]
20.4 x x [101]
24.6 x [101]
30.4 x x [103]
35.2 x [104,105]
39.8 x [106]
65.0 x x [96]
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TABLE VI. Elastic-scattering data for n+54Fe and p+58Ni reac-
tions used in the fits.

E (MeV) dσ

d�
Ay Reference

n+54Fe

5.5 x [107]
7.0 x [107]
7.96 x [26]
8.5 x [107]
9.94 x x [107]
11.0 x [108]
11.93 x [26]
13.9 x x [26,109,110]
14.7 x [111]
16.9 x x [110]
20.0 x [108]
22.0 x [108]
24.0 x [108]
26.0 x [108]

p+58Ni
7.0 x [100]
8.0 x [100]
9.0 x [100]
9.51 x x [99]
10.0 x [100]
11.0 x [100]
12.0 x [100]
14.0 x [97]
16.0 x x [20,92]
18.6 x x [93]
21.0 x x [112]
22.2 x [113]
24.6 x [101]
26.3 x [71]
29.0 x [114]
30.3 x [115]
35.2 x [104,105]
40.0 x [73,116]
49.0 x [114]
60.2 x [117]
61.4 x [75]
65.0 x x [96]
100.0 x [118]
160.0 x [119]
172.0 x [120]
178.0 x x [121]
192.0 x x [122]

TABLE VII. Elastic-scattering data for p+60,62,64Ni and n+58Ni
reactions used in the fits.

E (MeV) dσ

d�
Ay Reference

p+60Ni

7.0 x [100]
8.0 x [100]
9.0 x [100]
10.0 x [100]
11.0 x [100,123]
12.0 x [100]
14.0 x [97]
14.4 x x [124]
15.4 x x [124]
16.0 x x [20,92]
17.8 x [125]
18.6 x x [93]
20.4 x x [42]
24.6 x [101]
29.0 x [114]
30.0 x [71]
30.3 x [115]
40.0 x [116]
49.0 x [114]
55.0 x [126]
65.0 x x [96]
178.0 x x [121]

p+62Ni
8.02 x [127]
11.0 x x [123]
12.0 x [100]
14.0 x [97]
16.0 x [128]
16.5 x [93]
18.6 x x [93]
20.4 x x [101]
24.6 x [101]
39.6 x x [129]
65.0 x x [96]
156.0 x [130]

p+64Ni
9.69 x x [99]
11.0 x [123]
12.0 x [100]
16.0 x [128]
20.4 x x [42]
39.6 x x [129]
65.0 x x [96]

n+58Ni
4.5 x [131]
5.5 x [131]
6.5 x [131]
7.5 x [131]
8.4 x [131]
9.92 x [132]
9.99 x [131]
11.952 x [132]
13.91 x [132]
14.0 x [131]
16.934 x x [110]
21.5 x [131]
24.0 x [133]
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TABLE VIII. Elastic-scattering data for n+60Ni reactions and
reactions with N = 50 isotones used in the fits.

E (MeV) dσ

d�
Ay Reference

n+60Ni

5.0 x [134]
6.0 x [134]
7.0 x [134]
7.904 x [132]
9.943 x [110]
9.958 x x [132]
11.952 x [132]
13.91 x [132]
14.7 x [111]
24.0 x [133]

p+90Zr
5.57 x [135]
6.57 x [135]
7.97 x [135]
8.6 x [135]
9.6 x x [99]
12.7 x [136]
14.7 x [137]
16.0 x x [92]
18.8 x [138]
20.25 x [139]
22.5 x [140]
25.05 x [141]
30.0 x x [142]
40.0 x [143]
40.0 x x [73]
49.4 x x [144]
61.4 x [75]
65.0 x x [96]
79.6 x [77]
80.0 x [34]
98.7 x [77]
100.0 x [118]
134.8 x [77]
135.0 x [34]
160.0 x x [34,77]
185.0 x [145]

p+92Mo
12.5 x [146]
15.0 x [147]
19.8 x [148]
20.25 x [139]
22.27 x [149]
30.0 x x [142]
30.3 x x [148]
49.45 x [148]

n+92Mo
7.0 x [150]
9.0 x [150]
11.0 x [150]
20.0 x [150]
26.0 x [150]

TABLE IX. Elastic-scattering data for Sn reactions used in the fits.

E (MeV) dσ

d�
Ay Reference

p+112Sn

16.0 x [151]
30.4 x [152]

p+114Sn
30.4 x [152]

p+116Sn
16.0 x x [153]
21.0 x x [112]
30.4 x x [152]
39.6 x [154]
61.4 x [75]

p+118Sn
16.0 x [151]
20.4 x x [42]
30.4 x [152]
39.6 x x [154]
49.35 x [144]

p+120Sn
9.8 x x [99]
16.0 x x [153]
20.4 x x [42]
24.6 x x [42]
30.0 x x [155,156]
39.6 x x [154]
49.35 x [144]
100.0 x x [77,118]
104.0 x x [157]
156.0 x [130]

p+122Sn
16.0 x [151]
20.4 x x [42]
30.4 x [152]
39.6 x x [154]
49.35 x [144]

p+124Sn
16.0 x x [153]
20.4 x x [42]
30.4 x [152]
39.6 x x [154]
49.35 x [144]

n+116Sn
9.95 x x [132]
11.0 x [158]
13.94 x x [132]
24.0 x [158]

n+118Sn
11.0 x [158]
24.0 x [158]

n+120Sn
9.94 x x [132]
11.0 x [158]
13.92 x x [132]
16.91 x [132]

n+124Sn
11.0 x [158]
24.0 x [158]
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TABLE X. Elastic-scattering data for reactions on 208Pb used in
the fits.

E (MeV) dσ

d�
Ay Reference

p+208Pb

9.0 x [159]
11.0 x [160]
12.98 x x [161]
16.0 x x [20,92]
21.0 x [162]
24.1 x [162]
26.3 x x [71,162]
29.1 x [114]
30.3 x x [162,163]
35.0 x [162]
40.0 x x [73]
45.0 x [162]
47.3 x [162]
49.3 x x [144]
61.0 x [75]
65.0 x x [96]
79.8 x [77]
80.0 x [34]
98.0 x [77]
101.4 x [118]
121.0 x [34]
155.0 x x [164]
160.0 x x [34,77]
182.0 x x [34,77]
185.0 x x [162]
200.0 x x [165]

n+208Pb
4.0 x [166]
5.0 x [166]
5.97 x [167]
6.0 x [166]
6.97 x [167]
7.0 x [166]
7.97 x x [167]
8.5 x [107]
8.96 x [167]
9.0 x [168]
9.97 x x [169]
11.0 x [168]
13.9 x x [170]
14.6 x [171]
16.9 x [172]
20.0 x [173]
22.0 x [173]
24.0 x [173]
26.0 x [168]
30.3 x [174]
40.0 x [174]
65.0 x [87]
75.0 x [87]
85.0 x [87]
95.0 x [87]
96.0 x [175]
107.5 x [87]
127.5 x [87]
155.0 x [87]
185.0 x [87]

TABLE XI. References for total and reaction cross sections used
in this paper.

Reaction Reference Reaction Reference

p+40Ca [176–178] n+60Ni [179–182]
n+40Ca [25,183–187] p+62Ni [188,189]
p+42Ca [45] p+64Ni [188,189]
p+44Ca [45] p+90Zr [188–191]
p+44Ca [192] p+112Sn [44,193]
p+48Ca [45] p+114Sn [44]
n+48Ca [25] p+116Sn [44,188,189,193]
p+50Ti [189] p+118Sn [44,188,193]
p+52Cr [189] p+120Sn [44,188,189,193]
p+54Fe [43,188] p+122Sn [44]
p+58Ni [178,188,191,193–195] p+124Sn [44,193]
n+58Ni [131,179,180] p+208Pb [177,178,189]
p+60Ni [178,188,193–195] n+208Pb [196,197]

TABLE XII. Spectroscopic factors (relative to the independent-
particle-model value) Sn�j and rms radii Rrms

n�j extracted for the listed
single-particle levels from referenced (e, e′p) data that were used in
the fits.

Nucleus s.p. level Sn�j Rrms
n�j Reference

(fm)

40Ca 0d5/2 3.53 ± 0.11 [56,57]
1s1/2 3.72 ± 0.10
0d3/2 0.645 ± 0.048 3.69 ± 0.10

48Ca 0d5/2 3.47 ± 0.13 [56,57]
0d3/2 0.565 ± 0.040 3.53 ± 0.10
1s1/2 0.535 ± 0.035 3.58 ± 0.10

90Zr 1p1/2 0.72 ± 0.07 4.57 ± 0.02 [198]

208Pb 2s1/2 0.65 ± 0.05 5.22 ± 0.05 [199,200]
1d3/2 0.80 ± 0.05 5.47 ± 0.04
0h11/2 0.61 ± 0.04 6.09 ± 0.03
1d5/2 0.73 ± 0.05 5.39 ± 0.03
0g7/2 0.64 ± 0.04 5.56 ± 0.05
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