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α-decay and fusion phenomena in heavy ion collisions using nucleon-nucleon interactions
derived from relativistic mean-field theory
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Nucleus-nucleus potentials are determined in the framework of the double-folding model for a new microscopic
nucleon-nucleon (NN) interaction relativistic mean field-3-Yukawa (R3Y) derived from the popular relativistic
mean-field theory Lagrangian, and the results are compared for the use of Michigan-3-Yukawa (M3Y) effective
NN interactions. The double-folding potentials so obtained are further taken up in the context of the preformed
cluster model (PCM) of Gupta and collaborators and the barrier penetration model to study respectively the
ground-state (g.s.) α-decay and low-energy fusion reactions. In this paper, using PCM, we deduce empirically
the α preformation probability P0

α(emp) from experimental data on a few g.s. α decays in the trans-lead region.
For fusion reactions, two projectile-target systems 12C + 208Pb and 16O + 208Pb are selected for calculating the
barrier energies as well positions, fusion cross sections (σfus), and fusion barrier distribution [D(Ec.m.)]. The
barrier energies and positions change for the R3Y NN interactions in comparison with those of the M3Y NN
interactions. We find that in the α-decay studies the values of P0

α(emp)(R3Y) are similar to those of P0
α(emp)(M3Y).

Further, both NN interactions give similar σfus values using the Wong formula specifically when the R3Y NN
interaction calculated σfus values are reduced by 1.5 times, and the results are in agreement with the experimental
data for both the systems, especially for the higher energies. Results for D(Ec.m.) are also quite similar for both
choices of NN interaction.
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I. INTRODUCTION

The ground-state (g.s.) α-decay and heavy ion fusion
reactions are quite important to investigate a number of
nuclear phenomena; the nucleon-nucleon (NN) interaction
is one of them. The nucleus-nucleus potentials in the study
of α-decay and fusion reactions may be obtained by using
effective NN interactions, which are remarkably related in the
double-folding model (DFM) [1]. It is obtained in DFM by
using an effective NN interaction, like the phenomenological
Michigan-3-Yukawa (M3Y) plus a zero-range pseudopotential
or a density-dependent M3Y, folded over the matter densities
of the projectile-target nuclei. Recently, we and collaborators
have introduced a microscopic NN interaction relativistic mean
field-3-Yukawa (R3Y) [2] from the linear relativistic mean-
field theory (RMFT) [3–6] Lagrangian rather than a simple
phenomenological prescription. Moreover, we demonstrated
its application [2] to various nuclear systems for evaluating
some of the physical observables in the phenomenon of exotic
cluster radioactivity (CR) by folding it with the RMFT densi-
ties of cluster and daughter nuclei to obtain the nucleus-nucleus
potential, and results obtained were found to be comparable
with the successfully used M3Y effective NN interactions.

In the present work, we employ it to investigate the
g.s. α decay of few nuclei in trans-lead region and low-
energy heavy ion fusion reactions using two projectile-target
systems, 12C + 208Pb and 16O + 208Pb, which have been
studied experimentally quite extensively [7,8] and compare
our results with that of the use of the phenomenological
M3Y effective NN interaction, also. Our methodology for
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the study is to use the linear RMFT-HS and the barrier
penetration model (BPM) described briefly in the following.
The nuclear matter densities ρ1 and ρ2 are calculated by using
the linear RMFT-HS formalism for spherical nuclei. Then, the
nucleus-nucleus potential is obtained by using the well-known
double-folding procedure to the M3Y [1] (or R3Y, proposed
by us and collaborators in a very recent study [2]) interaction,
supplemented by a zero-range pseudopotential representing
the single-nucleon exchange effects (EX). The Coulomb
potential VC [VC(R) = ZpZte

2/R] is calculated to obtain the
total interaction potential V (R) = Vn(R) + VC(R) between
the nuclei. Further, within the preformed cluster model (PCM)
of Gupta and collaborators [9,10], we deduce empirically the
α preformation probability P0

α(emp) from experimental data
on a few g.s. α decays in the trans-lead region. Also, within
the BPM we obtain total fusion cross sections (σfus) using the
well-known Wong formula [11].

II. FORMALISM

In the RMFT model [3–6], an effective Lagrangian is taken
to describe the nucleons interacting through the effective
meson and electromagnetic (e.m.) fields. The equations of
motion are obtained using the Euler-Lagrange variational
principle. A set of coupled equations results from replacing
the field operators by their expectation values. A set of
Klein-Gordon-type equations are yielded for mesons and
photons with sources having nucleonic currents and densities,
and the Dirac equation describing the nucleon dynamics is
yielded with potential terms having the e.m. and meson fields.
This set of RMFT-generated equations then is solved self-
consistently to obtain the matter (neutron + proton) densities
for the projectile and target nuclei to treat them further for
obtaining the nuclear interaction potential between them.
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The linear, relativistic mean-field Lagrangian density for a
nucleon-meson many-body system [3–6] is

L = ψi{iγ µ∂µ − M}ψi + 1
2∂µσ∂µσ − 1

2m2
σ σ 2

−gσψiψiσ − 1
4�µν�µν + 1

2m2
wV µVµ

−gwψiγ
µψiVµ − 1

4
�Bµν. �Bµν + 1

2m2
ρ

�Rµ. �Rµ

−gρψiγ
µ�τψi. �Rµ − 1

2m2
δδ

2 + gδψiδ�τψi, (1)

where the field for σ meson is denoted by σ , that for ω meson
is denoted by Vµ, and those for the isovector ρ and δ mesons
are denoted by �Rµ and δ, respectively. The ψi are the Dirac
spinors for the nucleons. An isospin is denoted by τ . Here, gσ ,
gω, gρ , and gδ are the coupling constants for the σ , ω, ρ, and δ

mesons, respectively. M , mσ , mω, mρ , and mδ are the masses
of the nucleons and σ , ω, ρ, and δ mesons, respectively. �µν

and �Bµν are the field tensors for V µ and �Rµ, respectively.
In this Langrangian, the contribution of the π meson has not
been taken into account because, at the mean-field level, its
contribution is zero due to its pseudoscalar nature [4,12].

From the relativistic Lagrangian, we obtain the field
equations for the nucleons and mesons. The set of coupled
equations is solved numerically by a self-consistent iteration
method using the linear Horowitz and Serot (LHS) parameter
set [3]. The root-mean-square (rms) matter radius is defined as

〈
rm

2
〉 = 1

A

∫
ρ(r)r2dτ, (2)

where A is the mass number and ρ(r) is the spherical density.
Using the PCM [9,10], we deduce empirically the α

preformation probability P0
α(emp) from experimental data on a

few α decays in the trans-lead region, using the HS-parameter-
set-based spherical RMFT-HS densities. It is relevant to
mention here that the mass and charge densities calculated
by using RMFT [13] support the clustering effects in various
heavy parents with observed cluster decays. In the PCM, the
decay constant λ or half-life time T1/2 is defined as [9,10,14]

λPCM = ln 2

T1/2
= ν0P0P, (3)

with the assault frequency ν0 ∼ 1021 s−1 for all of the cluster
decays [10]. An empirical estimate of the preformation factor
P0 can be obtained as [14]

P0
α(emp) = λexpt

ν0P
(4)

from the experimental λexpt values [10] and calculated ν0P . In
the following, the values of P0

α(emp) deduced by using the R3Y
and M3Y NN interactions are compared. The other details of
the methodology followed are given in Ref. [14].

The Wong formula [11] for fusion cross sections (σfus), at
energies near the barrier within the context of the BPM, is
given as

σfus(Ec.m.) = Rh
2h̄ω

2Ec.m.
ln

[
1 + exp

(
2π

h̄ω
(Ec.m. − Vh)

)]
, (5)

where h̄ω is the curvature of the inverted parabola and Rh and
Vh are the barrier position and barrier height, respectively. Ec.m.

is the center-of-mass energy for the target-projectile system.

These quantities are taken from the total interaction potential
between the projectile-target nuclei.

Moreover, the fusion barrier distribution D(Ec.m.)
[d2(Ec.m.fus)/dEc.m.] is calculated using the point difference
formula

D(E) = [(E − �E)σ− − 2Eσ + (E + �E)σ+]/(�E)2,

(6)

where σ−, σ , and σ+ indicate σfus at center-of-mass energies
E − �E, E, and E + �E, respectively, with energy step
size �E.

The nucleus-nucleus potentials between the nuclei in the
DFM [1] are

Vn( �R) =
∫

ρ1(�r1)ρ2(�r2)v(|�r1 − �r2 + �R| ≡ r)d3r1d
3r2. (7)

An effective NN interaction, like the phenomenological M3Y,
is given as

vM3Y(r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
, (8)

where ranges are in femtometers and the strength is in million
electron volts, plus a zero-range pseudopotential ([J00(E)δ(r),
EX], folded over the matter densities of the nuclei (ρ1, ρ2).

A microscopic NN interaction (R3Y) [2] from the linear
RMFT-HS [3–6] Lagrangian, rather than a simple phenomeno-
logical prescription, was obtained as

vR3Y(r) = 11 956
e−3.97r

4r
+ 4099

e−3.90r

4r
− 6882

e−2.64r

4r
.

(9)

We also successfully demonstrated its application [2] to
various nuclear systems for evaluating some of the physical
observables in the phenomenon of exotic CR by folding
it with the RMFT densities of cluster and daughter nuclei
to obtain the nucleus-nucleus potential. Adding Coulomb
potential VC(R) (=Z1Z2e

2/R) results in the nucleus-nucleus
interaction potential V (R) [=Vn(R) + VC(R)], used for cal-
culating the Wentzel-Kramers-Brillouin (WKB) penetrability
P , representing relative motion R, for α-decay studies and
for calculating the Vh, Rh, and h̄ω in the low-energy fusion
reaction studies.

III. RESULTS AND DISCUSSIONS

Figure 1(a) illustrates the total interaction potentials V (R)
for α decay of 222Ra, obtained for both the M3Y + EX
and the R3Y + EX NN interactions using RMFT-HS
densities. The penetration path with an energy equal to
the Q value of decay also is shown here. Note that,
compared to the M3Y NN interaction, the barrier is a
bit higher for the R3Y case [shown more clearly in the
inset of Fig. 1(b)], and hence P decreased by an order
of magnitude, as is shown in Table I for some decays.
Consequently, the deduced P0

α(emp) (R3Y + EX) also are
affected. However, in Table I, we find that the values of P0

α(emp)

(R3Y + EX) are similar to those of P0
α(emp)(M3Y + EX).
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FIG. 1. (a) The total nucleus-nucleus optical potential V (R) and the individual contributions [Vn(R) (M3Y + EX) and Vn(R) (R3Y + EX)]
for the HS parameter set and the Coulomb potential VC(R) as a function of radial separation R for α decay of 222Ra. (b) The inset of (a), same
as (a) but with a changed scale in order to magnify the barrier. (c) Same as (a) but for the fusion reaction 12C + 208Pb. (d) The inset of (c), same
as (c) but with a changed scale in order to magnify the barrier height (Vh) and the position (Rh).

TABLE I. The WKB penetrability P , experimental decay constant λα
expt, and the estimated P0

α(emp) = λα
expt/ν0P for α decays of various

nuclei. The results are compared for the use of M3Y + EX and R3Y + EX NN interactions. The impinging frequency ν0 ∼ 1021 s−1 for each
case. The Q values are calculated by using the experimental g.s. binding energies from Ref. [15].

Parent Q P P λc
expt P0

α(emp) P0
α(emp)

(MeV) (M3Y + EX) (R3Y + EX) (s−1) (M3Y + EX) (R3Y + EX)

221Fr 6.457 2.954 × 10−22 2.088 × 10−23 2.406 × 10−02 2.630 × 10−02 3.721 × 10−01

221Ra 6.881 4.996 × 10−21 3.517 × 10−22 2.310 × 10−02 1.445 × 10−03 2.053 × 10−02

222Ra 6.679 8.567 × 10−22 6.008 × 10−23 1.824 × 10−02 6.767 × 10−03 9.649 × 10−02

223Ra 5.979 7.844 × 10−25 5.407 × 10−26 7.016 × 10−07 3.010 × 10−04 4.367 × 10−03

224Ra 5.789 9.740 × 10−26 6.591 × 10−27 2.189 × 10−06 7.687 × 10−03 1.136 × 10−01

226Ra 4.871 6.000 × 10−31 3.929 × 10−32 1.378 × 10−11 8.606 × 10−03 1.315 × 10−01

223Ac 6.783 8.186 × 10−22 5.635 × 10−23 5.440 × 10−03 2.098 × 10−03 3.048 × 10−02

225Ac 5.935 1.701 × 10−25 1.142 × 10−26 8.022 × 10−07 1.598 × 10−03 2.381 × 10−02

226Th 6.451 1.373 × 10−23 9.262 × 10−25 3.739 × 10−04 8.858 × 10−03 1.314 × 10−01

228Th 5.520 4.687 × 10−28 2.732 × 10−29 1.152 × 10−08 8.677 × 10−03 1.489 × 10−01

230Th 4.770 1.049 × 10−32 6.638 × 10−34 2.755 × 10−13 1.002 × 10−02 1.583 × 10−01

230U 5.993 1.316 × 10−26 8.485 × 10−28 3.857 × 10−07 9.953 × 10−03 1.544 × 10−01

231Pa 5.150 9.341 × 10−31 5.909 × 10−32 6.728 × 10−13 2.646 × 10−04 4.183 × 10−03

232U 5.414 1.103 × 10−29 6.901 × 10−31 3.074 × 10−10 9.997 × 10−03 1.598 × 10−01

233U 4.909 7.882 × 10−33 4.860 × 10−34 1.384 × 10−13 6.627 × 10−03 1.075 × 10−01

234U 4.858 3.817 × 10−33 2.330 × 10−34 9.011 × 10−14 8.974 × 10−03 1.470 × 10−01

235U 4.678 2.161 × 10−34 1.328 × 10−35 3.132 × 10−17 5.624 × 10−05 9.154 × 10−04

236U 4.573 3.829 × 10−35 2.363 × 10−36 9.142 × 10−16 9.666 × 10−03 1.566 × 10−01

238U 4.270 1.678 × 10−37 1.036 × 10−38 4.846 × 10−18 1.179 × 10−02 1.910 × 10−01

237Np 4.958 5.900 × 10−33 3.639 × 10−34 1.030 × 10−14 6.598 × 10−04 1.070 × 10−02

236Pu 5.867 4.142 × 10−28 2.582 × 10−29 7.730 × 10−09 6.469 × 10−03 1.038 × 10−01

238Pu 5.593 1.515 × 10−29 1.051 × 10−30 2.513 × 10−10 5.908 × 10−03 8.518 × 10−02

241Am 5.638 9.991 × 10−30 6.124 × 10−31 5.102 × 10−11 1.819 × 10−03 2.968 × 10−02

242Cm 6.216 3.733 × 10−27 2.302 × 10−28 4.195 × 10−08 4.472 × 10−03 7.251 × 10−02

064601-3



BIRBIKRAM SINGH, B. B. SAHU, AND S. K. PATRA PHYSICAL REVIEW C 83, 064601 (2011)

70 75 80 85 90 95 100 105 110
10-3

10-2

10-1

100

101

102

103

104

 Expt.
 M3Y
 R3Y
 R3Y/1.5

(RMF-HS Densities)

σ fu
s (

m
b)

E
c.m.

 (MeV)

16O+208Pb

55 60 65 70 75 80 85 90
10-1

100

101

102

103

104

(RMF-HS Densities)

12C+208Pb

σ fu
s (

m
b)

E
c.m.

 (MeV)

 Expt.
 M3Y
 R3Y
 R3Y/1.5

FIG. 2. (a) Variation of fusion cross section σfus as function of energy Ec.m. for the 12C + 208Pb system evaluated with the use of the M3Y
and R3Y (solid and dashed lines, respectively) effective NN interactions, compared with the experimental data (shown by dash-dotted line and
filled circles) obtained from Ref. [7]. The comparison also is shown for the σfus reduced by 1.5 times (dotted line) for the choice of the R3Y
NN interaction. (b) Same as (a), but for 16O + 208Pb. The experimental data for this reaction are taken from Ref. [8].

55 60 6550 55 60 65

0

300

600

900

1200

1500

1800

70 75 80 8570 75 80 85

0

300

600

900

1200

1500

1800

2100

D
(E

c.
m

.) 
(m

b/
M

eV
)

 Expt.
Shifted by 2 MeV

 M3Y+EX
 R3Y+EX
 (R3Y+EX)/1.5

(b)
12C+208Pb

E
c.m.

(MeV) E
c.m.

(MeV)

 Expt.
 M3Y+EX
 R3Y+EX
 (R3Y+EX)/1.5

(a)
12C+208Pb

D
(E

c.
m

.) 
(m

b/
M

eV
)  Expt.

Shifted by 3 MeV
 M3Y+EX 
 R3Y+EX
 (R3Y+EX)/1.5

(d)
16O+208Pb

 Expt.
 M3Y+EX
 R3Y+EX
 (R3Y+EX)/1.5

(c)
16O+208Pb

FIG. 3. Variation of the fusion barrier distribution D(Ec.m.) = d2(Ec.m.σfus)/dE2
c.m. as function of energy Ec.m. (a) and (b) for the 12C + 208Pb

system corresponding to Fig. 2(a), compared with the experimental data (solid circles) obtained from Ref. [7]. Panels (c) and (d) are for the
16O + 208Pb system corresponding to Fig. 2(b), compared with the experimental data (solid circles) obtained from Ref. [8].
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TABLE II. The quantities from the nucleus-nucleus interaction potential for the projectile-target systems 12C + 208Pb and 16O + 208Pb, used
in the calculations of σfus using Wong’s formula, with the choice of the M3Y + EX and the R3Y + EX NN interactions, for RMF-HS densities.
Vh, Rh, and h̄ω represent height, radial position, and radius of curvature of the Coulomb barrier, respectively, for both the reactions.

Reaction Vh (MeV) Rh (fm) h̄ω (MeV)

(M3Y + EX) (R3Y + EX) (M3Y + EX) (R3Y + EX) (M3Y + EX) (R3Y + EX)

12C + 208Pb 58.547 54.236 11.370 12.412 4.728 4.734
16O + 208Pb 76.813 70.911 11.544 12.651 4.652 4.685

Figure 1(c) illustrates the total interaction potentials V (R)
for the 12C + 208Pb system, obtained for both the M3Y + EX
and the R3Y + EX NN interactions using the RMFT-HS
densities. The modification of the barrier also is shown here
for the two choices. Note that, compared to the M3Y NN
interaction, the barrier height is lowered and the barrier
position increased for the R3Y case [shown more clearly in
the inset of Fig. 1(d)], and the related numbers are given
in Table II including calculations for h̄ω. Consequently, the
σfus calculations also are affected. Interestingly, in Figs. 2(a)
and 2(b), we find that the variation of the fusion cross
section σfus as a function of Ec.m. for the 12C + 208Pb and
16O + 208Pb systems is quite similar for both the M3Y + EX
and the R3Y + EX NN interactions in comparison with the
experimental data [7,8], specifically when the calculated σfus

is reduced by 1.5 times for the choice of the R3Y NN
interaction. Moreover, in Fig. 3, we see that the D(Ec.m.)
for both of the reactions 12C + 208Pb [Figs. 3(a) and 3(b)]
and 16O + 208Pb [Figs. 3(c) and 3(d)] are similar for the
M3Y + EX and R3Y + EX NN interactions in comparison
with the experimental data [7,8].

In order to investigate the deviations from the experimental
data for both of the choices (the M3Y + EX and R3Y + EX NN
interactions), we also have calculated the fusion cross section
using the formula in the framework of the direct reaction model
[16,17], given as

σfus = π

k2

∑
�

(2� + 1)

⎛
⎝ nfus∑

j=1

I
(�)
j

⎞
⎠ . (10)

Because the total potential is considered as a chain of n

rectangular potentials, each one of which has an arbitrarily
small width w, in the j th region, the strength and width of
the potential are denoted by Uj and wj , respectively, and
nfus = Rfus

w
. For the j th segment, the corresponding absorption

cross section is

Ij =
(

− 1

kn

)
ImUj

|bn|2
[ |bj |2

2Imkj

e−2Imkj wj−1 (e2Imkj wj − 1)

− |bj |2
2Imkj

e2Imkj wj−1 (e−2Imkj wj − 1)

+ 1

Rekj

Im(ajb
∗
j e

2Imkj wj−1 (e2iRekj wj − 1))

]
, (11)

and the wave number kj is defined as kj =
√

2m

h̄2 (E − Uj ). The

exact radius Rfus up to which the absorption cross section is to
be calculated to explain the experimental σfus is known as the

fusion radius. The value of the maximum angular momentum

� = Rfus ×
√

2mEc.m.

h̄2 .
A similar procedure has been followed by one of us in an

earlier study [17]. In Fig. 4(a), we still found a discrepancy
for both of the choices. Although the calculated results are
closer to the experimental data, the choice of the paramterized
Wood-Saxon (WS) potential is able to fit the data very well.
From Fig. 4(b), it is clear that the barrier (for � = 0) position
and height play significant roles, which are different for both
the M3Y + EX and the R3Y + EX NN interactions as well as
the WS potential.

IV. SUMMARY AND CONCLUSIONS

Evidently, the effective NN interaction obtained from the
RMFT Lagrangian, the R3Y, is applicable to study both

FIG. 4. (a) Variation of the fusion cross section σfus [calculated
using Eq. (10)] as a function of energy Ec.m. for the 12C + 208Pb
system evaluated with the use of the M3Y and R3Y (dotted and
dashed lines, respectively) effective NN interactions, compared with
the experimental data (dash-dotted line and filled circles) obtained
from Ref. [7] and with the calculations using the WS potential (solid
line). (b) The total nucleus-nucleus optical potential V (R) (for � = 0)
as a function of radial separation R for the M3Y and R3Y (dotted
and dashed lines, respectively) effective NN interactions and the WS
potential (solid line).
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the g.s. α-decay and the low-energy fusion phenomena with
satisfactory precision. However, the present study has been
carried out by taking into consideration only the linear
terms of the σ , ω, and ρ meson fields. Apparently, it is
relevant as well as interesting to study the link between
the RMFT phenomenology and the effective NN interaction
with the further inclusion of the nonlinear terms of these
fields.

Concluding, we have shown in this work that the effective
NN interaction, here called R3Y, derived from the simple
linear Walecka Lagragian, can be used to study the fusion
phenomena in heavy ion collisions rather than using the simple
phenomenological prescription, which is presented eloquently
in terms of the well-known built-in RMFT parameters of σ ,
ω, and ρ meson fields, that is, their masses (mσ , mω, mρ) and
coupling constants (gσ , gω, gρ).
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