
PHYSICAL REVIEW C 83, 064322 (2011)

Microscopic calculation of interacting boson model parameters by potential-energy surface mapping
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A coherent state technique is used to generate an interacting boson model (IBM) Hamiltonian energy surface
which is adjusted to match a mean-field energy surface. This technique allows the calculation of IBM Hamiltonian
parameters, prediction of properties of low-lying collective states, as well as the generation of probability
distributions of various shapes in the ground state of transitional nuclei, the last two of which are of astrophysical
interest. The results for krypton, molybdenum, palladium, cadmium, gadolinium, dysprosium, and erbium nuclei
are compared with experiment.
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I. INTRODUCTION

The interacting boson model (IBM) is a powerful tool
for describing the low-lying collective quadrupole excita-
tions [1,2]. The IBM-1 formalism, in which protons and
neutrons are indistinguishable, uses the approximation that
pairs of nucleons behave like bosons with either angular
momentum 0 or 2 [3]. It leads to a class of particularly
simple Hamiltonians [4,5], which includes the consistent Q
formalism [6], which will be the focus of the following
discussion.

Conventionally, IBM Hamiltonians have been used to fit the
experimental energy spectra and the electromagnetic transition
probabilities. Within this framework, the Casten triangle [7]
can be used to classify the experimental spectra, which
provides insight in terms of limiting symmetries as well as
indicating phase transitions.

Another application of the IBM is the instantaneous shape
sampling (ISS) technique, which has been used to calculate
the γ -absorption strength functions of transitional nuclei [8],
which are needed for studies of element synthesis in the
cosmos. In the ISS, the IBM is used to generate the probability
distribution of shapes in the ground state of transitional nuclei.
These probability distributions can be used to calculate the
deformation-dependent absorption probability of a photon.

The parameters of the IBM-1 Hamiltonian have been
obtained from fits to the experimental spectra. That is, the
probability distribution, thus far, requires experimental input in
order to determine the IBM parameters. However, in applying
ISS to the r- and p-processes of element synthesis, one needs to
predict the parameters of the IBM Hamiltonian for the nuclei
involved.

The calculation of the IBM Hamiltonian parameters from
the underlying fermionic structure has remained a challenge,
and predicting the parameters for nuclei far from stability is
an even greater challenge. A new approach for calculating
the IBM parameters has been suggested by Nomura et al. [9].
The basic idea is to match a fermionic potential-energy surface
(PES) EMF(β, γ ) with the bosonic PES EIBM(βB, γB). The
authors demonstrated it is possible to use coherent states to
match a PES generated with constraint Skyrme Hartree-Fock
and BCS pairing with a bosonic PES generated from a

IBM-2 Hamiltonian, in which protons and neutrons are treated
separately. The resulting levels adequately reproduced the
development of the spectra from SU(5) to the SU(3) limit
for 84 � N �100.

The success of this endeavor comes as somewhat of a
surprise, because the fermionic PES is commonly considered
as a potential that must be complemented by a mass tensor
in order to construct a collective Hamiltonian. Determining
the parameters of the IBM Hamiltonian by PES matching
fixes both the potential and the mass tensor, i.e., the IBM
Hamiltonian implicitly correlates the mass tensor with the
potential. It seems that the inherent symmetries of the IBM
lead to a realistic relation between the potential and the mass
tensor, which is not the case in the mean-field approaches, such
as the micro-macro model discussed below.

In this paper we modify the method of Nomura which
uses the IBM-2 formalism. One parameter in the IBM-2
Hamiltonian χ for the protons was held constant for a given
isotope chain based on experience from IBM phenomenology,
leaving the value of χ for neutrons to be fit. Because the two χ

values are added together in the Hamiltonian, this essentially
reduces the IBM-2 to IBM-1. For this reason we have decided
to adopt IBM-1. Further justification for use of IBM-1 is
the well-established observation that the deformations of the
protons and neutrons are approximately equal [10,11].

Conventionally, the energy scale remains a free parameter in
the IBM. For this reason, we again take a somewhat different
strategy than that in Ref. [9], whose energy scale resulting
from matching absolute energies is too large to reproduce the
experimental spectra in a systematic way. Following common
IBM practice, we determine from the mean-field PES only the
parameters of the IBM-1 Hamiltonian that control the relative
position of the levels, but not the overall energy scale. The
energy scale is fixed by the energy of the first 2+ state, which
is either taken from experiment or can be calculated by the
cranking procedure described below. The same holds true for
the scale of the E2 transition rates.

As a further modification, we generate the fermionic PES
by means of a micro-macro method. The relatively smooth
change of the energy with the deformation parameters allows
for setting up an automated fitting procedure. The Skyrme
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TABLE I. IBM χ -ζ parameters from fitting 4+
1 /2+

1 , 0β/2+
1 , and

2γ /2+
1 ratios by McCutchan et al. [10].

N AX χ ζ AX χ ζ AX χ ζ

86 150Gd −1.32 0.30 152Dy −1.10 0.35 154Er −0.85 0.30
88 152Gd −1.32 0.41 154Dy −1.09 0.49 156Er −0.62 0.55
90 154Gd −1.10 0.59 156Dy −0.85 0.62 158Er −0.61 0.63
92 156Gd −0.86 0.72 158Dy −0.67 0.71 160Er −0.60 0.69
94 158Gd −0.80 0.75 160Dy −0.49 0.81 162Er −0.53 0.75
96 160Gd −0.53 0.84 162Dy −0.31 0.92 164Er −0.37 0.84
98 162Gd −0.30 0.98 164Dy −0.26 0.98 166Er −0.31 0.91

TABLE II. Equilibrium deformation parameters calculated by
means of a micro-macro method and IBM mapping parameters based
on E(2+

1 )expt and B(E2 : 2+
1 → 0+

1 )expt.

AX ε2 ε4 γ NB cE cβ χ ζ eB

76Kr −0.220 0.008 0 10 3.07 2.50 0.74 0.62 0.081
78Kr −0.201 0.014 0 11 2.72 2.50 0.56 0.60 0.070
80Kr 0.063 0.001 0 12 2.67 2.50 0.24 0.56 0.055
82Kr 0.051 0.002 0 13 3.43 3.00 −0.12 0.56 0.040
84Kr 0.000 0.000 0 14 2.77 3.00 −0.10 0.48 0.032
98Mo 0.136 −0.009 3 10 3.75 2.75 −0.06 0.62 0.050
100Mo 0.185 −0.002 22 11 3.41 2.75 −0.04 0.68 0.061
102Mo 0.219 0.001 26 12 2.55 3.00 −0.04 0.76 0.074
104Mo 0.241 0.005 21 13 2.26 3.50 −0.04 0.88 0.079
106Mo 0.255 0.012 16 14 2.19 3.50 −0.02 0.90 0.073
108Mo −0.229 0.017 0 15 2.74 3.50 0.04 0.90 0.076
102Pd 0.096 −0.003 0 12 2.62 3.50 −0.46 0.56 0.060
104Pd 0.127 0.001 0 13 3.28 3.25 −0.34 0.60 0.058
106Pd 0.143 0.006 0 14 3.36 3.00 −0.22 0.62 0.060
108Pd 0.166 0.008 0 15 3.09 2.50 −0.24 0.62 0.061
110Pd 0.188 0.009 0 16 2.91 2.50 −0.12 0.64 0.060
112Pd 0.194 0.015 0 17 3.03 2.75 −0.04 0.66 0.049
114Pd −0.184 0.016 0 18 3.02 2.75 0.02 0.66 0.035
116Pd 0.168 0.019 1 19 3.01 2.75 0.06 0.64 0.044
108Cd 0.084 0.003 0 15 2.93 3.00 −0.38 0.54 0.051
110Cd 0.086 0.005 0 16 3.08 2.50 −0.32 0.54 0.050
112Cd 0.092 0.006 0 17 2.87 2.25 −0.18 0.54 0.052
114Cd −0.122 −0.001 0 18 3.34 2.50 −0.04 0.58 0.047
116Cd −0.127 0.004 0 19 3.23 2.50 0.10 0.58 0.046
152Gd 0.169 −0.023 1 10 3.10 4.00 −0.30 0.76 0.113
154Gd 0.202 −0.028 1 11 2.12 5.00 −0.30 1.00 0.153
156Gd 0.227 −0.031 1 12 1.83 4.50 −0.46 1.00 0.148
158Gd 0.242 −0.027 1 13 1.84 4.25 −0.52 1.00 0.141
160Gd 0.251 −0.020 0 14 1.88 4.25 −0.52 1.00 0.134
156Dy 0.198 −0.019 0 12 2.32 4.75 −0.24 0.94 0.140
158Dy 0.224 −0.021 0 13 2.13 4.50 −0.32 1.00 0.143
160Dy 0.240 −0.018 0 14 2.05 4.00 −0.40 0.98 0.137
162Dy 0.251 −0.011 0 15 2.11 4.00 −0.40 0.98 0.131
164Dy 0.259 −0.002 0 16 2.09 4.00 −0.42 1.00 0.125
156Er 0.155 −0.014 0 12 2.97 3.75 −0.26 0.70 0.100
158Er 0.186 −0.013 0 13 2.70 4.25 −0.22 0.82 0.121
160Er 0.215 −0.013 0 14 2.55 4.50 −0.20 0.96 0.133
162Er 0.234 −0.010 0 15 2.55 4.25 −0.24 1.00 0.132
164Er 0.248 −0.003 0 16 2.46 4.25 −0.28 1.00 0.128
166Er 0.256 0.005 0 17 2.42 4.00 −0.34 1.00 0.123
168Er 0.261 0.014 0 18 2.55 4.00 −0.36 1.00 0.116

energy density functional used in Ref. [9] generates potentials
that are not smooth enough for automated fitting (see, e.g.,
Ref. [12]).

II. IBM HAMILTONIAN

The simple version of the IBM-1 Hamiltonian given in
Refs. [6,10] turned out to be well suited for our purposes. It
contains two IBM parameters and the energy scale, such that

HIBM(ζ, χ ) = cE

(
(1 − ζ )n̂d − ζ

4NB

Q̂χ · Q̂χ

)
, (1)

where n̂d = d† · d̃ , and Q̂χ = [s†d̃ + d†s](2) + χ [d†d̃](2). The
creation operators for the two spins are denoted by s† and d†,
respectively [13]. This provides a description of quadrupole
states in even-even nuclei in terms of the SU(6) group. The
Hamiltonian is diagonalized within the space of NB bosons.
The number of bosons is taken to be half the number of valence
nucleons in agreement with conventional IBM approaches.

The ratios of the energy levels are determined by the IBM
parameters χ and ζ . The energy scale is determined by the
parameter cE(ζ, χ ), which will be fixed by the energy of the
first 2+ state.

Table I presents IBM parameters from previous work ob-
tained by fitting the experimental energy ratios of gadolinium,
dysprosium, and erbium isotopes. The parameters ζ and χ

define the Casten triangle within which most nuclei can be
placed [7]. The U(5) vibrational limit corresponds to ζ = 0
and describes a spherical nucleus. The other limit, ζ = 1,
corresponds to a well-deformed nucleus. The O(6) limit
corresponds to ζ = 1 and χ = 0, representing a nucleus that is
unstable with respect to the triaxiality parameter γ . The SU(3)
oblate or prolate rotor limit is reached for ζ = 1 and χ =

√
7

2

or χ = −
√

7
2 , respectively.

TABLE III. IBM mapping parameters with CS based on E(2+
1 )TAC

in keV and B(E2 : 2+
1 → 0+

1 )TAC in e2 b2.

AX E(2+
1 )TAC B(E2)TAC cE cβ χ ζ eB

98 Mo 238 0.131 1.40 4.00 −0.06 0.68 0.074
100 Mo 178 0.202 1.45 3.75 −0.08 0.76 0.082
102 Mo 179 0.229 1.79 3.50 −0.06 0.82 0.079
104 Mo 155 0.278 1.96 4.00 −0.02 0.96 0.080
106 Mo 150 0.297 2.00 3.75 −0.02 0.94 0.077
108 Mo 149 0.199 2.40 4.00 0.04 1.00 0.060
102 Pd 350 0.086 1.86 4.00 −0.46 0.58 0.056
104 Pd 311 0.113 2.12 3.75 −0.36 0.62 0.058
106 Pd 262 0.144 2.06 3.50 −0.30 0.64 0.061
108 Pd 247 0.154 2.02 3.00 −0.26 0.64 0.060
110 Pd 230 0.166 2.02 3.00 −0.14 0.66 0.058
112 Pd 224 0.175 2.13 3.00 −0.06 0.68 0.055
108 Cd 410 0.090 2.14 3.50 −0.36 0.56 0.051
110 Cd 397 0.080 2.11 3.00 −0.30 0.56 0.046
112 Cd 325 0.102 1.71 2.75 −0.20 0.56 0.050
114 Cd 270 0.117 1.81 3.25 −0.02 0.60 0.048
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FIG. 1. (Color online) Energy surface comparisons for molyb-
denum nuclei, which are reproduced by the IBM. The color scale
is in MeV, indicating the the region nearest the minima. The
angle corresponds to the triaxial degree of freedom, with γ = 0
corresponding to prolate shapes.

III. FERMIONIC POTENTIAL ENERGY SURFACE

The mean-field PESs are generated by means of the
tilted-axis cranking (TAC) code described in Ref. [14], with
the rotational frequency set equal to zero. The TAC is a
micro-macro mean-field method, which allows the calculation
of energy as a function of the deformation parameters, β

(ε2) and γ . This combines a macroscopic deformed liquid
drop with microscopic corrections for the pairing interaction

FIG. 2. (Color online) Mapping energy surface comparisons for
palladium nuclei.

and Strutinsky renormalization of levels based on a Nilsson
potential. The pairing effects are calculated using standard
Bardeen-Cooper-Schrieffer (BCS) model pairing based on the
phenomenological fits by Möller and Nix [15]. The BCS
pairing gaps used are a function of atomic mass number:

�p = 13.4

A1/2
[MeV], and �n = 12.8

A1/2
[MeV]. (2)

As discussed below, the TAC code also allows one to calculate
the energy of the first 2+ state, which sets the energy scale as
well as the scale of the B(E2) values.

The resulting deformation minima are generally consistent
with experimentally determined deformations and the results
of Möller, Nix, et al. [16,17]. The PESs generated for mapping
include the quadrupole and triaxial degrees of freedom, with
the hexadecapole optimized for each ε2-γ grid. The value used
for the hexadecapole deformation parameter is determined
using an automated minimization procedure in which all three
parameters are determined corresponding to the equilibrium
deformation.
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FIG. 3. (Color online) IBM energy surface comparisons for
erbium nuclei. The third column contains the potentials created using
McCutchan’s χ -ζ values, with cE determined by the experimental 2+

1

a constant scaling of cβ = 3.5.

IV. MAPPING PROCEDURE

The resulting TAC PES will be compared with the IBM
energy surface until the closest match is found. The expectation
value of the IBM-1 Hamiltonian with the coherent state
(|NB, βB, γB〉) is used to create the IBM energy surface [18].
The state is a product of boson creation operators (B̂+),
with

|NB, βB, γB〉 = 1√
N !

(B̂+)NB |0〉, (3)

where

B̂+ = s+ + βB

(
cos(γB)d+

0 + sin(γB)√
2

(d+
2 + d+

−2)

)
. (4)

The d+ operators are coupled to angular momentum projec-
tions of 0 or ±2. This expectation value has been given by
Ginoccio and Kirson [19]:

EIBM(βB, γB) = 〈NB, βB, γB |HIBM|NB, βB, γB〉

= cE

[ −5
4 ζ + [(1 − ζ )NB − 1

4ζ (1 + χ2)](βB)2

1 + (βB)2

−
(

ζ (NB − 1)(βB)2

[1 + (βB)2]2

)

×
(

1 −
√

2

7
χβB cos(3γB) + χ2

14
(βB)2

)]
.

(5)

The bosonic deformation parameters are assumed to
be related to the fermionic mean-field deformation
parameters by

γB = γ, and βB = cβε2. (6)

Hence, there are four unknowns: two IBM parameters ζ , χ

and two scaling coefficients cE , cβ . The cE is the total energy
scale, and cβ is the deformation scale.

The parameters of the IBM-1 Hamiltonian are determined
by means of the following procedure. First, the energy of the
first 2+ state is fixed. In Table II, the E(2+

1 )expt is used, but this
can also be calculated by the TAC. For each combination of
ζ, χ parameters appearing in the process of fitting, the IBM-1
Hamiltonian is diagonalized, and the scale cE of the IBM
energy surface is determined by the ratio

cE(ζ, χ ) = E(2+
1 )expt,TAC

E(2+
1 )IBM(ζ, χ )

. (7)

Simultaneously, the scale parameter cβ is fixed by the
requirement that the IBM energy surface has a minimum at
βB(min) = cβε2(min), where the TAC energy surface has a
minimum at ε2(min). There is no such requirement in the γ

degree of freedom because Eq. (1) is not capable of creating a
triaxial minimum.

In addition, there is the effective boson charge eB , which
sets the scale for the reduced transition probabilities B(E2). It
is fixed by a ratio of B(E2) values such that

e2
B(ζ, χ ) = B(E2 : 2+

1 → 0+
1 )expt,TAC

B(E2 : 2+
1 → 0+

1 )IBM(ζ, χ )
. (8)

We will focus primarily on using the experimental value
B(E2 : 2+

1 → 0+
1 )expt. In regions where this state has not been

measured experimentally, one should use the B(E2 : 2+
1 →

0+
1 )TAC calculated by means of the tidal wave method explained

below.
The energy surfaces generated from the IBM-1 Hamiltonian

do not well reproduce those generated by the TAC over a wide
range of energies. The wave functions of the low-lying states
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TABLE IV. IBM-mapping-generated B(E2) transition probabilities compared to experiment with calculated scale, scaled to match B(E2 :
2+

1 → 0+
1 ) or B(E2 : 2+

2 → 0+
1 ) from experiment.

B(E2) 106Pd 108Pd 112Cd 156Gd
transition Expt. [23] Mapped Mapped Expt. [23] Mapped Mapped Expt. [24] Mapped Mapped Expt. [25] Mapped

2+
1 → 0+

1 with CS 2+
1 → 0+

1 with CS 2+
1 → 0+

1 with CS 2+
2 → 0+

1

0+
2 → 2+

1 43+6
−9 14.95 13.97 52+6

−6 18.11 14.01 41+9
−9 23.92 18.63 0.29

0+
2 → 2+

2 19+7
−3 31.62 39.1 47+5

−11 40.74 46.9 6.71 9.96 >5.4 29.89

0+
3 → 2+

1 2.4+0.4
−0.3 1.06 0.7 <1 1.24 1.24 0.012+0.001

−0.001 0.17 0.29 0.05

0+
3 → 2+

2 13+3
−2 39 28.63 <19 42.58 29.25 54.74 44.38 5.05

2+
1 → 0+

1 42+4
−4 42 43.41 50+7

−5 50 48.37 30.6+0.6
−0.6 30.6 28.29 107.95

2+
2 → 0+

1 0.87+0.10
−0.09 0.82 1.51 0.63+0.07

−0.07 1.22 1.63 0.15 0.25 2.7–4.2 3.45

2+
2 → 2+

1 39+4
−4 46.74 34.14 51+5

−5 51.33 40.54 56+25
−25 45.87 39.38 4.0–6.2 7.3

2+
2 → 4+

1 0.01 0 0.01 0 0.14 0.11 0.6–1.0 0.6

2+
3 → 0+

1 0.14+0.02
−0.02 0.25 0.37 0.095+0.010

−0.015 0.34 0.4 0.3+0.1
−0.1 0.08 0.11 0.04

2+
3 → 0+

2 39+4
−4 28.2 28.2 59+8

−6 33.84 31.68 59+16
−16 25.11 22.12 76.06

2+
3 → 0+

3 1.1 0.97 1.19 1.42 40+20
−20 0.02 0.08 0.97

2+
3 → 2+

1 0.52+0.10
−0.07 0.03 0.06 1.7+0.2

−0.7 0.05 0.07 0.3+0.2
−0.2 0 0.01 0.03

2+
3 → 2+

2 10.2+2.2
−1.5 3.29 2.8 12+6

−4 3.86 2.64 5.59 4.34 2.95

2+
3 → 4+

1 5.3+2.5
−1.4 6.74 6.12 45+11

−7 8.11 6.38 10.01 7.88 0.15

2+
4 → 0+

2 1.2 1.01 1.32 1.36 5.7+1.5
−1.5 0.1 0.2 0.97

2+
4 → 0+

3 26.64 24.22 31.45 28.76 26+7
−7 24.79 21.49 73.96

2+
4 → 2+

2 0.54 0.66 0.77 0.87 <2.4 0.14 0.22 0.6

3+
1 → 2+

1 1.46 2.71 2.18 2.91 1.7+0.5
−0.5 0.29 0.47 6.1–9.1 6.04

3+
1 → 2+

2 50.9 50.18 60.42 56.74 62+17
−17 43.33 38.37 152.13

3+
1 → 4+

1 17.16 13.86 19.38 16.38 24+9
−9 16.46 14.11 4.1–6.1 5.03

4+
1 → 2+

1 71+7
−7 63.34 65.43 74+5

−8 75.81 72.71 61+8
−8 49.48 44.92 152.58

4+
1 → 2+

2 0.01 0 1.2+1.4
−1.1 0.01 0 0.08 0.06 0.33

4+
2 → 2+

1 0.007+0.006
−0.003 0.05 0.08 <0.3 0.07 0.09 0.03 0.04 1.4–2.5 1.02

4+
2 → 2+

2 35+5
−4 37.77 37.05 55+7

−5 44.84 41.84 31.99 28.4 54.7

4+
2 → 2+

3 1.72 2.51 3.7+2.7
−1.1 2.38 3.01 0.46 0.63 5.09

4+
2 → 4+

1 23+3
−2 27.73 21.87 30+5

−5 31.12 25.78 27.39 23.35 8.2–14.6 8.4

4+
3 → 2+

1 0 0.02 0.01 0.02 0.28+0.08
−0.08 0 0 0 0.04

4+
3 → 2+

2 0.39 0.86 2.9+1.1
−0.8 0.62 0.88 69+21

−21 0.11 0.16 1.7 0.47

4+
3 → 2+

3 0.16 0.72 0.32 0.6 48+14
−14 0.02 0.04 102.56

4+
3 → 3+

1 39.68 36.19 46.62 41.58 36.5 31.83 3.7 0.1

4+
3 → 4+

1 0.27 0.38 0.2+1.5
−0.2 0.38 0.43 28+9

−9 0.07 0.1 0.01 0

4+
3 → 4+

2 34 30.67 1.9+4.8
−1.8 39.82 35.9 31.07 26.99 2 5.94

4+
3 → 6+

1 0.84 0.85 1.01 0.9 0.79 0.69 0 0.14

4+
4 → 4+

3 1.54 3.64 2.46 3.44 0.44 0.63 >35 24.96

5+
1 → 4+

1 0.64 1.18 0.97 1.25 0.17 0.25 2.4–17.8 3.78

5+
1 → 6+

1 16.09 13.55 18.47 15.97 15.61 13.35 3.6–22.6 6.66

6+
1 → 4+

1 89+10
−13 74.88 76.32 107+12

−11 89.81 85.06 62.17 55.63 164.57

6+
2 → 4+

2 54.88 55.04 56+8
−17 65.94 61.98 47.91 42.34 105.44

8+
1 → 6+

1 107+13
−26 81.48 82.3 149+19

−15 98.13 92.18 70.94 62.88 166.55

explore only the low-energy portion of the PES. Therefore,
one should only map the low-energy part of the TAC PES.
In our evaluation, it has been determined that best agreement

with experimental spectra is obtained when regions of the TAC
energy surface below 1 MeV are mapped to the IBM energy
surface.
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FIG. 4. (Color online) Low-lying energy spectra for krypton nu-
clei with experimental data compared with results from IBM mapping
techniques. Data retrieved from ENSDF [22]. Shape coexistence and
the existence of a triaxial minimum explain why the γ and β bands
are lower than predicted. The γ band refers to E(2+

3 ) and E(3+
1 ),

while the β band is E(0+
1 ) and E(2+

2 ).

The parameters ζ, χ are found by minimizing the mean-
squared deviation d2 between ETAC(ε2i , γi) and EIBM(ε2i , γi),

d2(ζ, χ, cβ ) =
∑

i

[ETAC − EIBM(ζ, χ, cβ )]2, (9)

where the index i is summed over all grid points for which the
TAC PES is below 1 MeV.

Often the low-energy region of the TAC energy surface
contains more structure than the corresponding IBM energy
surface. Nevertheless, the IBM parameters obtained from the
mapping procedure are shown in Table II.

Reference [20] describes the tidal wave approach that
can be used to calculate the energy of the first 2+ state
and the B(E2) value, which fixes cE and eB in regions where
the experimental information is not available. To distinguish
these results from the scales determined by experimental
input, the TAC scales will be labeled as IBM mapping with
calculated scale (CS).

In the tidal wave approach, the yrast states 2+, 4+, . . . are
viewed as a traveling wave that runs with a constant angular
velocity over the surface of the nucleus. In the co-rotating
frame, the time-independent amplitude of this wave, i.e., the

deformation, can be calculated by means of the cranking
model. The cranking model generates deformed states with
〈Jx〉 = I (ω). The energy ETAC(I (ω), ε2, γ ) is minimized. The
excitation energy between the states with I = 0 and 2 is

E
(
2+

1

)
TAC = ETAC(I (ω) = 2) − ETAC(I (ω) = 0). (10)

The TAC code has the advantage that it will generate the
fermionic PES, E(2+

1 )TAC, and B(E2)TAC, all within the same
frame work. The values obtained in this way for a number of
the considered nuclides are given in Ref. [20]. The resulting
values typically agree with the experimental values within a
range of 20%. We have also carried out the mapping based on
some calculated values.

Table III contains the resulting IBM parameters using
the same micro-macro PESs as before and but now taking
the TAC-generated E(2+

1 ) and B(E2) to set the scales
in the mapping procedure. The procedure is now com-
pletely predictive. The IBM parameters can be compared
to the results using the experimentally determined scales in
Table II.

Even though the overall scales change, the χ and ζ

parameters are only slightly modified, indicating that the initial
fits to the potentials are somewhat robust. The resulting levels
and transitions essentially contain a shifted scale depending
on which approach is used.

Figures 1–3 compare side by side the fermionic PES with
the mapped bosonic energy surface. The color scale extends
from the minimum up to 1 MeV above it, indicating the
range used in the mapping procedure. The general features
of the fermionic TAC energy surface can be reproduced by the
mapped IBM energy surface.

The TAC energy surfaces of the molybdenum nuclei in
Fig. 1 contain additional minima and triaxial minima which
are not reproduced in the mapped IBM energy surface. This
is a shortcoming of having used the simple Hamiltonian (1).
However, these features are accounted for, to some extent, by a
general γ softening of the IBM energy surface. The γ -softness
feature will be seen in the resulting levels as a lowering of the

.

FIG. 5. (Color online) Low-lying energy spectra for molybdenum nuclei, experimental data compared with IBM mapping results. Data
retrieved from ENSDF [22]. The second and third columns consist of the mapping procedure using E(2+

1 )expt and E(2+
1 )TAC to set cE , respectively.
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FIG. 6. (Color online) Same as Fig. 5, but for palladium nuclei.

γ bandhead. These results are similar to what was found for
krypton.

Figure 2 contains the energy surfaces for palladium iso-
topes. For 112Pd–116Pd a secondary prolate minimum exists in
the TAC PES, which eventually dominates. Similar results are
found for cadmium nuclei.

Figure 3 compares the energy surface for erbium isotopes.
The TAC energy surfaces with minima at large deforma-
tions (ε2 �0.2) are not well reproduced by the IBM energy
surfaces because it is not possible to create a large rigid
deformation with the IBM-1 Hamiltonian that has been used.
Similar results are found for the gadolinium and dysprosium
nuclei.

Previous IBM-1 fits to the experimental levels of the erbium
isotopes by McCutchan et al. [10] indicate that the chain begins
near the O(6) γ -soft limit and evolves toward the SU(3) rigid-
rotor limit. The evolution of the parameters from mapping, in
Table II, begin in a different regime. Specifically, the values
start close to the rotor limit and slowly evolve toward the γ -soft
limit.

Figure 3 also contains the IBM energy surface generated
from χ -ζ values of McCutchan et al. where an average
value was used for the scale cβ of 3.5. The comparison
of the parameters indicates an ambiguity in the mapping

procedure. The ambiguity is that the low-energy region of two
energy surfaces with substantially different parameters can
look nearly identical. Generally, reducing the value of ζ and
increasing the value of χ leaves the PESs nearly unchanged.
This is the case when dealing with the erbium isotopes.

The ambiguity does not persist far from the minima. For
example, the potentials for 168Er at ε2 = 0 are substantially
different, 11.8 and 4.6 MeV, for the IBM mapped parameters
and McCutchan et al. fits

V. ENERGIES AND TRANSITION PROBABILITIES FOR
SELECTED NUCLEI

The energies and transition probabilities that have been
calculated by means of the IBM using parameters determined
by the mapping procedure are shown in Figs. 4–10 and
Table IV. The calculated values are compared with available
experimental data.

Figures 4 and 5 show the levels of transitional and triaxial
krypton and molybdenum nuclei. Although the energy surfaces
are not very well reproduced, the resulting levels for the axial
nuclei are in fair agreement with experiment. The exception
is the second 0+, which lies too high in the calculation. Most

FIG. 7. (Color online) Same as Fig. 5, but for cadmium nuclei.
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FIG. 8. (Color online) Same as Fig. 4, but for gadolinium nuclei. Also included are the level spectra using the McCutchan et al. level
fits [10], which are scaled to the first experimental 2+.

likely this is the result of shape coexistence, which is indicated
by the TAC energy surface but which the IBM Hamiltonian is
unable to describe. As the neutron number increases, all of the
results significantly improve.

Figures 5–7 contain a third column of levels calculated by
IBM mapping with CS that are completely predicted. These
result from using the TAC to generate the transition and total
energy scales. The corresponding spectra are basically very
similar to those in the second column but are compressed based
on the relative energies of the 2+

1 state. Figures 6 and 7 display
the palladium and cadmium isotopes. Their TAC energy
surfaces are well reproduced by the mapped IBM energy
surface. The ground state and γ bands of palladium nuclei are
within a few hundred keV of the experiment. For cadmium,
the 4+

1 and 2+
γ are in good agreement with experiment. Again,

the 0+
2 states and the 2+

3 states built thereupon are least well
accounted for.

This is presumably related to the appearance of a secondary
minimum in the TAC PES, which corresponds to the “intruder
state” in IBM terminology. The first potential along the
palladium isotopes which appears to have a second competing
minima is 112Pd. As the neutron number increases for these
isotopes, the secondary minima become more apparent and the

discrepancy between the mapped and experimental β bands
increases.

Figures 8–10 include the strongly deformed isotopes of
gadolinium, dysprosium, and erbium, which have sharply
rising energy surfaces that can only be generated with many
bosons NB > 12. The β band is about 700 keV above the
experimental values for dysprosium nuclei and 600 keV for
erbium nuclei.

In the well-deformed nuclei, the 0+
2 states may contain an

appreciable admixture of a pairing vibration or may represent a
fragment of the β vibration with a dominant two-quasiparticle
contribution.

The transition probabilities, shown in Table IV, are in
reasonable agreement with experiment, except for the 0+

2
and 2+

2 states, for which the discrepancies are noticeably
larger. Most of the transition rates for 106,108Pd and 112Cd are
well reproduced by this technique. For 156Gd, even the weak
transition rates appear to be in agreement with experiment.

Overall, the most severe discrepancies between the calcu-
lations and experiment appear for the 0+

2 state, for which the
experimental energy is below what is predicted. This is likely
because the IBM Hamiltonian generates a 0+

2 state that has the
character of a shape vibration. However, the structure of the

FIG. 9. (Color online) Same as Fig. 8, but for dysprosium nuclei.
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FIG. 10. (Color online) Same as Fig. 8, but for erbium nuclei.

0+
2 states is more complex. Clearly, the IBM Hamiltonian does

not account for these complexities. Another weakness of the
IBM-1 Hamiltonian used, is that it is not capable of producing a
triaxial minimum. Experimental evidence indicates that some
of the studied nuclei change from oblate to triaxial and eventu-
ally to prolate shape as the number of neutrons increases [21].
Triaxial shapes result in experimental 2+

γ levels which are
lower than those produced by the IBM mapping procedure.

In spite of the moderate success of this approach for
predicting the low-lying levels, the resulting probability
distributions may yield more promising results. The potentials
generated using different parameters are often comparable,
take, for example, the erbium nuclei past 160Er in Fig. 3. The
resulting probability distributions based on these potentials
should likewise be comparable.

The probability distributions for 80Kr determined by the
experimental level fits in the ISS [8] are compared with those
resulting from the mapping procedure in Fig. 11. In this case
the value of ζ differed using the two approaches by 0.21 and
χ changed by 0.30; however, the probability distributions
are similar. Furthermore, a photoabsorption cross-section
calculation based on either of these probability distributions is
expected to yield similar results.

FIG. 11. (Color online) Probability distributions for the ground
state of 80Kr based on the IBM mapping procedure and level fits
from the ISS [8]. For the ISS evaluation, the IBM parameters are
ζ = 0.35, χ = −0.06, and eb = 0.075, while the mapped parameters
are ζ = 0.56, χ = 0.24, and eb = 0.055.

VI. CONCLUSIONS

We determined the parameters of the IBM-1 Hamiltonian
by adjusting the bosonic PES, generated from the IBM
Hamiltonian by calculating the expectation values of coherent
states, to the fermionic PES, calculated by means of the
micro-macro method. Matching the surfaces for energies less
than 1 MeV above the minimum produced the best results. The
overall energy scale was fixed by the energy of the 2+

1 state.
The IBM-1 Hamiltonian, with parameters derived in this

way, reproduces the spectra of the even-even transitional and
well-deformed nuclei fairly well. The calculated energies of
the ground-state band and the quasi-γ -band usually agree
within a few hundred keV with experiment. The quasi-β-band
is not well reproduced, differing from experiment by up to
1 MeV. In almost all cases the calculated 0+

2 state lies higher
than in experiment. We attribute this to the complex structure of
this state. Shape coexistence, an admixture of pair vibrations,
or a strong two-quasiparticle component appear to modify its
β vibrational character. None of these effects are adequately
accounted for by the IBM-1 Hamiltonian.

The B(E2) values for the ground band and the quasi-γ band
are also reasonably well described. The calculated values for
the quasi-β band may deviate substantially from experiment.

Some of the Mo isotopes have a triaxial minimum in their
fermionic energy surface, which cannot be generated for a
bosonic energy surface derived from the IBM-1 Hamiltonian.
In these cases, the energy of the 2+

2 state is less well
reproduced, as one might expect.

It appears that the mapping technique can be used to
predict the low-lying spectra of nuclei far from stability
to the mentioned level of accuracy. In particular, the IBM
parameters derived by mapping can be used for predicting the
probability distributions of the ground-state shapes of nuclei.
This will allow the calculation of γ -absorption cross sections
of nuclei that are unable to be measured experimentally, which
is important for studying astrophysical processes.
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R. Schwengner, and S. Q. Zhang, Phys. Rev. C 83, 014317
(2011).

[9] K. Nomura, N. Shimizu, and T. Otsuka, Phys. Rev. Lett. 101,
142501 (2008).

[10] E. A. McCutchan, N. V. Zamfir, and R. F. Casten, Phys. Rev. C
69, 064306 (2004).

[11] A. Bohr and B. Mottelson, Nuclear Structure II: Nuclear
Deformations (World Scientific, Singapore, 1999).

[12] C. B. Dover and N. V. Giai, Nucl. Phys. A 190, 373
(1972).

[13] F. Iachello and A. Arima, The Interacting Boson Model
(Cambridge University, New York, 1987).

[14] S. Frauendorf, Nucl. Phys. A 557, 259 (1993).
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L. Westerberg, D. Cline, T. Czosnyka, C. Y. Wu, R. M. Diamond,
and H. Kluge, Nucl. Phys. A 584, 547 (1995).

[24] H. Lehmann, P. E. Garrett, J. Jolie, C. A. McGrath, M. Yeh, and
S. W. Yates, Phys. Lett. B 387, 259 (1996).

[25] A. Aprahamian, Phys. At. Nucl. 67, 1750 (2004).

064322-10

http://dx.doi.org/10.1016/0375-9474(71)90122-9
http://dx.doi.org/10.1016/0375-9474(71)90122-9
http://dx.doi.org/10.1016/0375-9474(74)90165-1
http://dx.doi.org/10.1016/0375-9474(74)90165-1
http://dx.doi.org/10.1103/PhysRevLett.35.1069
http://dx.doi.org/10.1016/0003-4916(78)90159-8
http://dx.doi.org/10.1016/0003-4916(78)90159-8
http://dx.doi.org/10.1103/PhysRevC.66.021304
http://dx.doi.org/10.1103/PhysRevC.66.021304
http://dx.doi.org/10.1103/PhysRevLett.48.1385
http://dx.doi.org/10.1103/PhysRevLett.48.1385
http://dx.doi.org/10.1038/nphys451
http://dx.doi.org/10.1103/PhysRevC.83.014317
http://dx.doi.org/10.1103/PhysRevC.83.014317
http://dx.doi.org/10.1103/PhysRevLett.101.142501
http://dx.doi.org/10.1103/PhysRevLett.101.142501
http://dx.doi.org/10.1103/PhysRevC.69.064306
http://dx.doi.org/10.1103/PhysRevC.69.064306
http://dx.doi.org/10.1016/0375-9474(72)90148-0
http://dx.doi.org/10.1016/0375-9474(72)90148-0
http://dx.doi.org/10.1016/0375-9474(93)90546-A
http://dx.doi.org/10.1016/0375-9474(92)90244-E
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1006/adnd.1995.1002
http://dx.doi.org/10.1016/j.adt.2008.05.002
http://dx.doi.org/10.1016/j.adt.2008.05.002
http://dx.doi.org/10.1103/PhysRevC.24.684
http://dx.doi.org/10.1016/0375-9474(80)90387-5
http://arXiv.org/abs/0709.0254
http://dx.doi.org/10.1103/PhysRevC.80.021307
http://dx.doi.org/10.1103/PhysRevC.80.021307
http://www.nndc.bnl.gov/ensdf/
http://dx.doi.org/10.1016/0375-9474(94)00514-N
http://dx.doi.org/10.1016/0370-2693(96)01038-6
http://dx.doi.org/10.1134/1.1806918

