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What can be learned from binding energy differences about nuclear structure: The example of δVpn
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We perform an analysis of a binding energy difference called δVpn(N,Z) ≡ − 1
4 [E(Z,N ) − E(Z, N − 2) −

E(Z − 2, N ) + E(Z − 2, N − 2)] in the framework of a realistic nuclear model. It has been suggested that
δVpn values provide a sensitive probe of nuclear structure, and it has been put forward as a primary motivation
for the measurement of specific nuclear masses. Using the angular momentum and particle-number projected
generator coordinate method and the Skyrme interaction SLy4, we analyze the contribution brought to δVpn by
static deformation and dynamic fluctuations around the mean-field ground state. Our method gives a good overall
description of δVpn throughout the chart of nuclei with the exception of the anomaly related to the Wigner energy
along the N = Z line. The main conclusions of our analysis of δVpn, which are at variance with its standard
interpretation, are that (i) the structures seen in the systematics of δVpn throughout the chart of nuclei can be
easily explained combining a smooth background related to the symmetry energy and correlation energies due
to deformation and collective fluctuations, (ii) the characteristic pattern of δVpn having a much larger size for
nuclei that add only particles or only holes to a doubly magic nucleus than for nuclei that add particles for one
nucleon species and holes for the other is a trivial consequence of the asymmetric definition of δVpn and not
due to a the different structure of these nuclei, (iii) δVpn does not provide a very reliable indicator for structural
changes, (iv)δVpn does not provide a reliable measure of the proton-neutron interaction in the nuclear energy
density functional (EDF) or of that between the last filled orbits or of the one summed over all orbits, and
(v) δVpn does not provide a conclusive benchmark for nuclear EDF methods that is superior or complementary
to other mass filters such as two-nucleon separation energies or Q values.
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I. INTRODUCTION

Nuclear masses are currently measured with an unprece-
dented accuracy [1–4], in many cases better than a few keV.
Such an accuracy is obtained not only for nuclei close to the
stability line but also for exotic ones with very short lifetimes.
A recurrent question is how to take advantage of this major
advance and how to use it to improve the theoretical description
of nuclear ground states.

The first possibility is to compare masses, or even better
binding energies, directly to theoretical predictions. Unfortu-
nately, ab initio methods based on a realistic nucleon-nucleon
interaction are not available for systematic studies of heavy
nuclei. If they were, any disagreement with the experimental
data would point to a deficiency of the interaction. When the
many-body problem is not solved exactly (or, to be more
precise, with a controlled numerical accuracy) but with an
effective model using effective degrees of freedom and an ef-
fective interaction, the link between data and nucleon-nucleon
interaction is broken, and a discrepancy between calculation
and experiment can have its source in any ingredient of the
model.

The best available theoretical descriptions of masses
[1,5–8] are not based on ab initio methods. The three main
models rely on very different ingredients. The mass formula
of Duflo and Zuker [5] does not make an explicit reference
to a nucleon-nucleon interaction. Nevertheless, it assumes
that there exist effective interactions smooth enough for
Hartree-Fock calculations to be possible. The correspond-

ing Hamiltonian is separated into monopole and multipole
terms that are parameterized through scaling and symmetry
arguments [1]. The macroscopic-microscopic approaches of
Möller et al. [6] combine a finite-range liquid-drop or droplet
model and shell effects introduced through the Strutinsky shell
correction method and a parameterized one-body potential.
The main ingredient of the Hartree-Fock-Bogoliubov (HFB)
mass formulas of Goriely et al. is an energy density functional
(EDF), which is widely used in self-consistent mean-field
calculations. In a first variant, a Skyrme EDF is supplemented
by empirical corrections for correlations that cannot be
included in a mean field [7]. In a second variant, the same
Gogny interaction is used to determine the mean field and
quadrupole correlation effects beyond the mean field through
a microscopic Bohr Hamiltonian [8]. The comparison of any
of these models with data can hardly allow us to extract
general information about the nucleon-nucleon interaction.
Comparison with results obtained using ab initio methods
and realistic interactions can be made through the idealized
model of infinite nuclear matter. From such calculations, one
can extract specific parameters, such as volume and symmetry
energy coefficients, corresponding to a liquid-drop formula
(LDM) fitted to masses. Here also, the connection between
theory and experiment is ambiguous. The liquid-drop model
is justified by a leptodermous expansion of the energy that
cannot be expected to converge quickly even for the heaviest
nuclei [9,10].

An apparently more appealing way to proceed is to relate
differences between binding energies of neighboring nuclei to
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specific features of nuclear models, in particular to effective
single-particle energies or effective two-body matrix elements
[11]. Models that fail to reproduce masses with a good
accuracy are often more reliable for mass differences. The
reason for this success is that mass residuals Mth − Mexpt for
adjacent nuclei are not independent in a given mass model
[12,13].

This property has been used for a long time to associate one-
nucleon separation energies with single-particle energies or
higher-order differences with pairing gaps. In particular, two-
particle separation energies are important indicators of shell
closures. One has to distinguish, however, between the use of
mass filters as measures of specific model ingredients and their
use as signatures of structural changes. In particular, a mass
filter cannot be expected to provide both simultaneously. One
can test a model ingredient only when all nuclei entering a mass
filter have the same structure, which becomes increasingly
improbable with the number of nuclei involved. In contrast, the
indication of a structural change (such as onset of deformation)
by a mass filter often means that the fundamental assumptions
made for its direct association with a feature of a model are
violated.

In a previous paper [14], we discussed the difficulties
encountered when trying to relate structures seen in the
systematics of energy differences to features of the single-
particle levels. The changes in the large gaps observed in data
for two-neutron or two-proton separation energies are often
interpreted as being due to the evolution of shell structure with
N and Z and associated with the presence of strong residual
tensor interactions [15] or a weakening of the spin-orbit
interaction in neutron-rich nuclei [16,17]. We showed that
experimental data can be explained in a coherent way within
mean-field-based models as being due to a combination of the
slow modification of spherical single-particle spectra and the
often rapid variation of collective correlation effects.

In this paper, we perform a similar analysis for a mass
filter that has become fashionable and has been identified
with the proton-neutron interaction in nuclei. Many recent
experimental data have been used to interpret a difference
between the (negative) binding energies of four even-even
nuclei defined as

δVpn(N,Z) = − 1
4 [E(Z,N ) − E(Z,N − 2)

−E(Z − 2, N ) + E(Z − 2, N − 2)] (1)

in terms of the effective interaction between the last occupied
neutron and proton orbits [18–25]. A similar quantity has
been analyzed in great detail by Jänecke et al. [26], but for
nuclei differing by one neutron and/or one proton only, which
makes its interpretation more difficult. Indeed, the breaking of
a pair in a nucleus with an odd number of particles modifies
pairing correlations deeply and makes the structure of its wave
function significantly different from that of its even neighbors.
By comparing only nuclei with an even number of neutrons and
protons, one can hope that the assumption of a common mean
field is better justified. Differences between two consecutive
δVpn values have also been proposed as a measure for the
Wigner energy that leads to an anomaly of binding energies
around the N = Z line [27,28].

In Sec. II, we show how, in the framework of the Hartree-
Fock (HF) method, δVpn can be related to the interaction
between the last filled neutron and proton orbits when making
the same assumptions as those used to derive Koopman’s
theorem [29]. We show that the introduction of pairing
correlations and density dependencies complicates the relation
even when making oversimplifying assumptions about the
evolution of wave functions with N and Z. We discuss the
main effects that make any direct identification of δVpn with
a proton-neutron interaction doubtful. In Sec. IV, we present
results obtained from calculations using a realistic microscopic
model using the Skyrme energy density functional SLy4. We
demonstrate how the successive inclusion of correlations from
spherical to deformed mean-field calculations and further to
symmetry restoration and configuration mixing permits us to
improve at each step the agreement with the experimental data
while, at the same time, losing in an ever-increasing manner
the simple interpretation of δVpn. Section V summarizes our
findings.

II. ANALYSIS OF δVpn

Surprisingly, the abundant literature discussing the rele-
vance of δVpn contains only a very few analyses of its relation
with the proton-neutron interaction in nonschematic models.
Exceptions are the shell-model study of Heyde et al. [30],
who underline that a simple interpretation of δVpn can only
be given when there is just one dominant orbital for protons
and neutrons each, and the nuclear Density Functional Theory
study by Stoitsov et al. [24], who, however, focus their analysis
on the overall excellent reproduction of data for δVpn with
their model, rather than on the ingredients of the model that
contribute to it. Below, we review the assumptions to be made
to relate δVpn to the effective proton-neutron interaction in
finite nuclei and discuss their validity in the context of realistic
nuclear models based on the self-consistent mean field and
taking the entire space of occupied single-particle orbits into
account. We start with a simple two-body Hamiltonian and
discuss the corresponding energy in the context of HF (without
pairing) and HFB (with pairing). Then, we generalize the
discussion to a more realistic effective interaction that includes
three-body forces or density dependencies.

A. Frozen HF with two-body interaction

Let us start from a Hamiltonian consisting of a
kinetic energy term and an antisymmetrized two-body
interaction:

Ĥ =
∑
i,j

tij a
†
i aj + 1

4

∑
i,j,m,n

v̄ijmn a
†
i a

†
j anam . (2)

When limiting the N -body wave function to a single Slater
determinant, the minimum value of the energy is obtained by
solving HF equations [29]. In this case the energy for a nucleus
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consisting of N neutrons and Z protons is given by

EHF(N,Z) =
N∑

n=1

tN,Z
nn +

Z∑
p=1

tN,Z
pp + 1

2

N∑
n,n′=1

v̄
N,Z
nn′nn′

+ 1

2

Z∑
p,p′=1

v̄
N,Z
pp′pp′ +

N∑
n=1

Z∑
p=1

v̄N,Z
npnp , (3)

where tN,Z
nn are the matrix elements of the kinetic energy

operator and v̄
N,Z
nn′nn′ are the matrix elements of the two-body

interaction calculated in the single-particle basis that solves
the HF equations. We have added superscripts N,Z to these
matrix elements to recall that the HF equations are solved
self-consistently and that, in general, the wave functions differ
for each combination of N and Z values.

Let us assume for the moment that the HF single-particle
basis is identical for the four nuclei with (N,Z), (N − 2, Z),
(N,Z − 2), and (N − 2, Z − 2). This “frozen HF” approxi-
mation leads to

δV HFfrozen
pn (N,Z) = − 1

4 (v̄N−1,Z−1,N−1,Z−1 + v̄N−1,Z,N−1,Z

+ v̄N,Z−1,N,Z−1 + v̄N,Z,N,Z). (4)

The superscripts have been dropped, as the mean field is
supposed to be the same for the four nuclei.1

A further simplification can be obtained by noting that, for
even N and Z, the two valence neutrons (indices N − 1 and
N ) and protons (indices Z − 1 and Z) occupy time-reversed
orbits in the HF solution and that the matrix elements are equal
two by two:

δV HFfrozen
pn (N,Z) = − 1

2 (v̄N,Z−1,N,Z−1 + v̄N,Z,N,Z) . (5)

Even in this simple case, the final result is not a single matrix
element but a combination of matrix elements between the
valence particles.

This derivation requires the same assumptions as those
made to derive Koopman’s theorem [29], which relates
single-particle energies and one-nucleon separation energies.
Koopman’s theorem, however, is known to have a very limited
validity in nuclear physics (see the discussion in Ref. [14] and
references therein).

B. Frozen HF + BCS and HFB with two-body interaction

It is obvious that the assumptions made in the previous
section will rarely be justified, even approximately. Let us
first examine the consequence of the partial occupation of
single-particle levels due to pairing correlations. We consider
only pure proton-proton and neutron-neutron pairing, which
can be justified for nuclei with N sufficiently different from
Z. In the presence of proton-neutron pairing, the many-body
state could not be written as the direct product of a proton and

1This assumption, however, cannot be expected to be valid for all
nuclei. Each nucleus enters the expression for δVpn for four different
nuclei, such that ultimately all nuclei had to have the same mean field
for this assumption to be fulfilled.

a neutron BCS state, and the energy would not be separable
into proton and neutron components any longer.

The HF + BCS or HFB expectation value of a two-body
Hamiltonian (2) for a nucleus with N neutrons and Z protons
evaluated in the canonical basis is given by

EHFB(N,Z)

=
∑

n

tN,Z
nn v2

n,N +
∑

p

tN,Z
pp v2

p,Z + 1

2

∑
n,n′

v̄
N,Z
nn′nn′ v

2
n,N v2

n′,N

+
∑

n

∑
p

v̄N,Z
npnp v2

n,N v2
p,Z + 1

2

∑
p,p′

v̄
N,Z
pp′pp′ v

2
p,Z v2

p′,Z

+
∑

n,n′>0

v̄
N,Z
nn̄n′n̄′ un,N vn,N vn′,N vn′,N

+
∑

p,p′>0

v̄
N,Z
pp̄p′p̄′ up,Z vp,Z vp′,Z vp′,Z . (6)

The uk and vk are real occupation amplitudes with uk =
uk̄ > 0, vk = −vk̄ , and u2

k + v2
k = 1. Indices k and k̄ refer

to conjugate states, which for the ground states of even-
even nuclei are connected by the time-reversal operator. We
use the usual convention where summation over all indices
indicates summation over all k and k̄, whereas summation over
“positive” indices means that the sums are over all k but not
their conjugate levels k̄. The second index of the occupation
amplitudes recalls that these are occupation numbers for
a nucleus with

∑
n v2

n,N = N neutrons and
∑

p v2
p,Z = Z

protons. Except for the last two terms, the summation runs
over positive and negative values of n and p.

To derive a simple expression for δVpn, a similar assumption
as in the frozen HF case has to be made, namely, that the
canonical single-particle basis is the same for all four nuclei
entering a given δVpn(N,Z). In this case, the matrix elements
tkk and v̄kk′kk′ do not depend on N and Z. In addition, one has
to assume that the solution of the HFB equations for neutron
states does not depend on the number of protons and vice
versa. This leads to

δV HFBfrozen
pn (N,Z) = −1

4

∑
n

∑
p

v̄npnp �v2
n,N �v2

p,Z , (7)

where we introduced the shorthand �v2
n,N ≡ v2

n,N − v2
n,N−2

for the change of neutron occupation numbers when removing
two neutrons,

∑
n �v2

n,N = 2, and its homologue �v2
p,Z ≡

v2
p,Z − v2

p,Z−2 for protons.

C. Frozen HF with three-body or density-dependent
interactions

The forms derived in the previous sections were based on
a two-body Hamiltonian. However, interactions derived from
first principles contain at least three-body forces [31], which
are crucial for performing ab initio calculations with some pre-
dictive power. In a similar manner, the more phenomenological
EDF-based methods must include terms of higher order than a
two-body interaction, which is usually done by the inclusion in
the EDF of terms with density dependencies. In particular, the
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saturation of nuclear matter cannot be satisfactorily described
without taking into account these terms [32].

A three-body force adds a term 1
36

∑
i,j,k,l,m,n vijklmn

a
†
i a

†
j a

†
kanamal to the Hamiltonian (2). In the HF approximation,

its contribution to the binding energy is given by

EHF
3b (N,Z)

= 1

6

N∑
n,n′,n′′=1

v̄
N,Z
nn′n′′nn′n′′ + 1

2

N∑
n,n′=1

Z∑
p=1

v̄
N,Z
nn′pnn′p

+ 1

2

N∑
n=1

Z∑
p,p′=1

v̄
N,Z
npp′np′′ + 1

6

Z∑
p,p′,p′′=1

v̄
N,Z
pp′p′′pp′p′′ , (8)

using a notation analogous to that of Eq. (3). In the frozen HF
approximation, a Hamiltonian including two-body and three-
body forces leads to

δV HFfrozen
pn (N,Z)

= −1

4

[
N∑

n=N−1

Z∑
p=Z−1

v̄npnp + 1

2

N∑
n,n′=N−1

Z∑
p=Z−1

v̄nn′pnn′p

+ 1

2

N∑
n=N−1

Z∑
p,p′=Z−1

v̄npp′npp′+
N−2∑
n=1

N∑
n′=N−1

Z∑
p=Z−1

v̄nn′pnn′p

+
Z−2∑
p=1

N∑
n=N−1

Z−2∑
p′=Z

v̄npp′n′p′

]
. (9)

The first three lines represent the two-body and three-body
interactions between the last two neutrons and the last two
protons. The last two lines of Eq. (9), however, contain a
sum over all other nucleons, which is incompatible with the
interpretation of δVpn(N,Z) as the interaction between the last
two neutrons and protons.

Most energy density functionals constructed for self-
consistent mean-field calculations include a nonlinear density-
dependent two-body term of the form 1

4

∑
i,j,m,n vijkl f (ρn +

ρp) a
†
i a

†
j anam, where ρn and ρp are the local densities

of neutrons and protons. Popular examples for f (ρn +
ρp) range from the simple noninteger powers of the total
density f (x) = xα , such as that used with most Skyrme
and Gogny interactions, to the very elaborate density de-
pendencies f (x) ∼ [1 + b(x + d)2]/[1 + c(x + d)2] used in
modern density-dependent relativistic mean-field models
[33,34]. Any density dependence that is not a simple polyno-
mial of the total density gives rise to δVpn values that cannot be
separated into neutron and proton contributions, even within
the frozen HF approximation.

We will not give explicit expressions for the HFB case with
three-body forces or density-dependent terms. It should be
obvious by now that even making the assumption of a frozen
common canonical basis will lead to a lengthy and complicated
expression for δVpn(N,Z) that does not allow for an intuitive
interpretation.

D. Discussion

Even when making the drastic approximation that the four
nuclei entering the calculation of δVpn(N,Z) can be described
by the same mean field, the expression that is obtained for
realistic models includes a summation over all single-particle
levels.2 Furthermore, the occupation of the levels around the
Fermi energy is affected by the addition or the removal of
nucleons, and the contribution of each single-particle level
to δV HFBfrozen

pn (N,Z) is weighted with the difference of its
occupation between the nuclei. It is therefore doubtful that
δVpn allows us to isolate an empirical interaction between the
last neutron and proton orbitals, as claimed in Ref. [22].

Moreover, one might wonder whether the approximation of
a frozen canonical basis necessary to derive Eqs. (5) and (7)
is ever satisfied. To change the number of neutrons or protons
by two induces rearrangement and polarization effects that
modify the single-particle wave functions for both kinds of
nucleons. Even if these effects are most often small, it should
not be forgotten that δVpn(N,Z) is a tiny fraction of the total
binding energy only, ranging from 10−2 in light nuclei to 10−5

in heavy ones. Therefore, even small rearrangement effects
can have a large impact on the values obtained for δVpn(N,Z).
We will analyze the validity of the frozen basis assumption for
a few selected cases in Sec. IV C. Finally, a self-consistent
mean-field description of a nucleus provides a reasonable first
approximation, but it neglects correlations beyond the mean
field that also contribute to the binding energy on the MeV
scale [35,36]. These correlations cannot be cast in a simple
form involving only the interaction between a few particles,
and they also destroy the simple relation between δVpn and
proton-neutron matrix elements.

In the remaining part of this article, we investigate the
importance of self-consistency, deformation, pairing, and
configuration mixing for the description of data for δVpn. We
also analyze to what extent δVpn values can be identified with
the effective proton-neutron interaction.

III. THE MODELS

A. The beyond-mean-field model

Our method used to calculate binding energies for the
ground states of even-even nuclei is described in detail in
Refs. [35,36]. In our analysis, we use the energies as tabulated
in [37], and we add a few nuclei in the vicinity of 208Pb. As
effective interaction, we employ the SLy4 parametrization of
the Skyrme energy density functional [38] for the mean-field
channel in connection with a density-dependent zero-range
pairing interaction.

Starting from a set of mean-field calculations including
a constraint on the axial quadrupole moment, two kinds
of correlations beyond the mean field are introduced. First,
the deformed wave functions are projected on both fixed
particle numbers and on angular momentum J = 0. In a

2A similar observation has been made by Van Isacker et al. [27],
who state that “δVpn(N,Z) is an average np interaction over the last
few nucleons,” but without giving any reference.
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collective model terminology, these correlations would be
called rotational correlations. A second step of our method
consists in the mixing of projected wave functions with
different intrinsic axial quadrupole moments of the underlying
mean-field state in a generator coordinate method (GCM).
In the language of collective models, this corresponds to a
vibrational correction. The final wave function has the form

|JMν〉 =
∑

q

fJ,ν(q)P̂ J
M0P̂N P̂Z|q〉 . (10)

The ket |q〉 is a (paired) self-consistent mean-field state of
axial quadrupole deformation q. The operators P̂N , P̂Z , and
P̂ J

M0 project out the component with the particle numbers and
angular momentum quantum number we are interested in. The
weights fJ,ν(q) defining the mixing of the projected wave
functions with respect to q are obtained by variation of the
total energy.

We stress that there are no assumptions made in the model
about the amplitude of the quadrupole fluctuations introduced
into the calculations. Depending on the structure of a nucleus,
this amplitude either corresponds to a small vibration around
a pronounced minimum, to a large-amplitude motion in a soft
and wide potential well, or to the mixing of several states
around coexisting minima in the deformation energy surface.

In the following, we will compare results obtained from
the energies determined using three wave functions that
successively add quadrupole correlations: (1) self-consistent
spherical mean-field states |q = 0〉, (2) the self-consistent
mean-field minimum in the space of axial reflection-
symmetric deformations |qmin〉, which might be spherical, and
(3) the ground state obtained after configuration mixing of
J = 0 projected axial quadrupole. We refer to these wave
functions in the following as projected GCM. The energy
gained through these correlations will be called beyond-mean-
field correlation energy in what follows. In each of these cases,
the wave functions are projected on particle number.

B. Liquid-drop model

The Strutinsky theorem [39,40] allows us to decompose
the binding energy into a “macroscopic” liquid-drop part
and a microscopic “shell correction.” In this picture, the
macroscopic energy defined through the liquid-drop model
varies smoothly with N and Z, without any correlation
energies from deformation, shell effects, or fluctuations in
collective degrees of freedom. It constitutes a reference with
respect to which one can put into evidence all quantum effects.

In the figures below we show macroscopic energies calcu-
lated from a liquid-drop model whose parameters have been
adjusted to reproduce the average binding energies of spherical
nuclei calculated with the Skyrme interaction SLy4 [10]. In
addition to the standard volume, volume symmetry, surface,
and (direct) Coulomb terms, the macroscopic model comprises
surface symmetry, curvature, and Coulomb exchange terms:

Emac(N,Z)

= (avol+asym I 2)A+ (asurf + asurf,sym I 2)A2/3 + asurfA
1/3

+ 3

5

Z2e2

r0A1/3
− 3

4

(
3

2π

)2/3
Z4/3e2

r0A1/3
, (11)

where A = N + Z and I = N−Z
N+Z

. The radius constant r0

entering the Coulomb energies is determined from the nuclear
matter saturation density ρ0 of SLy4 as r3

0 = 3/(4πρ0).
The dominating contribution to δVpn by far comes from the

volume and surface symmetry energies [24]:

δVpn ≈ 2(asym + asurf,symA−1/3) A−1 . (12)

The global A−1 scaling factor in this expression originates
from the denominator of the I 2 A = (N−Z)2

N+Z
factor in the

symmetry and surface symmetry energy terms, which do not
cancel out in δVpn.

There are two contributions to this term that have the
same scaling [41]: the first one is the difference in kinetic
energy between protons and neutrons that fill separate potential
wells, and the other is the isovector part of the nucleon-
nucleon interaction. The latter has a shorter range than the
average distance between nucleons, such that in a semiclassical
approximation it acts between nearest neighbors only, leading
to the characteristic A and A1/3 scaling of terms in Eq. (12).
The contribution of all other terms in Eq. (11) to δVpn is not
exactly zero, but it is too small to be resolved in the plots
shown below. A standard liquid-drop model obtained with
a “best fit” to experimental masses gives δVpn values that
are systematically larger than those obtained from Eq. (11),
mainly because the volume symmetry coefficient asym has a
slightly larger value than the one determined from the SLy4
interaction.

IV. RESULTS

A. Global behavior of δVpn

The binding energies of Refs. [35,36] and tabulated in [37]
cover the region of even-even nuclei heavier than 16O for
which experimental data are available plus a few additional
nuclei around doubly magic systems. For the present study, we
calculated a few extra nuclei around 208Pb. Values obtained for
δVpn with this sample of nuclei are plotted as maps in Fig. 1.
For a better resolution of the local fluctuations, the same data
are plotted for isotopic chains as a function of the number
of neutrons in Fig. 2 and for isotonic chains as a function of
proton number in Fig. 3.

The spherical macroscopic values are given each time
in Figs. 1(a)–3(a). All nuclei between the drip lines are
represented for the LDM results in Fig. 1, whereas in Figs. 2
and 3 results are restricted to the same set of nuclei shown
in the other panels. The macroscopic δVpn values exhibit a
regular smooth pattern and fall off with ∼1/A. The slope
of the decrease is related to the symmetry and surface
symmetry energy coefficients of the EDF, Eq. (12). This
smooth systematic decrease of the δVpn values with increasing
A has been sometimes interpreted as a result of “the gradual
decrease in valence proton and neutron orbital overlaps due to
the occupancy of shells of different average radii” [19,22].
This is, at best, a model-dependent statement that cannot
be translated to methods that calculate the energy from the
interaction between all occupied particles. In particular, at no
point in the derivation of the LDM expression (12) does one
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FIG. 1. (Color online) Maps of δVpn: (a) calculated with a
spherical liquid-drop formula having the average properties of the
SLy4 interaction, (b) by self-consistent calculations with SLy4 ob-
tained assuming spherical nuclei, (c) allowing for (axially) deformed
shapes, and (d) derived from J = 0 projected configuration mixing
calculations. (e) The experimental data.

have to consider the form of the single-particle wave functions
and their overlaps. Instead, it is only assumed that all occupied
single-particle wave functions add up to the saturation density
inside the nucleus.

The smooth trend of the macroscopic calculation is still
apparent in the spherical self-consistent mean-field results.
Some deviations appear, however, which are related to the
magic numbers at 20, 28, 50, 82, and 126. For nuclides just
below these shell closures, the spherical mean-field results are
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FIG. 2. (Color online) Same data as in Fig. 1, but plotted for
isotopic chains as a function of neutron number.

slightly larger than the LDM ones, whereas they take slightly
smaller values for nuclei just above. As a consequence, δVpn

values do not fall off continuously with A but form sheets
separated by the shell closures.

Relaxing the constraint of spherical symmetry strongly
modifies the behavior of δVpn by giving rise to rapid
fluctuations around the smooth trend, with an amplitude of
up to 200 keV. This change can be directly related to the
effect of deformations on binding energies. The variations of
quadrupole deformation and of the associated energy gain with
N and Z over the entire nuclear chart have been presented in
Figs. 9 and 16 of Ref. [36]. The energy gain due to deformation
can reach more than 20 MeV and can vary rapidly from
one nucleus to the other. Any mismatch in the evolution of
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FIG. 3. (Color online) Same data as in Fig. 1, but plotted for
isotonic chains as a function of proton number.

deformation energy between the four nuclei entering δVpn can
dramatically change its value.

To illustrate the impact of deformation and correlations
on δVpn, the quadrupole deformation β2, deformation, and
correlation energies for nuclei heavier than 132Sn are presented
in Fig. 4. As expected, the absolute value of the deformation
energy increases slowly at first when moving away from the
proton and neutron shell closures and then more rapidly until
it peaks at almost 18 MeV in the rare-earth region and above
20 MeV for actinides. As indicated in the inset in Fig. 4(d),
δVpn is defined as the sum of the energies of the nuclei
on the diagonal minus the sum of the energies of the nuclei on
the antidiagonal. Figure 4 gives an intuitive illustration of how
the deformation and beyond-mean-field correlation energies
contribute to δVpn. Along a line going from 132Sn to 208Pb and
beyond, the deformation energy varies rapidly and nonlinearly
and brings a very large contribution to δVpn(N,Z). On the
contrary, for nuclei located close to a spherical shell closure
for one nucleon species and midshell for the other, the lines of
equal deformation and correlation energy are nearly parallel to
the N or Z axis, leading to a pairwise cancellation of similar
deformation energies. The fine structure of this cancellation
depends, of course, on the deformed shell structure of the
four nuclei entering a given δVpn(N,Z) value and leads to
an erratic behavior of δVpn, particularly visible when drawn
for isotopic or isotonic chains, as in Figs. 2 and 3. The same
behavior is also seen in the experimental data. It is worthwhile
to mention that there is no direct relation between the size of the
deformation and the deformation energy or between the sign of
the deformation, prolate, or oblate and the deformation energy.
In particular, the transition between oblate and prolate shapes
in a region of shape coexistence around the neutron-deficient
Pb isotopes does not leave obvious traces in the ground-
state deformation energy and, hence, in the calculated δVpn

values. As one may expect, introducing beyond-mean-field
correlations evens out the effect of static deformation. The
effect of configuration mixing is, indeed, a spreading of the
ground-state wave function around the mean-field minimum
and a mixing of coexisting shapes. The beyond-mean-field
correlation energy varies rapidly only around shell closures
and has its largest impact on the δVpn(N,Z) values in these
regions. We will analyze its impact in more detail for selected
nuclei below.

The very rapidly varying behavior of δVpn around the
N = Z line that sticks out in the experimental data for light
nuclei in Figs. 1, 2, and 3 is not reproduced by any of
our calculations. This anomaly is due to the Wigner energy
[27,28,42,43], whose origin is not described by present-day
EDF models; see Refs. [28,44] for further discussion of this
deficiency.

In the literature one cannot find, however, a unique defini-
tion of the Wigner energy. Sometimes this notion is used for an
anomalous additional contribution to the binding energy of the
T = 0 ⇔ N = Z member of an isobaric multiplet compared
to the (N − Z)2 extrapolation from the other isobars [45], but
more often the Wigner energy denotes a contribution to the
binding energy that is linear in |Tz| = |N − Z|. Such a term
arises, for example, from a Hamiltonian that is invariant under
Wigner’s SU(4) symmetry, E ∼ T (T + 4) = Esym + EWigner.
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δVpn = 1
4

( )

FIG. 4. (Color online) Effect of deformation and correlation
energies on δVpn values for heavy nuclei. (a) Map of the dimen-
sionless quadrupole deformation β2 of the mean-field ground state,
(b) contour plot of the static deformation energy, (c) contour plot of
the sum of the static deformation and dynamical beyond-mean-field
correlation energies, and (d) map of the contribution of deformation
and dynamical correlation energy to δVpn. The total δVpn value is then
obtained by adding the spherical mean-field value. The inset gives a
reminder of the relative signs of the four contributions to δVpn, with
their distance being drawn on the same scale as the one used in the
contour plot.

When using this second concept of a Wigner energy, the
anomaly of binding energies at N = Z is the consequence
of the Wigner energy EWigner having a discontinuity in
its derivative at Tz = 0 and not of an additional binding
of N = Z nuclei. There are many reasons why Wigner’s
SU(4) symmetry is not realized in nuclei [27,28,42,43,46],

which suppresses the linear term in |N − Z| compared to
the quadratic one. Still, traces of such a linear term are
implicitly contained in all realistic shell-model calculations
[28,42,45,47] and explicitly in the Duflo-Zuker mass formula
[5]. It is noteworthy that the macroscopic-microscopic mass
models [6] and the Skyrme-HFB mass formulae [7] also
contain explicit phenomenological corrections for the Wigner
energy that, in fact, combine both of the concepts of Wigner
energy mentioned above; see also the discussion in Ref. [1].
Several mass differences have been put forward as indicators
or even measures of the Wigner energy, most prominently
double-β-decay Q values [42,43] or a difference between three
different δVpn values [28]. It has to be stressed, however, that
δVpn itself is not a measure of the Wigner energy.

B. Selected chains of nuclei

1. Isotopic chains of magic nuclei

To demonstrate how δVpn is built up from different types
of correlations, let us examine now its evolution along cuts
through the N -Z plane. We first look at the two isotopic chains
of Sn and Pb, corresponding to closed proton shells, in Figs. 5
and 6. We showed in Ref. [14] for the Z = 50 Sn isotopic chain
that static deformation and dynamical correlation energies
are key ingredients in reproducing the two-proton separation
energies across the Z = 50 shell and in explaining in an
intuitive way the mutually enhanced magicity around 132Sn.

The results for Sn isotopes are displayed in Fig. 5 and those
for Pb in Fig. 6. The dimensionless deformation parameter
βcalc

2 is related to the intrinsic mass quadrupole moment of
the self-consistent mean-field wave functions 〈q|(2z2 − x2 −
y2)|q〉 as

βcalc
2 ≡

√
5

16π

4π

3R2
0A

〈q|(2z2 − x2 − y2)|q〉, (13)

with R0 ≡ 1.2 A1/3 fm. In Figs. 5(a)–5(c) and 6(a)–6(c), the
results for isotopic chains with two protons less are also
displayed, such that the values for all four nuclei entering δVpn

are given in the same plot. The contribution of deformation
and correlation energy to a given δVpn(N,Z) value can be
extracted from the plot by first taking the difference between
the energies for N and N − 2 on the curves for Z and Z − 2,
and then subtracting the value for Z − 2 from the one for Z.
To facilitate this comparison, the deformation and correlation
energies have been multiplied by a factor of 1/4, so that the
quantity entering δVpn, Eq. (1), is plotted on the figure. The
magnitude of the contributions of deformation and correlations
to δVpn(Z,N ) is directly related to the difference in slopes
of the curves for Z or Z − 2 for a given N . The largest
contributions are obtained when one of the slopes is much
steeper than the other.

The ground-state configurations obtained for most Sn and
Pb isotopes are spherical; some midshell isotopes are slightly
deformed. However, the energy gain due to deformation in
those cases is small, smaller than 200 keV, and it originates
from a deformed minimum nearly degenerate with the spher-
ical configuration. In contrast, the deformation and gain in
deformation energy for the ground states of the nonmagic
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FIG. 5. (Color online) (a) Intrinsic deformation of the mean-field
ground state, (b) 1/4 of the deformation energy, (c) 1/4 of the beyond-
mean-field correlation energy, and (d) δVpn values obtained from
spherical mean-field calculations, deformed mean-field calculations,
J = 0 projected GCM calculations, and experimental data for the
chain of Sn (Z = 50) isotopes. For the deformation, deformation
energy, and correlation energy the values for Cd (Z = 48) isotopes
are also shown.

Z − 2 isotopic chains can be large and vary rapidly for some
neutron numbers. For those cases, the contribution of the
deformation energy to δVpn is large. This clearly indicates
that one cannot assume to describe all four nuclei entering
δVpn by a common mean field, even for closed-shell nuclei.

The correlation energy is larger for all Cd and Hg isotopes
than for Sn and Pb nuclei with the same N . However, the
slopes of the Z and Z − 2 curves differ significantly for a few
isotopes only, and its contribution to δVpn is large only for
these neutron numbers. Nevertheless, the beyond-mean-field
correlations level out the rapidly fluctuating effect of static
deformations. Their contribution to the binding energy also
plays a key role in the description of the two-proton separation
energies across the Z = 50 and Z = 82 shells [14,36].

The agreement between the experimental data and the
results of the beyond-mean-field calculation is very satisfac-
tory for the Sn and Pb isotopic chains, as can be seen in
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FIG. 6. (Color online) The same as Fig. 5, but for the chain of
Pb (Z = 82) isotopes. The oblate ground-state deformation found for
Hg isotopes is confirmed by experiment below N = 122.

Figs. 5(d) and 6(d). In particular, only the latter calculation
is able to describe the rise of δVpn up to N = 126 and its
sudden drop beyond. The rapid variation of δVpn around
132Sn and 208Pb is mainly due to the onset of substantial
beyond-mean-field correlations around doubly magic nuclei.
This scenario is much more involved than the proton-neutron
interaction between the valence orbitals invoked in Ref. [48].
A detailed analysis of the contributions to the δVpn value of
208Pb is given in Sec. IV C.

2. Onset of deformation in rare-earth nuclei

Let us now analyze the isotopic chains of Ba (Z = 56), Nd
(Z = 60), and Gd (Z = 64), which cover a region of nuclei
with a large variation of deformation on both sides of the
spherical N = 82 shell closure. Results of our calculations
are compared with the experimental data in Figs. 7, 8, and 9.
Intrinsic deformations calculated with Eq. (13) are compared
to values taken from Refs. [49,50] that are determined from
experimental B(E2) values making the assumption of a rigid
axial rotor

β
expt
2 ≡ 4π

3ZR2
0

[B(E2, 0+
1 → 2+

1 )]1/2, (14)
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FIG. 7. (Color online) (a) Intrinsic deformation of the mean-field
ground state compared with experimental data taken from [50],
(b) 1/4 of the deformation energy, (c) 1/4 of the beyond-mean-
field correlation energy, and (d) δVpn values obtained from the
macroscopic model, spherical mean-field calculations, deformed
mean-field calculations, J = 0 projected GCM calculations, and
experimental data for the chain of Ba (Z = 56) isotopes. For the
deformation, deformation energy, and correlation energy the values
for Xe (Z = 54) isotopes are shown as well (see text).

with R0 ≡ 1.2 A1/3 fm. For well-deformed nuclei, theoretical
(13) and experimental (14) values are in excellent agreement.
Around spherical shell closures, however, the lowest 2+
state is dominated either by noncollective two-quasiparticle
configurations or by fluctuations in collective degrees of
freedom, neither of which can be described by the mean-field
ground state.

The spherical mean-field result for δVpn does not show any
structure these three isotopic chains except for a tiny drop at
the N = 82 shell closure that becomes rapidly smaller with
increasing proton number. Besides that, the spherical mean-
field values remain very close to the macroscopic ones for all
three chains of nuclei. The only isotopes to remain spherical
when deformations are allowed are those with N = 82. All
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FIG. 8. (Color online) The same as Fig. 7, but for the chain of Nd
(Z = 60) isotopes.

heavier isotopes are prolate, with a very similar variation of
deformation as a function of N for all three isotopic chains.
Lighter isotopes are prolate for Ba and Nd and oblate for Gd.
Although the deformation varies with N in a rather similar way
for the three chains, the effects of deformation and beyond-
mean-field correlations on δVpn are different. Deformation
and correlations do not bring very large contributions, but they
induce a significant change of behavior of δVpn for Ba and Nd.
Note also that the changes with respect to the spherical case
bring theory closer to experiment with very few exceptions.
The contribution from deformation energy overcorrects the
spherical result for δVpn, in particular by making δVpn smaller
below N = 82 and larger above that value. The beyond-mean-
field correlations straighten the curve and bring it very close
to the data.

Comparing the three isotopic chains, the largest deviation
between the experimental and the macroscopic δVpn values
is observed for the Ba (Z = 56) isotopes. For the isotopes
below N = 82 (with the possible exception of the lightest one,
N = 66), the experimental values are smaller, whereas above
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FIG. 9. (Color online) The same as Fig. 7, but for the chain of Gd
(Z = 64) isotopes.

N = 82 they are larger. The same overall behavior is also
found for Nd (Z = 60), but with a smaller deviation from the
macroscopic results. For Gd (Z = 64), the experimental data
lie almost on a straight line, very close to the macroscopic
results.

The EDF models provide a simple explanation of these
different behaviors. The three chains present a similar evolu-
tion as a function of N , going from deformed to spherical to
deformed shapes again. However, looking at Fig. 4, one can
see that the chains are located differently with respect to the
center of the deformed region. The Ba (Z = 56) isotopes are
situated at the lower end, where the deformation energy grows
with N at a very different rate for Z and Z − 2 and brings
a large contribution to δVpn. The Gd (Z = 64) chain is close
to the center of the deformed region where the deformation
energy of adjacent isotones grows synchronously. The δVpn

values are unaffected by deformation in the Gd isotopes, and
it is also remarkable that the shape transition from a prolate
shape for Z = 62 to an oblate one for Z = 64 at N = 78
does not visibly affect the δVpn value obtained from the

deformed mean-field calculation. These examples indicate that
δVpn cannot always be expected to be a sensitive indicator for
changes in deformation.

3. δVpn along lines of constant N + Z or N − Z

Let us now examine the evolution of δVpn along other cuts
through the chart of nuclei. In Fig. 10, results for nuclei
on a line of constant Tz = N − Z = 32 are provided as a
function of A = N + Z. Available data start at the doubly
magic nucleus 132Sn, cover the entire rare-earth region, and
extend beyond Z = 82. Most of the nuclei along this chain
are deformed, except for Z = 50 and 82. The deformation
energy takes its largest absolute value of around 16.8 MeV
for 168Er at Z = 68. However, it is not the magnitude of the
deformation energy that governs the size of its contribution to
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FIG. 10. (Color online) The same as Fig. 7, but for the chain of
constant N − Z = 32. The nuclei for which data exist are expected
to be prolate, whereas the systematics of rotational bands and radii in
the Hg isotopic chain suggests that 194Hg is oblate in its ground state,
in agreement with the calculation.
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δVpn but how the curve for Tz = 32 diverges from those for
Tz = 30 and 34. Indeed, the contribution of the deformation
energy to δVpn is obtained as the sum of the energies of two
successive points on the Tz = 32 line from which one subtracts
the sum of the values on the Tz = 30 and Tz = 34 lines
corresponding to the intermediate A value. The contributions
of deformation and beyond-mean-field correlations reinforce
themselves for the lightest nuclei, leading to a rather irregular
pattern, significantly different from the structureless spherical
results. It is remarkable that δVpn values obtained from the
beyond-mean-field calculation follow very closely the many
irregularities of the experimental data.

Results obtained for two nuclear chains corresponding to
fixed values of A, which are perpendicular to the N − Z = 32
chain, are plotted in Fig. 11. The first one corresponds to
A = 132 and extends from the very deformed neutron-
deficient 132Nd to the doubly magic 132Sn. As in the case
of the Ba and Nd isotopic chains, the different onset of
deformation and correlation energy for Z and Z − 2 lowers
δVpn relative to the macroscopic values below the N = 82
shell closure, whereas it is enhanced for 132Sn. Note for this
nucleus the significant differences between the deformed and
the beyond-mean-field calculations. The change of behavior
for N − Z = 32 of δVpn with respect to the spherical and
macroscopic values is very nicely described by the beyond-
mean-field calculation.

The second isobaric chain in Fig. 11, A = 168, almost
follows the diagonal in Fig. 4. All isobars are deformed, and
the deformation increases gradually when going from the very
neutron-deficient 168Pt to 168Er, a nucleus located in the center
of the deformed rare-earth region. The deformed mean-field
and beyond-mean-field calculations give very similar δVpn

values and agree well with the data. For the lighter isobars, the
δVpn values are smaller than the macroscopic ones, whereas
for 168Er they suddenly increase to values above them. For
the chains that we discussed up to now, the sudden increase
of δVpn from below to above macroscopic values took place
when crossing a spherical shell closure, i.e., with decreasing
deformation. In the case of the A = 168 chain, the sudden
increase of δVpn has its origin in the saturation of deformation
energy with increasing asymmetry.

Again, the deviation of δVpn from the macroscopic value
depends on the difference of increase in deformation energy
in adjacent nuclei.

4. Doubly magic nuclei and mutually enhanced magicity

In Figs. 5, 10, and 11, the δVpn value of 132Sn sticks out as
being larger than that of all surrounding nuclei. The same result
is obtained for 208Pb. In both cases, these δVpn values are also
much larger than the macroscopic trend. A similar singular
behavior for doubly magic nuclei is also found with other
mass filters, such as two-particle separation energies or Qα

values: the value obtained for a doubly magic nucleus is much
larger than those of adjacent nuclei, including the semimagic
ones. This gives the impression that the shell closure of
one nucleon species reinforces the magicity of the other,
an effect sometimes called “mutually enhanced magicity”
in the literature [1,51,52]. This effect is not described by
pure mean-field models for which two-nucleon separation
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FIG. 11. (Color online) The same as Fig. 7, but for the isobaric
chains with A = N + Z = 132 and A = 168.

energies or Qα values across a shell closure usually show
very little variation with the number of particles of the other
species, in stark contrast to the data. In Refs. [14,36,53], it
was shown that these filters are much better described when
beyond-mean-field correlations are taken into account. The
same result is found here for δVpn. The beyond-mean-field
correlation energy is much smaller in a doubly magic nucleus
than in its neighbors. Its rapid variation gives a contribution to
δVpn that pushes it to very large values in doubly magic nuclei,
up to twice as large as the average trend.

At the same time, the pattern of the δVpn values changes for
doubly magic nuclei. For nuclei located either below or above
the shell closures for both nucleon species, the experimental
δVpn tends to be larger than the average trend. In contrast, for
nuclei where one nucleon species is below and the other above
the respective shell closure, the experimental δVpn value tends
to be smaller than the average trend. This behavior is very well
illustrated in Figs. 7, 8, and 9 for the shell closures at Z = 50
and N = 82.
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In the literature, qualitative explanations have been pro-
posed for this effect based on the nature of the orbitals filled
by neutrons and protons. If the energies of both orbitals
are larger or smaller [particle-particle (p-p) and hole-hole
(h-h) cases] than that of the Fermi level, they are supposed
to have a large overlap. On the contrary, if one of the
energies is larger and the other smaller [particle-hole (p-h)
and hole-particle (h-p) cases], this overlap is supposed to be
small. The behavior of δVpn is then attributed to the differences
between the overlaps [21]. EDF calculations offer a different
and more straightforward explanation. This effect results from
the combination of a smooth macroscopic background and
the contributions from deformation and beyond-mean-field
correlation energies. As can be seen in Fig. 4, their combined
absolute value increases in all directions around a doubly
magic nucleus. Moreover, looking, for instance, at Figs. 5
and 6, one sees that this increase is nonlinear. The pattern
that is observed for δVpn around doubly magic nuclei is
then a trivial consequence of the asymmetry of the relative
signs of the four energies entering its definition. For example,
for N = 118, the Z = 74 nucleus is located in such a way
that the nonlinear increase of these contributions is pointing
toward N − 2, Z − 2. For the same value of N but Z = 78
the isoenergy lines are nearly parallel to the N axis, and the
contributions for a given Z value nearly cancel out.

Looking once more at Fig. 4, the picture on how δVpn is
built up emerges clearly. Let us divide the map into rectangles
delimited by the proton and neutron magic numbers. In any of
these rectangles, deformation and correlation energies grow
nonlinearly from small values along all borders to large
ones in the middle. The resulting map of deformation and
correlation energies is highly symmetric and centered around
the middle of the region. The definition of δVpn, Eq. (1),
however, is asymmetric. It is designed to probe the increase
of the energy when going from the lower left to the upper
right in the nuclear chart under the assumption that it is
superimposed on a background of like-particle interactions
independent of the number of the other particle. The combined
deformation and dynamical correlation energy rarely follows
this anticipated pattern. As a consequence, one always obtains
positive contributions to δVpn around the so-called p-p and
h-h corners of the rectangle and negative values in the p-h and
h-p corners. Close to the center of such a major-shell region,
this trend is inverted when the deformation and correlation
energies reach their maximum. This explanation of the pattern
of δVpn around shell closures does not invoke any knowledge
about the spatial structure of the single-particle orbits and their
overlaps and also indicates that the observed pattern of δVpn

does not necessarily signal stronger or weaker proton-neutron
interactions in the four corners of a region of the nuclear chart
between major shells.

The observation that the appearance of enhanced δVpn

values in the rare-earth region when going from 132Sn to
208Pb and beyond is correlated to the line of Nvalence ≈ Zvalence

has led the authors of Ref. [25] to the speculation that this
phenomenon might be due to a “mini-Wigner energy” of
origin similar to the Wigner energy that leads to enhanced
δVpn values along the N = Z nuclei. Our analysis makes this
scenario very unlikely and offers a simpler explanation. First,

we underline that our model does not give any trace of the
Wigner energy and its contribution to δVpn at the N = Z line,
as is the case for all present-day self-consistent mean-field
models [24,28,44], meaning that the relevant physics is not
contained in it. In contrast, our model does reproduce very well
the enhanced δVpn values along the Nvalence ≈ Zvalence line in
the rare-earth region. As explained above, their enhancement
is a consequence of the onset of deformation and beyond-
mean-field correlations when going away from a doubly
magic nucleus, which gives a positive contribution to δVpn

in some directions and negative in other directions due to the
asymmetric definition of δVpn.

C. Detailed analysis of δVpn for selected nuclei

1. General comments

The discussion above demonstrates that the rapid variation
of the deformation energy and the beyond-mean-field corre-
lation energy from symmetry restoration and shape mixing
often gives large contributions to δVpn(N,Z). For nuclei
away from the N = Z line, this variation is at the origin of
almost all structures seen in the data. This also indicates that
the assumption of a common single-particle basis made in
Sec. II to obtain a simple expression for δVpn in terms of
proton-neutron matrix elements is rarely justified. When the
structure of the four nuclei entering Eq. (1) is different, the
question arises whether there are other terms in the energy
functional than the proton-neutron interaction energy that
contribute to δVpn.

We have selected three representative nuclei for which
we will decompose δVpn(N,Z) into contributions from the
proton-proton, neutron-neutron, and proton-neutron terms in
the EDF.

2. 208Pb

The first nucleus 208Pb has been chosen for two reasons.
First, we have seen in Fig. 6 that the contribution of the beyond-
mean-field correlation energy to the δVpn value of this doubly
magic nucleus is particularly large. Second, the spherical 208Pb
presents a very favorable situation to numerically test the
frozen HF approximation, where the same set of single-particle
wave functions is used to compute the energy of all four
nuclei involved in the computation of δVpn. As discussed in
Sec. II A, this approximation has to be made to establish the
direct relation between δVpn and the two-body proton-neutron
interaction. In fact, 208Pb is one of the very few spherical
nuclei for which such calculations can be performed. It requires
that four neighboring nuclei have a closed-shell configuration,
which is possible only for N and Z values for which the orbitals
below the Fermi level are p1/2− or s1/2+ levels for both protons
and neutrons. These conditions are met for 208Pb, with a ν

s1/2+ level below N = 126 and a π p1/2− level below Z = 82.
The results are presented in Table I. The four nuclei entering

δVpn have been calculated with the single-particle basis of
208Pb (frozen HF approximation), without readjustment of the
basis for each nucleus and without pairing correlations. Self-
consistency for 206Pb, 206Hg, and 204Hg has been considered
for the results given in the HF column, and self-consistency and
pairing correlations treated with the BCS + Lipkin Nogami
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TABLE I. Decomposition of δVpn into contributions coming from
the different terms of the energy density functional for 208Pb, namely,
kinetic energy of neutrons and protons, the neutron-neutron, proton-
proton, and proton-neutron parts of the Skyrme EDF, the neutron-
neutron and proton-proton parts of the pairing functional, and the
proton-proton Coulomb EDF. We also give the sum of all terms and
the experimental value. All energies are in MeV.

208Pb

Term Frozen HF HF HF + BCS + LN J = 0 GCM

Kinetic n 0.000 −0.056 −0.010 −0.105
Kinetic p 0.000 0.012 −0.044 −0.132
Skyrme n-n 0.025 0.076 −0.005 0.160
Skyrme p-p 0.017 −0.008 0.025 0.275
Skyrme p-n 0.162 0.211 0.218 0.382
Pairing n-n . . . . . . 0.027 −0.057
Pairing p-p . . . . . . −0.005 −0.081
Coulomb 0.000 0.010 0.020 0.012
Total 0.204 0.245 0.225 0.457
δV expt

pn . . . . . . 0.427

prescription have been taken into account for the values of the
HF + BCS + LN column. Finally, the J = 0 projected GCM
calculation is given in the last column.

We decompose the energy density functional into the kinetic
energies of neutrons and protons (including the center-of-mass
correction), the neutron-neutron, proton-proton, and proton-
neutron parts of the Skyrme EDF that models the particle-hole
part of the effective strong interaction, the neutron-neutron
and proton-proton parts of the pairing functional, and the
proton-proton Coulomb energy. The Skyrme and pairing
functionals contain density-dependent terms. We interpret
them as a density dependence of the respective neutron-
neutron, proton-proton, and proton-neutron terms. This choice
of decomposition is not unique, however. For further details
about the functional, we refer to Refs. [32,54].

In the frozen HF calculation, the sole contribution to
δVpn comes from the Skyrme EDF. The neutron-proton terms
give the largest contribution, although the neutron-neutron
and proton-proton terms contribute about 20% through their
density dependence. As soon as self-consistent wave functions
are used, the one-body contribution from the kinetic energy
becomes large. This is not surprising, as the kinetic energy pro-
vides a large contribution to the symmetry energy coefficient
asym of the EDF [54,55], which, in turn, dominates the global
trend of δVpn, Eq. (12). All other terms in the functional are
modified and can bring sizable contributions to δVpn. Pairing
correlations change all contributions even further. The final
value of δVpn from a self-consistent calculation results from a
partial cancellation of several terms. The proton-neutron terms
in the Skyrme functional are of the right order of magnitude
and approach the final value of δVpn within a given model, but
even for 208Pb, which is probably one of the most favorable
cases for the frozen approximation, one can hardly conclude
that δVpn is a valuable measure of proton-neutron interactions.

More importantly, the spherical mean-field values are far
from the experimental data and the correlations brought by
symmetry restoration and configuration mixing are large and

FIG. 12. (Color online) Difference between the values of the
terms of the energy functional listed in Table I for 206Pb, 206Hg, and
204Hg and their value for 208Pb. The same four sets of calculations as
in Table I are considered. All energies are in MeV.

crucial to obtain the correct value, as they increase δVpn

by 0.232 MeV to almost twice the mean-field value. The
decomposition of the J = 0 projected GCM results is listed in
Table I. All terms become large in absolute value but partially
cancel each other. Their sum gives a value for δVpn close to
the data. This is not entirely surprising as correlation energy
is always gained from the compensation between a loss in
kinetic energy and a gain in interaction energy. Table I indicates
that there are large contributions to δVpn from proton-proton,
neutron-neutron, and neutron-proton terms and that none of
them is dominant.

Figure 12 illustrates how the δVpn is built up from
cancellations between the contributions of the four nuclei
entering its definition. It shows the differences between the
EDF terms defined in Table I for 206Pb, 206Hg, and 204Hg
and their value in 208Pb. The contribution of a given term
to δVpn (208Pb) is the sum of the values for 206Pb (red) and
206Hg (green) minus the value for 204Hg (blue), divided by
4. While in the frozen HF approximation [Fig. 12(a)] most
terms cancel out, exact self-consistency [Fig. 12(b)], pairing
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TABLE II. Decomposition of δVpn values for 168 Er and 152 Nd
into contributions coming from the different terms in the energy
density functional in deformed self-consistent mean-field calcula-
tions, namely, kinetic energy, the neutron-neutron, proton-proton and
proton-neutron parts of the Skyrme EDF, pairing energy, and the
proton-proton Coulomb EDF (see Table II). We also give the total
contribution from beyond-mean-field correlations, the sum of all these
terms, and the experimental value. All energies are in MeV.

Term 168Er 152Nd

Kinetic −0.252 −0.334
Skyrme n-n 0.164 0.304
Skyrme p-p 0.065 −0.016
Skyrme n-p 0.372 0.676
Coulomb 0.005 −0.161
Pairing −0.020 0.081
Total mean field 0.334 0.550
Correlation energy −0.006 −0.051
δV theo

pn 0.328 0.490
δV expt

pn 0.362 0.509

[Fig. 12(c)], and collective quadrupole correlations [Fig. 12(d)]
lead to a much more complex situation. One can conclude from
this analysis that each contribution to δVpn itself is the result
of a partial compensation between changes in all four nuclei
entering its definition.

3. Deformed rare-earth nuclei

Let us now consider two nuclei in a deformed region of
the nuclear chart. The four nuclei entering the calculation of
δVpn for 168Er have similar deformations. In contrast, they
differ significantly for 152Nd, as can be seen in Fig. 8. In both
cases, the spherical mean-field results are of no interest and
will not be discussed here. The contribution of correlations
brought by configuration mixing and symmetry restoration is
also small, and the analysis of δVpn can be performed for the
deformed calculations only. The value of δVpn results from
contributions coming from all terms in the functional. The
kinetic energy brings a large negative contribution, even for
168Er for which the four nuclei have very similar deformations.
This demonstrates that the frozen approximation is not valid
and that the use of a unique single-particle basis is not justified.
The largest positive contribution to δVpn comes from the
Skyrme EDF. Other terms are small for 168Er, but there is a
large negative contribution of the Coulomb term in 152Nd. Note
also that, although the contribution of correlations is small for
this nucleus, it has the right sign to bring the theoretical δVpn

in good agreement with the data.
Altogether, these examples indicate that, in a realistic

model, δVpn is not determined by the interaction between
the last two valence nucleons but has contributions from the
modifications of all single-particle wave functions on the one
hand and from all terms in the energy functional on the other.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have analyzed in detail the relevance of
a difference between the binding energy of four nuclei, called

δVpn, as a measure of the proton-neutron interaction between
valence particles and as an indicator for structural changes in
nuclei.

We have first investigated whether one can derive a relation
between δVpn and a proton-neutron matrix element in simple
models, where analytic formulas can be derived. Even in
the oversimplified case where the four nuclei entering δVpn

can be described by HF wave functions generated by the
same mean field and a two-body interaction, one obtains only
a relation between δVpn and a combination of two matrix
elements. Any higher-order term in the interaction, such as a
density dependence or a three-body interaction, complicates
the relation, as do self-consistency and any correlation such
as pairing, deformation, or any configuration mixing. This
formal analysis already indicates that it can hardly relate δVpn

to any specific proton-neutron interaction in a realistic model.
This formal analysis is confirmed by the decomposition of
calculated δVpn values for the doubly magic spherical 208Pb
nucleus and the deformed 152Nd and 168Er, for which we find,
indeed, that all terms in the energy functional contribute, not
just the proton-neutron interaction, and that self-consistency
and correlations beyond the mean field play a substantial role.

We have then shown that our beyond-mean-field method has
all the necessary ingredients to reproduce the global trends of
δVpn. As has been pointed out earlier [24], the global trend of
δVpn is determined by the symmetry and surface symmetry
energy coefficients that can be deduced from an energy
functional. With a detailed analysis of a few representative
regions in the nuclear chart, we have illustrated how the fine
structure of δVpn builds up from the successive introduction of
deformation and correlations due to symmetry restorations
and configuration mixing. Both are crucial ingredients for
the reproduction of data. As found earlier for two-nucleon
separation energies [14,35,36], within our model it is essential
to take into account beyond-mean-field correlations for the
description of data in the vicinity of magic numbers. We
have checked that the large-scale calculation of even-even
nuclei using a mapped five-dimensional microscopic Bohr-
Hamiltonian based on the Gogny force [56] gives qualitatively
the same results as ours.

Our model provides a satisfactory description of the data,
except at the N = Z line, where the Wigner effect is absent
from our results. Within the framework of our model, however,
δVpn provides neither a reliable measure of the proton-neutron
interaction terms in the energy functional used nor a reliable
indicator for structural changes. Certainly, in some instances
structural changes such as the onset of deformation lead to
anomalies in the δVpn values, but in many other instances they
do not, and there is no one-to-one correspondence between
a structural change and the resulting modification of δVpn.
In turn, a local increase or decrease of δVpn can have many
different origins. One of the main limiting factors for the use
of δVpn as an indicator for structural change is its asymmetric
definition, which results in the fact that additional binding
from a change in nuclear structure contributes differently
to δVpn in sign and size depending on the direction in the
nuclear chart in which the structure changes. In particular,
the characteristic pattern of δVpn having a significantly larger
size for nuclei where only particles or only holes are added
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to a doubly magic nucleus as compared to systems with
particles added for one nucleon species and holes for the
other (a pattern recently interpreted as a “mini-Wigner energy”
[25]) is a trivial consequence of the asymmetric definition
of δVpn and not an indicator for a qualitative difference in
either the proton-neutron interaction or a difference of their
structure.

The usefulness of δVpn is compromised by being a mass
filter of very high order that is thereby prone to unpredictable
cancellations when the nuclei entering δVpn have different
structure. Lower-order mass filters such as two-nucleon sepa-
ration energies or Q values are usually more reliable indicators
of structural changes than δVpn, although these may fail as
well. This also means that δVpn does not provide a conclusive
benchmark for nuclear EDF methods that would be superior

or complementary to other mass filters such as two-nucleon
separation energies and Q values.
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S. Péru, N. Pillet, and G. F. Bertsch, Phys. Rev. C 81, 014303
(2010).

064319-17

http://dx.doi.org/10.1103/PhysRevC.69.014316
http://dx.doi.org/10.1016/S0370-2693(98)00538-3
http://dx.doi.org/10.1038/nphys291
http://dx.doi.org/10.1038/nphys291
http://dx.doi.org/10.1103/RevModPhys.77.427
http://dx.doi.org/10.1103/PhysRevC.81.034313
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1006/adnd.2001.0858
http://www.nndc.bnl.gov/nudat2/
http://dx.doi.org/10.1016/0375-9474(79)90482-2
http://dx.doi.org/10.1016/0375-9474(79)90482-2
http://dx.doi.org/10.1016/0375-9474(83)90592-4
http://dx.doi.org/10.1016/0375-9474(83)90592-4
http://dx.doi.org/10.1140/epja/i2004-10054-4
http://dx.doi.org/10.1140/epja/i2004-10054-4
http://dx.doi.org/10.1103/PhysRevC.65.054322
http://dx.doi.org/10.1103/PhysRevC.65.054322
http://dx.doi.org/10.1103/PhysRevC.74.011301
http://dx.doi.org/10.1103/PhysRevC.74.011301
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1103/PhysRevC.81.014303

