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(Received 24 March 2011; published 15 June 2011)

The E1 strength function for 15 stable and unstable Sn even-even isotopes from A = 100 to A = 176 are
calculated using a self-consistent microscopic theory which, in addition to the standard (quasiparticle) random-
phase approximation [(Q)RPA] approach, takes into account phonon coupling and the single-particle continuum
(by means of the discretization procedure) with a cutoff of 100 MeV. Our analysis shows two distinct regions
for which the integral characteristics of both the giant and pygmy resonances behave rather differently. For
neutron-rich nuclei, starting from 132Sn, we obtain a giant E1 resonance which significantly deviates from
the widely used systematics extrapolated from experimental data in the β-stability valley. We show that the
inclusion of phonon coupling is necessary for a proper description of the low-energy pygmy resonances and
the corresponding transition densities for A < 132 nuclei, while in the A > 132 region the influence of phonon
coupling is significantly smaller. The radiative neutron capture cross sections leading to the stable 124Sn and
unstable 132Sn and 150Sn nuclei are calculated with both the (Q)RPA and the beyond-(Q)RPA strength functions
and shown to be sensitive to both the predicted low-lying strength and the phonon-coupling contribution.
The comparison with the widely used phenomenological generalized Lorentzian approach shows considerable
differences both for the strength function and the radiative neutron capture cross section. In particular, for the
neutron-rich 150Sn, the reaction cross section is found to be increased by a factor greater than 20. We conclude
that the present approach may provide a complete and coherent description of the γ -ray-strength function for
astrophysics applications. In particular, such calculations are highly recommended for a reliable estimate of the
electromagnetic properties of exotic nuclei.
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I. INTRODUCTION

One of the paramount and challenging goals of modern
nuclear physics is to elaborate theoretical approaches with
not only descriptive but also predictive abilities. This is of
particular relevance for a proper description of nuclei far
from the valley of stability since, in this case, only limited
or no information is available. Self-consistency between the
mean-field and the effective interaction is also known to be of
prime importance for a correct exploration of the excitation
properties of unstable nuclei. Another fundamental ingredient
of the model, known to be important even for stable nuclei, con-
cerns the inclusion of more complex configurations than those
traditionally included in the random-phase approximation
(RPA) or quasiparticle RPA (QRPA). Here the most realistic
approaches include complex configurations with phonons;
namely, the coupling of single-particle degrees of freedom
with the phonon degrees (the so-called phonon coupling or

PC). These approaches are referred to in the literature as
the quasiparticle-phonon model [1], the (Q)RPA + phonon-
coupling model [(Q)RPA + PC] [2] and the extended theory
of finite Fermi systems (ETFFS) [3]. The latter is based on the
Green function method and includes the single-particle con-
tinuum which is necessary for nuclei with a nucleon separation
energy close to zero. It has been recently generalized to include
pairing using the quasiparticle time blocking approximation
(QTBA) [4].

These approaches have been supplemented by consider-
ing a self-consistent mean field (see, e.g., Ref [5]) or the
self-consistency between the mean-field and the effective
interaction [6–8]. The latter made it possible to perform
the calculation with one unique set of interaction parame-
ters (e.g., the Skyrme force [6,8]) instead of two sets of
parameters as used in non-self-consistent approaches (one
for the effective interaction and another for the mean field).
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These improvements—taking into account the single-particle
continuum and self-consistency—are of great interest, first
of all, for astrophysics applications, but also for nuclear
data evaluation. The added value of such approaches lies
essentially in their larger predictive power which provides an
increased confidence in the calculation of structure properties
for exotic nuclei, especially those with a large neutron excess
and/or a small nucleon separation energy. However, one
should note that all the approaches developed so far are in
fact not fully self-consistent because, as was noted earlier
in Refs. [9,10], they use the self-consistency only at the
(Q)RPA level and do not include more complex configurations
into the self-consistency conditions. This is one of the main
reasons to use some additional procedures to exclude ghost
states; in particular, the spurious isoscalar 1− state. This is
achieved through a specific fit of the force parameters [5,6,8],
the use of the so-called subtraction procedure in the QTBA
model [4], or of the so-called forced consistency method
[11,12]. Nevertheless, accounting for PC and self-consistency
increases, beyond any doubt, the quality of the microscopic
nuclear theory and is absolutely necessary to simultaneously
describe the structure of ground and excited states for unstable
nuclei.

The role played by PC in the description of the giant
resonances in stable nuclei is well known. In particular,
PC explains approximately 50% of the observed width, its
gross structure, and sometimes some fine structure (e.g.,
for the E2 isoscalar resonance in 208Pb [3]). However, the
direct influence of PC on the giant resonance of unstable
nuclei has been much less studied, although it is expected
to be as important as it is for stable nuclei. So far, giant-
resonance characteristics for unstable nuclei have been studied
systematically within the (Q)RPA only (see, e.g., [13–16])
and, quite recently, within a general approach based on sum
rules [17]. Note that, for the reasons given below, we will
discuss in the present paper only the case of electric dipole
resonance.

The impact of PC on the so-called pygmy dipole resonance
(PDR), which lies in the low-energy tail of the E1 giant
dipole resonance (GDR) and exhausts about 1%–2% of
the energy-weighted sum rule (EWSR) [14,18–20], is of
particular interest. First, there is no consensus at present in our
understanding of some important questions related to the PDR
(see Ref. [13] and the recent reviews [21,22]). Second, this
resonance is known to have a significant impact on the radiative
neutron capture rate of astrophysical interest [14,15,23]. The
importance of the PDR is confirmed by the simple fact that it
has been taken into account in all modern nuclear data libraries
(although at a phenomenological level) in addition to the usual
GDR [20,24]. The question arises for exotic nuclei where
the phenomenological approach may fail to provide a reliable
prediction because of the specific features of the PDR in such
nuclei and the scarce experimental data on which systematics is
based. For this reason, a similar approach should be followed as
for the giant resonance problem for unstable nuclei; namely, as
discussed above, to use a reliable self-consistent theory which
accounts for PC and the single-particle continuum in addition
to the standard (Q)RPA.

For all these reasons, the PDR problem has recently become
a subject of intensive experimental (see Refs. [18,19,25] and
references therein) and theoretical (see Refs. [5–7,21,26–28]
and references therein) studies. Even if the total E1 strength
of the PDR is small, if it is located well below the neutron
separation energy, it can significantly increase the radiative
neutron capture cross section, especially for neutron-rich
nuclei [14,15,23]. Different measurements suggest that some
enhancement of the E1 strength could be located at low
energies even in stable nuclei, a feature that cannot be
described within the (Q)RPA calculations. In particular, the
large-scale QRPA calculations of [14] predict PDRs which
are, on average, 1 to 2 MeV higher in energy than the observed
values. Many recent calculations of the PDR [6,7,21,28–30]
as well as the older ones [31,32] performed within the
non-self-consistent quasiparticle-phonon model confirm the
need to take into account more complex configurations than
those included in the (Q)RPA approach, most of all the
1p1h ⊗ phonon or 2 quasiparticle ⊗ phonon configurations.
However, large uncertainties in the description of the PDR
(in particular, its energy and strength) remain, especially
for unstable nuclei, and only sound microscopic models can
shed light on its existence, as well as its relative importance
and impact on neutron capture. For example, self-consistent
calculations with PC [28,33] have shown that the complex
configurations give a significant contribution to the radiative
neutron capture cross section for the unstable 132Sn.

In practice, for a proper description of the PDR, at least
two natural physical conditions need to be fulfilled: first,
the energy of the 1− spurious state must be equal to zero;
second, the theory must describe correctly the mean energy E0

of the E1 giant resonance. Only in this case may one expect
the theory to provide a reasonable quantitative prediction of the
PDR integral features. In order to satisfy these two conditions,
different additional procedures have been used. The simplest
way is to adjust the isovector and isoscalar effective force
parameters to obtain the correct values of E0 and the spurious
1− level energy [5]. This is suitable for stable nuclei for
which E0 is experimentally available. For unstable nuclei, if
use is made of a Skyrme force and a self-consistent scheme
without the subtraction procedure [4], it is necessary to modify
some of the Skyrme parameters to obtain agreement with
experiment [8,34]. It is worth noting that this conclusion is in
accordance with the studies of Refs. [35,36] who considered
this idea from a different point of view.

In our previous works [8,21,28] we realized a self-
consistent version of the ETFFS(QTBA) using a discretized
single-particle continuum with different kinds of Skyrme
forces including the SLy4 forces, where the velocity force
is considered in a local approximation (sometimes we call it
DTBA). The latter had consequences for the renormalization
of the interaction in order to locate the spurious state at
zero energy. On the one hand, it is of great interest to
obtain general information about the E1 strength function
and correspondingly about the radiative neutron capture cross
section for many neutron-rich nuclei using the well-known
SLy4 forces. On the other hand, it is clear that the inclusion
of the single-particle continuum along with PC effects for
nonmagic nuclei is still a difficult problem. For these reasons,
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we use here our DTBA approach to calculate the E1 strength
function for the long Sn isotopic chain.

The aim of the present work is twofold. First, we calculate
the PDR and GDR in the long chain of stable and unstable tin
isotopes using the variant of the microscopic self-consistent
version of the ETFFS(QTBA) which, in addition to the (Q)RPA
approach, takes into account the single-particle continuum (by
means of the discretization procedure) and phonon coupling
in nuclei with pairing. For this part we concentrate on the
description of the integral characteristics in order to gain an
insight into different trends for stable and unstable nuclei and
to compare our results with the widely used empirical formula.
Second, in order to investigate the impact of PC on the radiative
neutron capture cross section in stable and unstable nuclei we
calculate them both with and without PC, within the same
scheme of calculation based on the SLy4 Skyrme force or a
slightly modified version of it. Here our main focus is on the
PDR and its impact on radiative neutron capture.

II. SELF-CONSISTENT CALCULATION OF
THE PDR AND GDR

A. Method

To date there are tens of different Skyrme parametrizations
serving slightly different aims and fitting some bulk properties
of the ground state. Here we use the SLy4 parametrization of
the Skyrme force [37], which proves to be rather successful
in describing bulk properties of the ground state and some
excited states within the (Q)RPA [38].

The ground states are calculated within the Hartree-
Fock-Bogoliubov (HFB) approach using the spherical code
HFBRAD [39]. The residual interaction for the (Q)RPA and
QTBA calculations is derived as the second derivative of
the Skyrme functional [38]. Although the QTBA model [4]
was originally formulated in terms of the general basis,
several simplifications are performed in our calculations.
Namely, the QTBA approach is designed to use the BCS-
based quasiparticle basis and we use the HFB approach to
extract the quasiparticle characteristics and corresponding
wave functions (i.e., the occupation numbers are treated as per
the BCS approximation). The spin-orbit residual interaction is
dropped. The velocity-dependent terms of the Skyrme force are
approximated by their Landau-Migdal limit [40,41], although
some more physically sound modifications are included. There
are two kinds of velocity-dependent terms: the first one is
∝k2δ(r − r′) and the second one is ∝k†δ(r − r′)k (P -wave
interaction in momentum space). The averaged value over
the density of the first term gives k2

F /2δ(r − r ′) while that
of the second one is zero. Such an approximation violates the
self-consistency and one has to correct the parameters of the
residual interaction to put the spurious center-of-mass state to
zero. We only replace here the term which is proportional to
t1k2

Fδ(r − r′) by a given factor as we take this term approxi-
mately. This factor is usually around 1.0–1.25 for the Sn chain.

In general, the ETFFS(QTBA) accounts for the single-
particle continuum completely at the RPA level for
magic nuclei and includes the new effect of ground-state
correlations caused by PC [3]. However, because of the

FIG. 1. (Color online) 1− strength functions within QRPA
(dashed curves) and QTBA (solid curves) for 100Sn,110Sn,112Sn,116Sn,
120Sn, and 124Sn isotopes.

technical difficulties connected with pairing, these effects are
not considered in the present calculations. A quasiparticle
energy cutoff of 100 MeV is used. We checked that, within
this approach, the EWSR is fully exhausted (for the case
without the velocity-dependent terms) and that the use of
a larger basis did not bring any noticeable differences. The
QTBA calculations are performed with the same basis. We
use 14–16 low-lying phonons of L = 2–6 multipolarity and
normal parity. They are obtained within the (Q)RPA with the
calculated effective interaction using the same quasiparticle-
energy cutoff. Such a consistent method to calculate phonons
is the reason we use a larger number of phonons than in the
phenomenological ETFFS [3]. In Fig. 1 we test our numerical
approximation of the single-particle continuum discretization
for the 132Sn and 176Sn magic nuclei by comparing our RPA
results with the exact account for the continuum by the
Green function method at the RPA level [42,43], as described
in Ref. [34]. It turns out that both calculations are almost
identical, which confirms that the discretization procedure
adopted here is quite satisfactory for GDR at least when a
large smearing parameter is used [44]. In the case of the
low-lying 1− strength (PDR) study, one had better use a
small smearing parameter in order to identify its more realistic
structure. In this case the discretization procedure may not
be satisfactory, especially for nuclei with a small nucleon
separation energy. Altogether, for small smearing parameters
and for nuclei with small separation energy, one should analyze
and maybe account for the widths of the single-particle levels
in the discrete part of our generalized propagator (see [3]),
and we plan to do it in the future. But here we only want
to understand the general tendency for the long chain of tin
isotopes that results from taking PC into account.

Usually the GDR strength function is obtained from the
experimental photoabsorption cross section which is fit by a
simple Lorentzian functional. The E1 photoabsorption cross
section is related to the strength function S(ω) as follows:
σE1(ω) = 4.022 ωSE1(ω), where the photon energy ω is in
MeV, S is in fm2 MeV−1, and σ is in mb. The Lorentzian fit
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FIG. 2. (Color online) 1− strength functions within QRPA
(dashed curves) and QTBA (solid curves) in 132Sn,136Sn,142

Sn,156Sn,166Sn, and 176Sn. For the 132Sn and 176Sn isotopes, the solid
green curves show calculations within the continuum RPA.

can be used to estimate the integral characteristics of the giant
resonance [45,46]. The mean energy E0, the resonance width
�, and the maximum value of the cross section σ0 are extracted
from the calculated photoabsorption cross sections under the
condition that the three lowest energy-weighted moments of
the Lorentzian and of the theoretical curve should coincide
in the energy interval considered. However, in order to obtain
more complete and universal information about the integral
characteristics, it is often better to use energy moments (see
below). This seems to be more appropriate for very neutron-
rich nuclei where one may expect significant deviations from
a Lorentzian-like shape for the cross section. The same
(0–30) MeV summation interval is used for all considered
nuclei.

The other feature of our calculation scheme is the so-called
subtraction procedure [4,7] which should avoid a PC double
counting from the effective interaction. This procedure is
a direct continuation of the phenomenological refinement
philosophy used in the first formulations of the ETFFS [3,47].
Because the self-consistent relativistic (Q)RPA calculations
fit the experimental data well and because the subtraction
procedure, in principle, provides the correct E0 value, which
is equal to the (Q)RPA E0 value, the authors [7] obtained a
fulfillment of the above-mentioned conditions if the energy
interval is properly chosen, for example (10–22.5) MeV for
Z = 50 nuclei or (10–25) MeV for N = 50 nuclei. However,
together with a reasonable description of the GDR’s width,
PC gives an additional strength in the low-energy region
(see Figs. 1 and 2). So this low-energy contribution of the
strength is usually neglected in such an analysis of the integral
characteristics based on the Lorentzian fit.

B. Results

Here we discuss our results for the long chain of tin isotopes
from 100Sn up to 176Sn. Figures 1 and 2 show the strength func-

FIG. 3. (Color online) Integral characteristics of the 1− state
for some Sn isotopes. Upper panel: GDR mean energy versus the
atomic mass number A in the 0–30 MeV interval. Lower panel: GDR
dispersion versus A for the same interval. RQTBA and RQRPAZ
results are taken from Refs. [48] and [7], respectively.

tions for twelve Sn isotopes. In the following subsections, the
dipole excitations are studied and the GDR and PDR analyzed
along the Sn isotopic chain. The general idea behind such an
investigation is to understand if there are some common trends
for dipole excitations in stable and unstable isotopes on both
sides of the β-stability valley and if they can be described
within one unique scheme and with one unique force like
SLy4. One can argue that such a force may not be appropriate
for unstable species but this force is among the most suited
tool and can provides us with valuable theoretical findings;
for example, as the non-Lorentzian shape of the GDR for very
neutron-rich nuclei such as 156Sn and 166Sn (see Fig. 1), as
discussed below.

1. Dipole excitations and giant dipole resonances

Figure 3 shows the calculated integral characteristics of the
dipole excitations for fifteen stable and unstable Sn isotopes.
The smearing parameter is � = 200 keV for all calculations.
The E1 response-integral characteristics for the mean energies
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and dispersions are calculated using the standard definitions

〈E〉 = E1,0 = m1

m0
, D =

√
m2

m0
−

(
m1

m0

)2

, (1)

where the energy moments mk for the energy interval �E =
Emax − Emin are calculated as follows:

mk =
∫ Emax

Emin

dEEkS(E). (2)

First we check our approach on the stable Sn isotopes
(116Sn, 120Sn, 124Sn) and obtain, as shown in Fig. 3, a
reasonable agreement with available experimental data [20].
The dipole excitation for these nuclei has a nicely visible
Lorentzian-like form with parameters which may vary slightly
depending on the adopted model [20]. Although our results are
not fit by a Lorentzian form and only moments are compared,
it can be seen that we have a reasonable agreement for both
the mean energy and the width of the E1 resonance. The
132Sn and 130Sn are the only unstable tin isotopes which were
probed to study the GDR and PDR [49]. Although the SLy4
forces works quite well for stable nuclei, there is no proof
that it is good for unstable nuclei. In Ref. [8], along with SLy4
Skyrme forces, we probed BSk5 [50] and SkM* [51] for 132Sn.
In all the three cases we obtained very similar mean-energy
values and widths (i.e., 14.3 and 2.9 MeV, respectively, for the
SLy4 force), while the experimental data are 16.1 ± 0.7 and
4.7 ± 2.1 MeV [49]. It has to be noted that other theoretical
approaches (see Fig. 3) [7,48] give very similar results, which
possibly means that further experimental investigations on the
132Sn GDR may be needed.

Our calculations show a noticeable difference both between
(Q)RPA and ETFFS(QTBA) approaches and stable and unsta-
ble nuclei (Figs. 2 and 3). The results for integral characteristics
(Fig. 3) clearly show the necessity to take PC into account for a
proper determination of the GDR width. For the A = 100–132
nuclei, PC gives rise to an increase of the width by as much as
2 MeV compared with (Q)RPA predictions. This PC effect is
also important in A > 132 nuclei, although to a lesser extent.
Figure 3 shows two distinct regions for the integral characteris-
tics. The first region corresponds to the stable isotopes, 116 <

A < 124, for which the integral characteristics follow the
well-known phenomenological systematics (e.g., E0 ∝ A−1/3

and � ∝ A−2/3). The second region includes unstable isotopes,
A > 132, for which these systematics fail. Similar conclusions
for mean energies can be made out of the calculations obtained
within the relativistic deformed QRPAapproach (RQRPAZ)
approach [48].

Here we suggest other empirical systematics which describe
quite well the mean energy in both regions defined above:

E0 = 78A−1/3 cos2 α + 12A−1/2 sin2 α, (3)

where α = (N − Z)/A is the neutron excess and the factor
12A−1/2 describes empirically the pairing gap, see Ref. [52].
One can see that this is in accordance with the results in
Fig. 6 (see below). The first term is responsible for the
collective GDR while the second one reflects the leftovers of
the GDR; namely, the noncollective particle-hole excitations.
This formula reflects the fact that the mean energy depends

on the superposition of these two kinds of excitations, while
the degree of mixing is defined by the neutron excess α.
The second term becomes important for unstable nuclei and
is correlated with the increased low-lying E1 strength. As
mentioned above, the E1 strength can hardly be described by
a Lorentzian function over the whole isotopic chain. One may
also try to separate out the GDR and PDR in the same way as
done in Ref. [48] using 132Sn as the benchmark in the definition
of the border between these two resonances. This procedure is
somewhat artificial and, anyway, for unstable nuclei the GDR
centroid energy itself does not follow the systematics, nor
does the mean energy taken in the whole 0–30 MeV interval.
Another interesting feature is that the dispersion (Fig. 3, lower
panel) is minimal at neutron magic numbers (N = 50, 82,
126) and maximal for open shell nuclei. Likewise for the mean
energy, the dispersion is quite close to the Lorentzian width for
stable nuclei only, while the contribution of the low-lying tail to
the dispersion for the second region is increasingly important
with increasing neutron excess.

2. Pygmy dipole resonances

The division of the dipole excitation between the GDR
and PDR regions seems rather artificial, although the nature
of the vibrations is rather different: the low-energy neutron
and proton transitional densities are vibrating mainly in phase,
while in the GDR energy region these are out of phase (see, for
example, the case of 208Pb in Ref. [53]). But there is no general
rule for defining the interval of pygmy dipole excitations for
a given nucleus. We can only visually outline the transition
region between the GDR and PDR. We find that, for the
whole Sn chain, this region is rather well described by the 8 to
10 MeV interval, as illustrated in Fig. 4.

This is why we consider here the 0–10 MeV interval for all
the nuclei—to get a general understanding about the low-lying
dipole strength. The resulting mean energies 〈E〉 = E1,0 and
	B(E1) values are shown in Fig. 5, along with the relativistic
QTBA (RQTBA) [7,54] and RQRPAZ [48] results as well as
the available experimental data [32,55].

We compare our results with these two relativistic ap-
proaches because they are the only available calculations of
integral characteristics for both the GDR and PDR in many
isotopes of the Sn chain and they have been obtained within a
self-consistent scheme. It has to be noted that experimental
data is available for 112Sn, 116Sn, and 124Sn isotopes up
to the neutron separation energy (the low-lying strength is
mostly concentrated in the 4–8.5 MeV interval) while the
“pygmy region” for 130Sn and 132Sn isotopes is not indicated
in Ref. [55].

We obtain a reasonable agreement with experiment for the
〈E〉 values summed over the 4–8.5 MeV interval (Fig. 5) while
the integral strength is a few times larger than the experimental
value. A similar behavior was observed in other self-consistent
calculations [48] (see Fig. 5). We find some sort of agree-
ment with the experimental 132Sn data (for our 0–10 MeV
interval), which gives an integrated strength of the PDR of
about 4% ± 3% of the EWSR [57], while our calculation
gives 4% with PC included and 2% without. At the same
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FIG. 4. (Color online) For each of the stable 124Sn and unstable
136Sn and 166Sn, the upper panel shows the strength function obtained
within QRPA (dashed curves) and QTBA (solid curves) in the
0–10 MeV interval and the lower panel shows the corresponding
transitional densities for protons (red curves) and neutrons (black
curves) summed over the indicated intervals. The smearing parameter
is 20 keV.

time the calculated and experimental GDR mean energies are
rather different and, moreover, the experimental mean energy
is out of the general trend (Fig. 3). Out of our self-consistent
calculations for the Sn chain and other non-self-consistent
calculations as in Ref. [5], we conclude that the PDR is very

FIG. 5. (Color online) Integral characteristics of 1− states in the
0–10 MeV interval. (a) Mean energy versus the atomic mass number
A. (b) 	B(E1) values. RQTBA and RQRPAZ results are taken from
Ref. [48] and [54], respectively. The results for Goldhaber-Teller
model are based on the work in Ref. [56]. Experimental results for
〈E〉 and 	B(E1) are taken from Refs. [32] and [55], respectively.

model-dependent and the force adopted probably needs some
modifications for a simultaneous description of both the GDR
and PDR. It is also rather evident that further experimental
investigations are needed as well.

Figures 4 and 5 demonstrate that there is a distinct
difference for characteristics of a low-lying strength for stable
and unstable nuclei; namely, the PC contribution to 	B(E1)
(i.e., the difference between the QRPA and QTBA predictions)
is small for nuclei in the A > 132 region, while in the A < 132
region PC has a rather important impact. Moreover, for nuclei
such as 112Sn, 116Sn, and 124Sn (Fig. 4, upper panel) the PDR
is almost completely defined by complex configurations in
the 4–8.5 MeV interval. For the 〈E〉 values we also have a
“border” at A = 132. In the A > 132 region there is almost no
PC contribution and a decrease of 〈E〉, while in the A < 132
region this picture is more complicated: the PC contribution
“corrects” an A dependence of the 〈E〉 values, which would
be expected within the QRPA approach, and in this sense the
PC effect is important.
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We find that the structure of the PDR excitation spectrum is
very specific to each nucleus. It is hardly a collective mode and
cannot be described by some systematics like the GDR. For
example, the Goldhaber-Teller model adapted for neutron-rich
nuclei in Ref. [56] gives a rather smooth A-dependent behavior
for the PDR mean energy and its strength (Fig. 5), which is not
predicted by our calculations and which is not really confirmed
by available experimental data. This is easy to understand from
the simple Brown-Bolsterly model for the (Q)RPA approach.
Indeed, in this model the excitation properties are determined
by the structure of single-particle or single-quasiparticle levels;
namely, the larger the difference between the neighboring
levels, the more collective the appropriate (Q)RPA 1− level.
From this point of view, the collectivity is determined by the
structure of single-(quasi)particle levels and, therefore, the
PDR structure is rather specific to each nucleus. Moreover,
recently a thorough theoretical analysis on the PDR collectivity
in 132Sn was performed in Refs. [58,59], which shows that the
collectivity is rather weak and only a few particle-hole config-
urations contribute to the PDR. The authors demonstrated that
such contributions are force-dependent and cooperative but not
coherent.

In order to better understand the PC role in the PDR
region for stable and unstable nuclei it is useful to consider
the correlation between the neutron separation energy and
the beginning of the low-energy excitation spectrum. In
Fig. 6, we compare the neutron separation energy with the
minimal particle-hole energy (Ep + Eh) and the minimal
energy (Ep + Eh + ω), where ω is the energy of the lowest
phonon for a given isotope, which approximately determine
the “beginning” of the low-lying tail for the (Q)RPA and
QTBA models, respectively. We see clearly that, the smaller
the neutron separation energy is, the lower is the energy of
the first 1− level. One can see also a border at A = 132;
that is, a direct correlation and similarity in the beginning
of the spectrum within both the (Q)RPA and QTBA for the
neutron-rich isotopes.

Due to the small neutron separation energy in the very
neutron-rich Sn isotopes, a relatively strong low-lying tail

FIG. 6. (Color online) Comparison of the neutron separation
energy with the minimal particle-hole energy (Ep + Eh) and the
minimal energy (Ep + Eh + ω), where ω is the energy of the lowest
phonon for the different Sn isotopes. See text for more details.

of the strength function arises very naturally both within the
QRPA and QTBA (see Figs. 1 and 4). So, there is no noticeable
difference here between these two approaches. In contrast, for
the lighter Sn isotopes (see Figs. 2 and 4), a considerable
contribution of PC can be observed.

To conclude our analysis of the PDR, we consider transition
densities which are now a standard way to investigate the
nature of nuclear excitations. Recently, this analysis was
performed for some tin isotopes within the QRPA approach
[5,58,60] and within the relativistic QTBA [54]. In Fig. 4, we
show our self-consistent QRPA and QTBA results for the stable
124Sn isotope and the unstable 136Sn and 166Sn isotopes. We
obtain a rather similar behavior for 136Sn and 166Sn isotopes
within the QRPA and QTBA approaches: below 8 MeV
(136Sn) and 9 MeV (166Sn) the proton and neutron transition
densities are in phase in both approaches; that is, both have
an isoscalar character and are clearly dominated by the neutron
contribution at the surface. At higher energies they show an
isovector behavior. Globally, our results are in accordance with
the QRPA results of [5,60] for stable nuclei. However, we
would like to emphasize some major differences between the
QRPA and QTBA approaches as far as the transition densities
for the stable 124Sn isotope are concerned (Fig. 4). Physically,
this corresponds to the fact that the PC gives a considerable
contribution to the low-lying strength in stable nuclei, which
can clearly be seen in Figs. 2 and 4 for other stable
nuclei.

In summary, we find that with the inclusion of PC the
low-lying tail is predominantly of isoscalar nature up to about
8 MeV for all considered Sn isotopes while the ≈8–10 MeV
interval is a transition region toward the isovector-type of
excitation which distinguishes the GDR. We also conclude that
the inclusion of PC is necessary to explain the PDR integral
properties (including the integrated strength) in stable isotopes.
Moreover it is mostly PC that contributes below the neutron
separation energy. For the A > 132 nuclei, and especially
for unstable neutron-rich nuclei, PC leads essentially to a
redistribution of the PDR strength.

III. RADIATIVE NEUTRON CAPTURE CROSS SECTIONS

The presence of the PDR in neutron-rich nuclei is of
particular interest since, if located well below the neutron
separation energy, it can significantly increase the radiative
neutron capture cross section and affect the nucleosynthesis of
neutron-rich nuclei by the so-called r process [14,15,23,61].
Similarly, the presence of extra strength at low energy in
neutron-deficient nuclei can be at the origin of an increase
of the radiative proton capture or photoproton emission that
takes place on the left side of the β-stability valley during the
so-called rp process or p process, respectively [62]. Since such
nucleosynthesis processes involve exotic nuclei that cannot be
produced in the laboratory (at least on the neutron-rich side),
only self-consistent calculations can provide a reasonable
prediction of their electromagnetic excitation properties. The
impact of our newly derived strength functions on the reaction
cross section are discussed below.
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FIG. 7. (Color online) 1− strength functions within QRPA (dotted
curves), QTBA (solid curves) and QTBA-ws (short-dashed curves)
for 124Sn,132Sn and 150Sn isotopes. See text for details.

A. Comparison between QTBA and QRPA

To estimate the impact that our new QTBA strength can
have on the radiative neutron capture rate of astrophysical
interest, the neutron capture cross section is calculated using
the reaction code TALYS [63]. The strength function with and
without PC is included in the calculation of the electromagnetic
deexcitation transmission coefficients. The resulting radiative
neutron capture cross sections calculated with the strength
functions of Fig. 7 are shown in Fig. 8 for the three Sn isotopes.

In Ref. [28], we studied the 143Nd(n, γ )144Nd cross section
using the non-self-consistent ETTFS(QTBA) strength func-
tion. Comparison with the QRPA version showed that PC

FIG. 8. (Color online) Radiative neutron capture cross sections
for 124Sn, 132Sn, and 150Sn isotopes obtained with the strength
functions which were calculated within the QRPA, QTBA, and
Kopecky-Uhl approaches. See text for details.

inclusion increases the cross section by a factor of two and
improves the agreement with experiment [64]. Very recently,
the results of calculations of the radiative neutron capture
cross sections within the self-consistent relativistic QTBA
were performed for the four tin isotopes [65].

Since the electromagnetic transmission coefficient corre-
sponds to an integral overlap of the deexcitation strength
function with the nuclear level density, only the strength
function in a restricted energy range below the neutron
separation energy plays an important role for the estimate of the
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radiative neutron capture rate [61,66]. This range corresponds
to γ energies typically in the range of 2 MeV < Eγ < 4 MeV,
although it may be higher in neutron-deficient nuclei or just
before crossing a neutron closed shell. Therefore, if located
in this energy range, the PDR might provide quite a large
contribution to the radiative cross section. For neutron-rich
nuclei, the mean PDR energy is relatively low and the
integrated strength is high (Fig. 5), so that the PDR contribution
may become significant [14,15].

Here we consider three different compound Sn nuclei;
namely, the stable 124Sn isotope and the unstable 132Sn and
150Sn isotopes. In our earlier calculations [28,67] we used
the microscopically calculated (Q)RPA and QTBA strength
functions, which were folded with a Lorentzian, in order
to reproduce the expected width of the strength function.
However, such a procedure tends to smear out the detailed
structure of the strength function that may be of interest in
the specific energy of relevance (as discussed above). For
this reason, we consider here the realistic strength functions
without any Lorentzian folding.

We consider two variants of the QTBA calculations in
order to compare the ETFFS(QTBA) calculations with and
without (QTBA-ws) the subtraction procedure (see the end of
Sec. II A). In the variant QTBA-ws, the isovector part of the
calculated effective interaction strength [8] is renormalized in
order to bring (in this approach) the mean energy E0 Eq. (1)
to the QTBA-predicted value; that is, to fulfill the condition
E0(QTBA) = E0(QTBA-ws). It turns out that the change of
the isovector part is no more than 10% (more precisely 8%,
5%, and 10% for 124Sn, 132Sn, and 150Sn, respectively). We find
that the difference between the QTBA and QTBA-ws strength
functions is not large; both of them differ significantly from the
QRPA predictions (see Fig. 7). The differences between QTBA
and QTBA-ws are essentially found in the redistribution of the
strength. This effect, however, is large enough to impact the
radiative neutron capture cross section, as shown in Fig. 8.

In particular, Fig. 8 shows that the QTBA-ws gives a
larger cross section compared with the QTBA for all the three
isotopes, although the GDR mean energies are the same for
both variants. The comparison with the corresponding RQTBA
calculations for 131Sn(n, γ )132Sn cross section [65] shows, in
general, similar behavior, except for specific energies like those
around En = 100 keV for which our cross section is noticeably
smaller than the RQTBA one. These deviations may stem from
the specific structure of the strength function in the energy
range of relevance, as well as from the use of different nuclear
ingredients in the cross-section calculation, such as nuclear
level densities.

In Refs. [28,67], where the microscopic strength function is
folded with a Lorentzian function, we found that, for the stable
124Sn, the cross sections obtained with QRPA and QTBA were
almost identical. Comparing the QTBA and QRPA strength
functions (Fig. 7) and cross sections (Fig. 8) allows us to
deduce directly the role of PC (without any interference of an
additional Lorentzian smoothing). In particular, the inclusion
of PC increases the cross sections by a factor two to three
in the QTBA-ws case (Fig. 8). In the latter case, the cross
section obviously follows the strength function shown in Fig. 7;
that is, the extra low-lying strength is responsible for an

increase of the reaction cross section (and consequently of the
Maxwellian-averaged reaction rate of astrophysical interest)
by about a factor of three with respect to the predictions based
on the HFB + QRPA calculation with BSk7 Skyrme force
[15]. More specifically, the low-energy E1 strength originating
from the PC contribution increases the cross section at 0.1 MeV
(an energy of relevance for the r-process nucleosynthesis)
by about 30% for 123Sn(n, γ )124Sn for the QTBA and by a
factor of about two for QTBA-ws. For 131Sn(n, γ )132Sn these
figures are even larger, and for 149Sn(n, γ )150Sn we obtained
a similar effect for the QTBA-ws only. Thus, in this section
we demonstrated the noticeable sensitivity of the radiative
neutron capture cross section with respect to the model (QRPA,
QTBA, or QTBA-ws) as well as the force used (SLy4 or
BSk7).

B. Comparison with phenomenological models

The Lorentzian approach has been widely used for prac-
tical applications, although it suffers from shortcomings of
various sorts. On the one hand, the location of the GDR
maximum energy and width remains to be predicted from some
underlying model for each nucleus. For many applications,
these properties have often been obtained from a droplet-type
model or from experimental systematics [20]. As shown in
Fig. 3, these estimates may differ significantly from the
predictions obtained from sounder microscopic models. In
addition, the Lorentzian model tends to overestimate the E1
strength at energies below the neutron separation energy.
Different parametrizations or functional forms (including, in
particular, an energy- and temperature-dependent width) have
been proposed (see, e.g., [20,68]) to reconcile experimental
data in the photon or radiative neutron capture channels,
but none of the proposed closed forms can nowadays ex-
plain the various trends observed at low energies. Besides,
the Lorentzian approach cannot provide any predictions on
the low-energy PDR; neither on its presence, nor on its
characteristics. For this reason, it is of particular interest to
analyze to what extent our predictions based on self-consistent
microscopic models differ from those used in practical
applications.

In Fig. 8 our results are compared with those obtained with
the phenomenological generalized Lorentzian (GLO) strength
function [68]. For the stable 124Sn, the GLO cross section is
rather similar to those obtained within the ETFFS approach. To
be exact, this cross-section curve is just between the QTBA and
QTBA-ws curves, although the strength functions can differ
at low energies below the neutron separation energy (Fig. 7).
However, for neutron-rich nuclei, such as 132Sn and 150Sn,
the cross section obtained with the GLO strength on the one
hand and both the QRPA and QTBA on the other hand differ,
especially for 150Sn. As shown in Sec. II, the main reason
lies in the A dependence of the integral characteristics, but
also in the existence of a low-lying strength predicted by the
microscopic models. Note that the GLO parameters used here
for 150Sn correspond to the Reference Input Parameter Library
(RIPL2)-recommended systematics (i.e., E0 = 14.81 MeV,
� = 4.47 MeV, and σ0 = 341.5 mb), which strongly differ
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from our microscopic predictions (see Fig. 3). Figure 7 also
shows the spreading of the strength function down to the lowest
energies (i.e., in the vicinity of the neutron separation energy),
while the GLO model would only provide the tail of the GDR
strength at these energies. These comparisons demonstrate the
nonapplicability of the empirical systematics and the necessity
to make use of self-consistent approaches for neutron-rich
nuclei. (Regarding the comparisons of M1 resonances with
the systematics used, see Ref. [69].)

IV. CONCLUSION

The electric dipole strength function has been estimated
on the basis of the ETFFS(QTBA) model which simulta-
neously takes into account the (Q)RPA configurations, the
more complex 1p1h ⊗ phonon or 2 quasiparticle ⊗ phonon
configurations and the single-particle continuum. For the
long chain of tin isotopes, the strength functions have been
determined within our DTBA approach, which is a discretized
self-consistent version of the ETFFS(QTBA). The QTBA
strengths have been compared with the (Q)RPA ones which
allowed us to study the contribution of the phonon coupling
along the whole isotopic chain.

Our conclusions concerning the GDR and PDR properties
clearly differ depending on the nuclear region considered,
namely the A < 132 and A > 132 regions. More precisely:

(i) For neutron-rich A > 132 Sn isotopes, we find, both
within QRPA and QTBA, a significant difference in the
A dependence of the GDR mean energy on the standard
phenomenological systematics. Our Eq. (3) gives new
phenomenological systematics.

(ii) Although for all considered isotopes, the PC contribu-
tion to the GDR width is very important quantitatively,
its contribution to nuclei in the A > 132 region is
smaller than it is for the A < 132 nuclei.

(iii) The PC contribution to the PDR integral characteristics
〈E〉 and 	B(E1) summed over the 0–10 MeV interval
is small for the neutron-rich isotopes.

(iv) The transition densities in most of the low-energy
region are mainly of isoscalar nature both within the
QRPA and QTBA approaches. The PC contribution
to the transition densities also affects the transition
densities, especially in stable nuclei. Globally, the
isoscalar behavior is revealed on the energy interval
considered here (1 MeV). It is not found that the tran-
sition density of all individual peaks in the low-energy
region is of isoscalar nature. We note also that, for
these reasons, the QRPA cannot explain quantitatively

the isoscalar-isovector splitting of the PDR in the
stable 140Ce observed in the (α, α′γ ) reaction [60] (see
Ref. [21] as well).

Such a different manifestation of PC for nuclei with
A < 132 and A > 132 correlates very well with the neutron
separation energy; namely, the differences are much smaller
for neutron-rich nuclei than they are for A < 132 nuclei.
Owing just to this fact, the low-energy parts of the strength
functions in neutron-rich nuclei are rather similar within the
QRPA and QTBA.

The radiative neutron capture cross sections for 124Sn,132Sn,
and 150Sn were calculated with the QTBA and QRPA strength
functions and shown to be sensitive to the predicted low-lying
strength. Significant deviations from the phenomenological
GLO approach [68] are also obtained for the strength functions
and, consequently, for the neutron capture and photoabsorption
cross sections for the very neutron-rich isotope 150Sn. A
direct comparison between the QTBA (including PC) and
GLO cross sections shows that the neutron capture cross
section on very neutron-rich nuclei may be increased by two
orders of magnitude with respect to the traditional use of
phenomenological models. Our results confirm the necessity
to use self-consistent microscopic models when dealing with
exotic nuclei. Therefore, nuclear data libraries should not
recommend such phenomenological models in this case, but
rather point toward newly developed microscopic large-scale
calculations.

In our calculations, phonon coupling, which has been
included, in addition to the standard QRPA, is a necessary
ingredient to describe the electric GDR and PDR properly.
Nevertheless, it is necessary to use some renormalization
procedures (either by adjusting some interaction parameters
or by applying the subtraction method) to obtain the correct
value of the spurious state energy. In addition, the approach still
needs to include the self-consistency at the level of complex
configurations. Therefore, further developments are needed
(see also [21], where some unsolved issues in the PDR physics
are discussed).
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