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Spin-aligned neutron-proton pairs in N = Z nuclei
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A study is carried out on the role of the aligned neutron-proton pair with angular momentum J = 9 and isospin
T = 0 in the low-energy spectroscopy of the N = Z nuclei 96Cd, 94Ag, and 92Pd. Shell-model wave functions
resulting from realistic interactions are analyzed in terms of a variety of two-nucleon pairs corresponding to
different choices of their coupled angular momentum J and isospin T . The analysis is performed exactly for four
holes (96Cd) and carried further for six and eight holes (94Ag and 92Pd) by means of a mapping to an appropriate
version of the interacting boson model. The study allows the identification of the strengths and deficiencies of
the aligned-pair approximation.
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I. INTRODUCTION

The study of nuclei with equal numbers of neutrons and
protons (N = Z) is one of the declared goals of radioactive-
ion-beam facilities either in operation or under construction.
Such nuclei are well known when N and Z are small but,
as the atomic mass number A = N + Z increases, they lie
increasingly closer to the proton drip line and therefore
become more difficult to study experimentally. Nevertheless,
several phenomena of interest, such as the breaking of isospin
symmetry or the emergence of new collective modes of
excitation, are predicted to become more pronounced with
increasing A, and this constitutes the main argument for
undertaking the difficult studies of ever heavier N = Z nuclei.

Arguably, the goal of most interest in this quest is the
uncovering of effects due to isoscalar (T = 0) neutron-proton
(n-p) pairing. In contrast to the usual isovector (T = 1)
pairing, where the orbital angular momenta and the spins of
two nucleons are both antiparallel (i.e., L = 0 and S = 0),
isoscalar pairing requires the spins of the nucleons to be
parallel (S = 1), resulting in a total angular momentum J = 1.
Collective correlation effects are predicted to occur as a
result of isoscalar n-p pairing [1] but have resisted so far
experimental confirmation because (i) the jj coupling scheme
which is applicable in all but the lightest nuclei disfavors the
formation of isoscalar n-p pairs with L = 0 [2], and (ii) the
states associated with this collective mode are of low angular
momentum J and often hidden among high-J isomeric states,
which hinders their experimental detection.

Currently, N = Z experiments are approaching 100Sn,
involving studies of nuclei such as 92Pd [3] where nucleons are
dominantly confined to the 1g9/2 orbit. In the context of these
experiments, Blomqvist recently proposed [4] that a realistic
description of shell-model wave functions can be obtained in
terms of isoscalar n-p pairs which are completely aligned in
angular momentum; that is, pairs with J = 9. This proposal is
attractive since it is well adapted to the jj coupling scheme,
valid in this mass region, and because it should encompass
the description of high-J isomeric states. Blomqvist’s idea is
related to the so-called stretch scheme which was advocated
a long time ago by Danos and Gillet [5]. In the stretch

scheme, shell-model states are constructed from aligned n-p
pairs, treated in a quasiboson approximation which neglects
antisymmetry between the nucleons in different pairs. The
latter approximation is absent from Blomqvist’s approach.

In this paper we examine Blomqvist’s proposal for the N =
Z nuclei 96Cd, 94Ag, and 92Pd. We consider several realistic
two-body interactions for the 1g9/2 orbit and analyze the shell-
model wave functions, obtained with these interactions, of
the four-nucleon-hole system (96Cd) in terms of a variety of
two-pair states. For the six- and eight-hole nuclei (94Ag and
92Pd) a direct shell-model analysis in terms of pair states is
more difficult, and we prefer therefore to carry out an indirect
check by means of a mapping to a corresponding boson model.
In these cases our approach is intermediate between that of
Blomqvist [4] and of Danos and Gillet [5]. The boson mapping
takes care of antisymmetry effects in an exact manner on the
level of four nucleons but becomes approximate for more.

This paper is organized as follows: First, some necessary
concepts and techniques are introduced: the formulas needed
to carry out a shell-model calculation in a pair basis are given
in Sec. II and two mapping techniques from an interacting
fermion to an interacting boson model are reviewed in
Sec. III. The results of our analysis of N = Z nuclei are
presented and discussed in Sec. IV. The conclusions and
outlook of this work are summarized in Sec. V.

II. FOUR-PARTICLE MATRIX ELEMENTS

This section summarizes the necessary ingredients to carry
out calculations in an isospin formalism. The formulas given
are valid for fermions as well as for bosons. Four-particle
states are described by grouping the particles in two pairs.
These two-pair states can be used, for example, as a basis in a
shell-model calculation, facilitating the subsequent analysis of
the pair structure of the eigenstates. Furthermore, the two-pair
representation of four-particle states is the natural basis to
map the shell model onto a corresponding model in terms
of bosons. Once this mapping is carried out, the original
interacting fermion problem is reduced to one of interacting
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bosons, which can also be solved with the results summarized
in this section.

In the pair representation of four particles with angular
momentum j and isospin t (both integer for bosons and
half-odd-integer for fermions), a state can be written as
|(j t)2(J1T1)(j t)2(J2T2); JT 〉 where particles 1 and 2 are
coupled to angular momentum and isospin J1T1, particles 3
and 4 to J2T2, and the intermediate quantum numbers J1T1

and J2T2 to total JT . It is convenient to introduce a short-hand
notation that simultaneously takes care of angular momentum
and isospin quantum numbers and we denote JT as �; indices
will always be carried over consistently (i.e., �i refers to JiTi ,
γ to j t , etc.). The state |(j t)2(J1T1)(j t)2(J2T2); JT 〉 is then
denoted as |γ 2(�1)γ 2(�2); �〉. This state is not (anti)symmetric
in all four bosons (fermions) but can be made so by applying
the (anti)symmetrization operator P̂ :

|γ 4[�1�2]�〉 ≡ P̂ |γ 2(�1)γ 2(�2); �〉
=

∑
�a�b

[γ 2(�a)γ 2(�b); �|}γ 4[�1�2]�]

×|γ 2(�a)γ 2(�b); �〉, (1)

where [γ 2(�a)γ 2(�b); �|}γ 4[�1�2]�] is a four-to-two coef-
ficient of fractional parentage (CFP). The notation in square
brackets [�1�2] implies that (1) is constructed from a parent
state [6] with intermediate angular momenta and isospins
J1T1 and J2T2. It is implicitly assumed that all pair quantum
numbers are allowed (i.e., that Ji is even for Ti = 1 and odd
for Ti = 0).

The four-to-two CFP is given by

[γ 2(�a)γ 2(�b); �|}γ 4[�1�2]�]

= 1√
N �1�2

γ�

⎛⎜⎝δ�1�a
δ�2�b

+ (−)J+T δ�1�b
δ�2�a

+ 4σ

⎡⎢⎣ γ γ �a

γ γ �b

�1 �2 �

⎤⎥⎦
⎞⎟⎠ . (2)

where σ = +1 for bosons and σ = −1 for fermions. Further-
more, N �1�2

γ� is a normalization constant, δ�1�a
≡ δJ1Ja

δT1Ta
,

δ�2�b
≡ δJ2Jb

δT2Tb
, and⎡⎣ γ γ �a

γ γ �b

�1 �2 �

⎤⎦ = [�1][�2][�a][�b]

×
⎧⎨⎩ j j Ja

j j Jb

J1 J2 J

⎫⎬⎭
⎧⎨⎩ t t Ta

t t Tb

T1 T2 T

⎫⎬⎭ , (3)

where the symbol in curly brackets is a nine-j symbol and
[�i] = √

(2Ji + 1)(2Ti + 1). The normalization constant is
known in closed form as

N �1�2
γ� = 6

⎛⎝1 + (−)J+T δ�1�2 + 4σ

⎡⎣ γ γ �1

γ γ �2

�1 �2 �

⎤⎦⎞⎠ . (4)

The states (1) do not form an orthonormal basis. One needs
therefore to determine the overlap matrix elements, which can
be written in terms of the CFPs as

〈γ 4[�1�2]�|γ 4[�′
1�

′
2]�〉

=
∑
�a�b

[γ 2(�a)γ 2(�b); �|}γ 4[�1�2]�]

×[γ 2(�a)γ 2(�b); �|}γ 4[�′
1�

′
2]�]

= 6√
N �1�2

γ�

[γ 2(�1)γ 2(�2); �|}γ 4[�′
1�

′
2]�]. (5)

Furthermore, the matrix elements of the two-body part of the
Hamiltonian can be expressed as

〈γ 4[�1�2]�|Ĥ2|γ 4[�′
1�

′
2]�〉

= 6
∑
�a�

[γ 2(�a)γ 2(�); �|}γ 4[�1�2]�]

×[γ 2(�a)γ 2(�); �|}γ 4[�′
1�

′
2]�]ν�, (6)

where ν� are two-body matrix elements between normalized
two-particle states and ν� ≡ 〈γ 2; �|Ĥ2|γ 2; �〉. The label
� is a short-hand notation for the two-particles’ angular
momentum λ and isospin T . For example, in the nuclear shell
model the particles are nucleons with half-odd-integer angular
momentum j and isospin t = 1/2. We recall that, in this case,
the antisymmetric two-nucleon states are uniquely determined
by the total angular momentum λ and that the total isospin is
a redundant quantum number which is T = 0 for odd λ and
T = 1 for even λ. The two-body matrix elements therefore
depend on λ only; νλ = 〈j 2; λ|Ĥ2|j 2; λ〉. In the interacting
boson model, in contrast, the particles are bosons with integer
angular momentum j and integer isospin t = 0 or t = 1. In the
latter case, the two-particles’ isospin T (obtained by coupling
t = 1 with t = 1) is not redundant but is needed to fully
characterize the two-particle state.

III. METHODS OF MAPPING

The basic and common idea of different boson mapping
methods is to truncate the full shell-model space to a subspace
which is written in terms of fermion pairs and to establish
subsequently a correspondence between the fermion-pair
space and an analogous space which is written in terms of
bosons. This section recalls briefly two methods; namely,
the Otsuka-Arima-Iachello (OAI) [7] and the democratic [8]
mappings that will be used in the applications.

A. OAI mapping

We limit ourselves here to the problem of n nucleons with
isospin t = 1/2 in a single orbit j , which is the case of interest
in this paper. A detailed description of the method in its full
generality can be found in Ref. [7].

Let us first introduce the pair creation operators

A
†(JT )
MJ MT

= 1√
2

[a† × a†](JT )
MJ MT

, (7)
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where a† is the creation operator of a t = 1/2 nucleon in orbit
j and the square brackets denote coupling to a tensor with
angular momentum J and isospin T , and projections MJ and
MT , respectively. For nucleons in a single orbit j , the pair (7) is
totally determined by its angular momentum J and its isospin
follows from it (i.e., T = 0 for odd J and T = 1 for even J ).
The starting point of the OAI mapping is a given shell-model
Hamiltonian Ĥ F which is a scalar in J and T , and the selection
of a number of fermion pairs J1, J2, . . . , Jp, to each of which
will be associated a boson with the same angular momentum
Ji . (For the bosons this angular momentum is by convention
denoted as �i , �i = Ji .) For a single-j orbit one may ignore
the single-particle term of the Hamiltonian which we therefore
take to be of pure two-body character and denote it as Ĥ F

2 .
The one-body term of the mapped boson Hamiltonian Ĥ B is
directly obtained from the matrix elements of the shell-model
Hamiltonian Ĥ F

2 between the pair states,

ε�i
≡ 〈�i |Ĥ B|�i〉 = 〈Ji |Ĥ F

2 |Ji〉. (8)

These matrix elements are interpreted as single-boson ener-
gies.

The determination of higher-body terms of the mapped
boson Hamiltonian is more complicated, as we illustrate here
for the two-body part. For a given angular momentum J and
isospin T , one first enumerates all possible two-pair states
|Fi〉 ≡ |JaJb; JT 〉, where the index i = 1, . . . , d corresponds
to pairs (a, b) with 1 � a � b � p. These will be mapped
onto the two-boson states |Bi〉 ≡ |�a�b; JT 〉,

|Fi〉 −→ |Bi〉, i = 1, . . . , d. (9)

This correspondence cannot be established directly since the
boson states are orthogonal while the fermion states are not:

〈Bi |Bj 〉 = δij , oij ≡ 〈Fi |Fj 〉 �= δij , (10)

where oij is the overlap matrix in fermion space. To deal with
this problem, the strategy of the OAI mapping is to define for
each JT a hierarchy of pair states, to apply a Gram-Schmidt
orthogonalization of this ordered sequence, and to associate
the boson states with the orthonormalized fermion states. This
leads to the definition of the correspondence

|F̃i〉 =⇒ |Bi〉, i = 1, . . . , d, (11)

where the states |F̃i〉 form an orthonormalized basis. One has
the series

|F̃1〉 = 1√
o11

|F1〉,

|F̃2〉 = 1√
o22 − (õ21)2

(|F2〉 − õ21|F̃1〉),

...

|F̃k〉 = 1√
Nk

(
|Fk〉 −

k−1∑
i=1

õki |F̃i〉
)

, (12)

until k = p, with

Nk = okk −
k−1∑
i=1

(õki)
2 , õki ≡ 〈Fk|F̃i〉. (13)

An efficient algorithm to carry out the Gram-Schmidt proce-
dure involves expanding the orthonormal states |F̃k〉 in the
nonorthogonal basis |Fi〉 as

|F̃k〉 =
k∑

i=1

aki |Fi〉, (14)

and calculating the coefficients aki (needed for k � i) recur-
sively from

akk = 1√
Nk

, aki = − 1√
Nk

k−1∑
i ′=i

õki ′ai ′i ,

õki =
i∑

i ′=1

aii ′oki ′ , (15)

which, as only input, requires the knowledge of the overlap
matrix elements oij . The matrix elements of the fermion
Hamiltonian in the orthonormal basis |F̃k〉 are then given by

〈F̃k|Ĥ F
2 |F̃l〉 =

∑
ij

akialj 〈Fi |Ĥ F
2 |Fj 〉, (16)

and the mapped boson Hamiltonian follows from

〈�a�b; JT |Ĥ B|�a′�b′ ; JT 〉 = 〈J̃aJb; JT |Ĥ F
2 |J̃a′Jb′ ; JT 〉.

(17)

Note that this equation defines the entire boson Hamiltonian
up to and including two-body interactions. To isolate its two-
body part Ĥ B

2 , one should subtract the previously determined
one-body terms according to

〈�a�b; JT |Ĥ B
2 |�a′�b′ ; JT 〉

= 〈�a�b; JT |Ĥ B|�a′�b′ ; JT 〉 − (ε�a
+ ε�b

)δaa′δbb′ ,

(18)

always assuming that a � b and a′ � b′.
This is the version of the OAI mapping as it will be applied

in this paper. The boson Hamiltonian is obtained from the two-
and four-particle systems and is kept constant for systems with
higher numbers of particles. This is akin to the democratic
mapping but the latter has the advantage that no hierarchy
of two-pair states is required, as is discussed in the next
subsection.

Nevertheless, the hierarchy imposed in the OAI mapping
is often based on arguments of seniority which enables an
extension to n-particle systems. To illustrate this point, we
consider the case of a truncation onto a subspace constructed
out of pairs of angular momenta J = 0 (S pair) and J = 2
(D pair). (In this example we assume for simplicity identical
nucleons so that isospin can be omitted.) The creation operators
S† and D† are defined as

S† = A
†(0)
0 , D

†
M = A

†(2)
M . (19)

The truncated shell-model space is the SD subspace spanned
by the states

|jnvξ ; JMJ 〉 = 1

NF
P(S†)(n−v)/2[(D†)v/2](J )

MJ
|o〉, (20)
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where |o〉 refers to the closed core, ξ denotes additional quan-
tum numbers related to the intermediate angular-momentum
couplings of the D pairs, and NF is a normalization constant.
The operator P is needed to ensure orthogonality of the basis.
Its effect is a projection onto a subspace with seniority v, the
number of particles not in pairs coupled to J = 0. As a result,
the states (20) are normalized and can be mapped onto sd

states. This can be expressed by the general correspondence

|jnvξ ; JMJ 〉 =⇒ |nsndξ ; JMJ 〉 (21)

= 1

NB
(s†)ns [(d†)nd ](J )

MJ
|o),

where |o) is the boson vacuum, ns and nd are the s- and d-boson
numbers, respectively, with ns = (n − v)/2 and nd = v/2, and
NB is a normalization constant. The matrix elements of the
mapped boson Hamiltonian are now defined as

〈nsndξ ; JMJ |Ĥ B|n′
sn

′
dξ

′; JMJ 〉
= 〈jnvξ ; JMJ |Ĥ F

2 |jnv′ξ ′; JMJ 〉. (22)

The difference with Eq. (17) is that the latter equation is
specific to n = 4 particles while the mapping (22) applies to
any n. The calculation of an n-particle fermion matrix element
is possible because the seniority formalism allows it to be
reduced to n = max(v, v′) [6]. Hence, as long as v, v′ � 4
the fermion matrix element can be computed and fixes the
corresponding boson matrix element. The advantage of this
procedure is that it determines a boson Hamiltonian which
varies with particle number yielding a more adequate descrip-
tion of Pauli effects. Its disadvantage is that a generalization
towards any choice of pairs and/or to neutrons and protons
is difficult, if not impossible. Therefore, we opt in this paper
for the simpler OAI mapping that defines a constant boson
Hamiltonian from the two- and four-particle systems.

B. Democratic mapping

Again the starting point is the selection of a number of
fermion pairs J1, J2, . . . , Jp and a corresponding series of
bosons with energies ε�i

determined from Eq. (8). To establish
the correspondence (9), complicated by the nonorthogonality
of the fermion two-pair states, the democratic mapping relies
on the diagonalization of the overlap matrix oij defined in
Eq. (10). This diagonalization provides, besides the eigenval-
ues ok , an orthogonal basis |Xk〉,

|Xk〉 =
∑

i

cki |Fi〉, k = 1, . . . , d, (23)

with

〈Xk|Xl〉 =
∑
ij

ckiclj oij = okδkl, k, l = 1, . . . , d. (24)

We follow the convention of labeling nonorthogonal basis
states by i or j , and orthogonal basis states by k or l.
The coefficients cki ≡ 〈Fi |Xk〉 ≡ 〈Xk|Fi〉 are transformation
coefficients from the nonorthonormal basis |Fi〉 to the basis
|Xk〉, and they satisfy∑

i

ckicli = δkl, k, l = 1, . . . , d. (25)

The states |Xk〉 form an orthogonal but nonnormalized basis
since they satisfy (24). To normalize these states, we define

|F̄k〉 = 1√
ok

|Xk〉, k = 1, . . . , d, (26)

which indeed satisfy

〈F̄k|F̄l〉 = δkl, k, l = 1, . . . , d. (27)

The basis |F̄k〉 has the same role as the basis |F̃k〉 in the
OAI mapping but it is important to realize that both bases
are not identical and lead to different boson Hamiltonians. The
democratic mapping relies on the definition of a transformation
in boson space which is analogous to the one in fermion space:

|B̄k〉 =
∑

i

cki |Bi〉, k = 1, . . . , d. (28)

From the orthogonality of the basis |Bi〉 and the properties of
the coefficients cki it can be shown that these states form an
orthonormal set:

〈B̄k|B̄l〉 = δkl, k, l = 1, . . . , d. (29)

We have now arrived at fermion and boson bases that are both
orthonormal, and we can therefore establish the mapping

|F̄k〉 =⇒ |B̄k〉, k = 1, . . . , d, (30)

and determine the matrix elements of the boson Hamiltonian
in this basis:

〈B̄k|Ĥ B|B̄l〉 = 〈F̄k|Ĥ F
2 |F̄l〉, k, l = 1, . . . , d. (31)

With use of the inverse of the relation (28), of the equality
(31), and of Eqs. (23) and (26), the matrix elements of the
boson Hamiltonian in the original basis can be written in
terms of those of the fermion Hamiltonian (also in the original
basis) as

〈Bi |Ĥ B|Bj 〉 =
∑
kl

∑
i ′j ′

1√
okol

ckicki ′clj clj ′H F
i ′j ′ , (32)

where H F
i ′j ′ ≡ 〈Fi ′ |Ĥ F

2 |Fj ′ 〉. Again, as with the OAI mapping,
this defines the entire boson Hamiltonian from which the two-
body part can be isolated by applying Eq. (19).

In some cases, m fermion vectors |Fi〉 are linearly depen-
dent on the d − m others, leading to m vanishing eigenvalues
of the overlap matrix:

oi = 0, i = 1, . . . , m. (33)

This problem can be solved by excluding from the fermion
space m states |Fi〉 and by calculating the matrix elements of
Ĥ B from the remaining d − m states. All other matrix elements
of Ĥ B are defined such that

〈Bi |Ĥ B|Bi〉 = ∞, i = d − m + 1, . . . , d,

〈Bi |Ĥ B|Bj 〉 = 〈Bj |Ĥ B|Bi〉 = 0, i �= j, (34)

where i and j in the last equation take the values i = 1, . . . , d

and j = d − m + 1, . . . , d. One still has to decide which
m vectors to remove from the fermion space. To avoid
arbitrariness, one chooses the m fermion states with the
smallest overlap with the shell-model states.
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IV. APPLICATION TO N = Z NUCLEI

Of particular interest in this work are N = Z nuclei with
neutrons and protons in the 1g9/2 orbit. Recently, Blomqvist [4]
has conjectured that a valid interpretation of yrast states in
these nuclei can be obtained in terms of n-p T = 0 pairs which
are coupled to maximum angular momentum J = 9 and which
therefore can be termed aligned n-p pairs. This is contrary to
the usual interpretation of such states which involves low-spin
pairs with isospin T = 1 and possibly also with T = 0. In
this section we examine Blomqvist’s proposal with specific
reference to the nuclei 96Cd, 94Ag, and 92Pd, corresponding
to four, six, and eight holes with respect to the 100Sn core,
respectively. Our study consists of two separate parts: the
analysis of shell-model wave functions of 96Cd in terms of
a variety of two-fermion pairs and the mapping of shell-model
onto corresponding boson states for 96Cd and 92Pd, following
the formalism developed in the previous sections. First, an
appropriate shell-model interaction should be determined.

A. Shell-model interaction

For the purpose of checking the stability of our results
and the reliability of our conclusions, we have carried out
the analysis for three different shell-model interactions. The
SLGT0 interaction is taken from Serduke et al. [9]. It was used
in the more recent analysis of Herndl and Brown [10] where it
was found to give satisfactory results for the neutron-deficient
nuclei in the mass region A = 86 to 100, which are of interest
in the present study. A second shell-model interaction, which
shall be named GF, is taken from Gross and Frenkel [11].
Both the SLGT0 and GF interactions are defined in the 2p1/2 +
1g9/2 shell-model space and, to carry out an analysis in terms of
aligned pairs, it is necessary to renormalize them to the 1g9/2

orbit. The resulting two-body matrix elements are shown in
columns 2 and 3 of Table I. The renormalization only affects
the (λ, T ) = (0, 1) and (1, 0) matrix elements since these are
the only ones that also occur in the 2p1/2 orbit.

To avoid the renormalization procedure, we define a third
interaction directly for the 1g9/2 orbit. This is done in the
following way. The spectrum of 90Nb is well known [12]

TABLE I. Two-body matrix elements in the 1g9/2 orbit, in units
of MeV, derived from the interactions SLGT0 and GF, and from the
experimental spectrum of 90Nb.

νλ ≡ 〈(1g9/2)2; λT |Ĥ F
2 |(1g9/2)2; λT 〉

(λ, T ) SLGT0 GF Nb90

(0, 1) −2.392 −2.321 −1.758
(1, 0) −1.546 −1.524 −1.225
(2, 1) −0.906 −0.937 −0.573
(3, 0) −0.747 −0.700 −0.521
(4, 1) −0.106 −0.160 0.064
(5, 0) −0.423 −0.447 −0.332
(6, 1) 0.190 0.140 0.266
(7, 0) −0.648 −0.640 −0.481
(8, 1) 0.321 0.241 0.334
(9, 0) −1.504 −1.752 −1.376

and enables the determination of the particle-hole interaction
matrix elements

ν
ph
λ ≡ 〈1g9/2(1g9/2)−1; λT |Ĥ F

2 |1g9/2(1g9/2)−1; λT 〉. (35)

The isospin T is determined from λ; that is, T = 4 for all states
except for λ = 0, which has T = 5. The absolute value of the
matrix element (35) for the ground state (λ = 8) is obtained
from the binding energies of the surrounding nuclei as

ν
ph
8 = −[E(90Zr) + E(90Nb) − E(91Nb) − E(89Zr)]

= −783.794 − 776.895 + 788.942 + 771.825 MeV

= 0.078 MeV, (36)

where E stands for the nuclear binding energy, which is taken
from the 2003 atomic mass evaluation [13] and corrected
for the electrons’ binding energy [14]. (The minus sign is
needed to convert from binding energy to interaction energy.)
All levels λ = 0, . . . , 9 of the particle-hole multiplet (35)
are known in 90Nb and fix the differences ν

ph
λ − ν

ph
8 . A

problem with this procedure concerns the choice of the relevant
Jπ = 1+ state in 90Nb. Several of them are observed at low
excitation energy and only one should be taken as a member
of the particle-hole multiplet. We have taken the Jπ = 1+
level at 2.126 MeV because this state is strongly populated
in the β-decay of 90Mo (log10 f t = 4.9) [15]. Furthermore, it
appears to be the only 1+ state observed in the triton spectrum
obtained in the charge-exchange reaction 90Zr(3He, t)90Nb
[16].

Once the particle-hole matrix elements ν
ph
λ are derived in

this way, the particle-particle (or hole-hole) matrix elements
ν

pp
λ are obtained from an inverted Pandya transformation [17].

Since absolute (as opposed to relative) matrix elements have
been extracted from binding energies, care should be taken to
use the appropriate Pandya transformation. Equation (18.63)
of Ref. [6] gives the following relation between absolute matrix
elements:

ν
ph
λ = E0 −

∑
λ′

(2λ′ + 1)

{
j j λ

j j λ′

}
ν

pp
λ′ , (37)

where E0 is a constant (i.e., λ-independent) interaction energy
given by

E0 = 1

2j + 1

∑
all λ′

(2λ′ + 1)νpp
λ′ + 2j − 1

2j + 1

∑
even λ′

(2λ′ + 1)νpp
λ′ .

(38)

To express the particle-particle in terms of the particle-hole
matrix elements, as is needed here, the relation (37) can now
be inverted in the usual manner, leading to

ν
pp
λ = E0 −

∑
λ′

(2λ′ + 1)

{
j j λ

j j λ′

}
ν

ph
λ′ . (39)

The problem with this relation is that it is of no use as long
as the constant E0 is expressed in terms of particle-particle
matrix elements, as in Eq. (38). We need an equation for E0 in
terms of particle-hole matrix elements. This can be obtained
by inserting the expression (39) for ν

pp
λ in Eq. (38) and solving
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TABLE II. Fractions of 2p1/2 + 1g9/2 shell-model eigenstates of
the GF interaction that lie within the 1g9/2 subspace, expressed in
percentages.

J π
i 0+

1 0+
2 2+

1 2+
2 4+

1 4+
2 6+

1 8+
1 10+

1

96Cd 96 86 98 97 98 98 98 97 99
92Pd 90 95 92 95 94 93 95 94 96

for E0, leading to

E0 = 1

2j (2j + 1)

∑
all λ′

(2λ′ + 1)νph
λ′ − 2j − 1

2j (2j + 1)
ν

ph
0 . (40)

The resulting particle-particle matrix elements are shown
in column 4 of Table I under “Nb90”, where the “pp” index is
omitted, νλ ≡ ν

pp
λ , as will be done from now on. Note that the

matrix elements thus obtained differ by a constant from those
of Sorlin and Porquet (see Fig. 6 of Ref. [18]), since we have
taken care here of the constant interaction energy E0.

It is seen from Table I that the matrix elements of the
SLGT0 and GF interactions are similar. The biggest difference
concerns the (λ, T ) = (9, 0) matrix element, which is more
attractive by ∼250 keV for GF. This conceivably might
influence the approximation in terms of aligned λ = 9 n-p
pairs. The interaction derived from 90Nb is less attractive (or
more repulsive); in particular the pairing matrix element with
(λ, T ) = (0, 1). All three interactions, while having reasonable
characteristics, are sufficiently different to test the robustness
of our analysis.

Before proceeding with the wave-function analysis, we first
check to what extent the N = Z nuclei in this region can
be described by confining nucleons to the 1g9/2 orbit. This
approximation should be reasonable for nuclei close to (south-
west of) 100Sn but will become increasingly poor as one ap-
proaches 80Zr. The latter nucleus is known to be deformed [19]
and hence a single (spherical) orbit will not suffice for a
reliable description of nuclei in its neighborhood. To quantify
the limitation to the 1g9/2 orbit, we show in Table II the results
of a shell-model calculation with the GF interaction. The table
shows the fractions of 2p1/2 + 1g9/2 shell-model eigenstates
of 96Cd and 92Pd that lie within the 1g9/2 subspace, expressed
in percentages. It is seen that, for the lowest eigenstates,
this fraction is large, hence justifying the restriction to the
1g9/2 orbit. Therefore, we henceforth restrict the shell-model
space to 1g9/2, in which case the formalism of Sec. II can be
applied.

B. Shell-model analysis of the (1g9/2)4 system

With the formalism developed in Sec. II it is now possible
to perform a shell-model calculation for four holes in the 1g9/2

orbit and analyze the resulting wave functions in terms of
two-pair states. We concentrate on the N = Z case which
corresponds to two neutrons and two protons. For a given
angular momentum J , the overlap matrix between all possible
two-pair states |(j t)4[(J1T1)(J2T2)]JT 〉 is constructed using
Eq. (5). The number d of linearly independent states JT is
given by the number of nonzero eigenvalues of the overlap

matrix. We then select d linearly independent but otherwise
arbitrary two-pair states that shall be denoted in short as
|Fi〉, i = 1, . . . , d. Diagonalization of the overlap matrix oij ≡
〈Fi |Fj 〉 allows the definition of an orthonormal basis

|F̄k〉 =
∑

i

c̄ki |Fi〉, k = 1, . . . , d, (41)

with c̄ki = cki/
√

ok in the notation of Sec. III. This basis can
now be used to construct the energy matrix,

〈F̄k|Ĥ F
2 |F̄l〉 =

∑
ij

c̄ki c̄lj 〈Fi |Ĥ F
2 |Fj 〉, (42)

to be computed with the use of Eq. (6). The diagonalization of
this matrix leads to the energy eigenvalues εr , r = 1, . . . , d,
with corresponding eigenvectors given by

|Er〉 =
∑

k

erk|F̄k〉 =
∑
ki

erkc̄ki |Fi〉. (43)

Note that the energies εr are independent of the choice of two-
pair states |Fi〉 as long as the latter span the entire JT space.
Although the above procedure might seem rather cumbersome
for performing a four-hole shell-model calculation, it has the
advantage of providing us directly with the pair structure of
the shell-model eigenstates from the overlaps

〈Fi |Er〉 =
∑
kj

erkc̄kj oij . (44)

We now analyze the yrast eigenstates of the various
interactions defined in Table I; that is, the quantities 〈Fi |Er〉2

for r = 1 and a variety of two-pair states Fi . Pairs with angular
momentum J are generically denoted as PJ and explicitly,
following standard spectroscopic notation, as S, D, G, I , and
K for J = 0, 2, 4, 6, and 8, respectively. Since this paper
deals in particular with the aligned n-p pair with J = 9, we
reserve for it the nonstandard notation “B” (for Blomqvist).
The central result is shown in Fig. 1 which displays the quantity
〈J1|B2; J 〉2 where |J1〉 is the yrast eigenstate with angular
momentum J and isospin T = 0 of the interactions SLGT0,
GF, and Nb90. Most yrast states have a large overlap with B2,
as was shown by Blomqvist, but this is conspicuously not the
case for J ≈ 8. It seems as if the two aligned n-p pairs do not
like to couple to a total angular momentum which equals their
individual spins.

To acquire some insight in this finding, we note that simple
expressions in terms of the two-body matrix elements are
available for the diagonal energies of two-pair states,

E(γ 4[�1�2]�) ≡ 〈γ 4[�1�2]�|Ĥ F
2 |γ 4[�1�2]�〉

=
∑

λ

aλ
[�1�2]� νλ, (45)

where the coefficients aλ
[�1�2]� of relevance to the present

discussion are shown in Table III. According to a recent
paper by Talmi [20], they are nonnegative rational numbers;
since they involve ratios of rather large integers in this case,
Table III gives numerical approximations. Of all the coeffi-
cients given in this table, the important ones have λ = 0, 1,
and 9, because these are the multipolarities of the most attrac-
tive interaction matrix elements. It is seen that the contributions
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TABLE III. Coefficients aλ
[�1�2]� in the expansion (45) of the diagonal energies of the (9/2)4 system for isospin T = 0.

J = 0 J = 2 J = 4 J = 6 J = 8 J = 10

λ [B2] [S2] [B2] [SD] [B2] [SG] [B2] [SI ] [B2] [SK] [B2] [DK]

0 1.14 2.20 0.85 1.20 0.42 1.20 0.11 1.20 0.01 1.20
1 0.76 0.16 0.64 0.28 0.42 0.24 0.18 0.17 0.04 0.08 0.00 0.02
2 1.70 0.09 1.79 1.30 1.74 0.08 1.26 0.04 0.55 0.07 0.10 1.15
3 0.23 0.38 0.33 0.47 0.50 0.21 0.57 0.28 0.43 0.52 0.18 0.11
4 0.16 0.16 0.34 0.15 0.79 1.26 1.41 0.21 1.76 0.08 1.36 0.10
5 0.01 0.60 0.02 0.39 0.09 0.54 0.24 0.62 0.47 0.68 0.62 0.66
6 0.00 0.24 0.00 0.11 0.05 0.30 0.21 1.29 0.65 0.20 1.42 0.21
7 0.00 0.82 0.00 0.39 0.00 0.94 0.01 0.97 0.06 0.77 0.19 1.18
8 0.00 0.31 0.00 0.23 0.00 0.16 0.00 0.26 0.02 1.45 0.12 1.53
9 2.00 1.04 2.00 1.47 2.00 1.07 2.00 0.96 2.00 0.95 2.00 1.03

of the aligned matrix element (λ = 9) to the energies of
the states |(9/2)4[B2]J 〉 and |(9/2)4[SPJ ]J 〉 remain more
or less constant, independent of J . This is not the case for
the pairing matrix element (λ = 0) whose contribution to the
energy of |(9/2)4[B2]J 〉 disappears as J increases while it
remains important for |(9/2)4[SPJ ]J 〉. The combined effect of
these contributions is that the state |(9/2)4[SPJ ]J 〉 dips below
|(9/2)4[B2]J 〉 around J ≈ 8 and, as a result, picks up the
largest component of the yrast eigenstate. Hence, the feature of
the disappearing B dominance around J ≈ 8 is explained by a
combination of geometry—the CFPs in the j = 9/2 orbit, and
dynamics—the dependence of the interaction matrix elements
on λ.

Figure 1 shows that the overlaps 〈J1|B2; J 〉2 are very similar
for the three interactions. This finding is at the basis of the fact
that the subsequent analysis gives consistent results for the
three interactions. While there can be significant differences
in the shell-model results with the different interactions, the
approximation in terms of aligned pairs is similar for the three
interactions. In other words, if a particular shell-model state is
well approximated in terms of aligned pairs for one interaction,
it is so for the other two as well; if the approximation is less
good, it is so for all three interactions. Although we have
carried out the complete analysis for the three interactions
SLGT0, GF, and Nb90, we will show in the following only

SLGT0 GF Nb90

0 2 4 6 8 10 12 14 16
0

0.5

1

angular momentum J

S
M

; J
1

B
2

;J
2

FIG. 1. Overlaps of the (1g9/2)4 yrast eigenstates of the interac-
tions SLGT0, GF, and Nb90 with angular momentum J and isospin
T = 0, with the two-pair state |B2; J 〉.

the results of the former since it has a proven track record
of satisfactorily reproducing the data in the mass region of
interest [10].

In Table IV are shown the amplitudes in percentages for
yrast eigenstates of the SLGT0 interaction with even J and
T = 0, that is, the quantities 100 × 〈Fi |Er〉2 for r = 1 and
a variety of pair states |Fi〉. The numbers illustrate that, at
least at low and high angular momentum J , the overlaps of
the physical eigenstates with |B2; J 〉 are more important than
those with other pair combinations. The percentages shown in
Table IV also illustrate the nonorthogonality of the two-pair
basis. For example, the J = 0 ground state has a 91% overlap
with B2 but also an 80% overlap with S2; this can only be if
the overlap 〈B2|S2〉 itself is rather large.

C. Boson mappings

Ideally, one would like to perform a similar analysis
of shell-model eigenstates for more than four nucleons.
That is a challenging problem, however, since it requires
the formulation of a nucleon-pair shell model [21,22] in
an isospin-invariant formalism. In this paper we choose
to extend our analysis toward higher hole number through
the boson mapping techniques explained in Sec. III. It is
important to stress that this approximation goes beyond the
original proposal of Blomqvist since it involves an additional

TABLE IV. Overlaps of the (1g9/2)4 yrast eigenstates of the
SLGT0 interaction with angular momentum J and isospin T = 0
with various two-pair states, expressed in percentages.

J B2 SPJ D2 DG DI DK G2 I 2 K2

0 91 80 35 18 7.4 1.9
2 97 85 17 22 1.5 0.0 0.4
4 89 64 42 11 11 0.2 0.2 0.0
6 55 70 43 0.2 4.3 0.0 0.2 0.0
8 5.3 83 7.4 24 1.8 0.2 0.1
10 42 58 6.1 0.5
12 88 57 1.5
14 96 31.4
16 100 100
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assumption of the boson character of the fermion pairs. The
results presented in this subsection therefore do not directly
address Blomqvist’s conjecture.

Once the mapping is carried out for the two- and four-hole
systems according to one of the two procedures described in
Sec. III, a Hamiltonian is obtained in terms of the selected
bosons �1, �2, . . . , �p, which can then be applied to systems
with two or more bosons. Such a description shall be referred
to as �1�2 . . . �p-IBM, where IBM stands for interacting boson
model [23]. Note that all versions of the IBM thus obtained
are isospin invariant; for example, the sd-IBM is in fact the
IBM-3 of Elliott and White [24].

To compare the merits of different selections of fermion
pairs, the following mappings are considered:

(1) A single fermion pair B with J = 9, T = 0, leading to the
b-IBM.

(2) Two fermion pairs S and B with J = 0, T = 1 and J =
9, T = 0, respectively, leading to the sb-IBM.

(3) Two fermion pairs S and D with J = 0 and 2, both with
T = 1, leading to the sd-IBM.

(4) Three fermion pairs S, D, and G with J = 0, 2, and 4,
respectively, all with T = 1, leading to the sdg-IBM.

The first two cases are inspired by Blomqvist’s conjecture,
involving the aligned n-p pair, while the next two are the
standard choice of the IBM [23] and its most frequently used
extension which includes g bosons. (For a review on the latter,
see Ref. [25].)

The results obtained with the various boson Hamiltonians
are compared with T = 0 eigenstates of the SLGT0 interaction
for four, six, and eight nucleons in Tables V, VI, and VII,
respectively. The numerical calculations have been performed
with the codes ARBMODEL [26] and IBM-3 [27]. The former is a
general purpose program that can handle systems of fermions
and/or bosons with arbitrary spins and can thus be used for
the shell-model as well as the IBM calculations; the latter
code is specifically written for the isospin-invariant sd-IBM.
Alternatively, for three and four identical bosons (i.e., for b-
IBM) the calculations can be performed with the expressions
given in Sec. II and equivalent ones for the three-hole case.

A few remarks are in order. All results concern absolute
energies. In the first line of each table are given the binding
energies E0 of the T = 0 ground states, as obtained in
the various mappings, which should be compared with the
corresponding quantity in the shell model. In subsequent
lines are given the energies of a selected number of states,
relative to this ground state. This might lead to some seem-
ingly counterintuitive results. For example, it is seen from
Table IV that the four-hole 2+

1 shell-model state overlaps
97% with a B2 configuration. Why, then, should its excitation
energy come out rather poorly in b-IBM (0.678 MeV compared
with 0.963 MeV in the shell model, see Table V)? The reason
is that the absolute energy of the 2+

1 state is rather well
reproduced (it misses only 0.122 MeV of the shell-model
correlation energy) while the absolute energy of the ground
state is rather worse underbound (by 0.407 MeV) in b-IBM.

The two-boson spectra obtained from mapping the four-
hole shell-model results depend on the kind of pairs included
in the basis, but otherwise they are identical in the OAI

TABLE V. Energies (in MeV) of T = 0 levels for four nucleons
in the 1g9/2 orbit (96Cd) calculated with the shell-model interaction
SLGT0 and compared with various versions of IBM obtained by
democratic or OAI mapping. E0 is the binding energy of the ground
state.

SLGT0 b-IBM sb-IBM sd-IBM sdg-IBM

E0 9.050 8.643 9.041 8.932 9.050
0+

1 0 0 0 0 0
2+

1 0.963 0.678 1.077 1.199 1.002
4+

1 2.100 1.941 2.339 3.754 2.204
6+

1 3.079 3.302 3.700 4.034
8+

1 3.449 4.425 4.824 5.688
10+

1 5.227 5.179 5.578
12+

1 5.904 5.572 5.971
14+

1 6.056 5.692 6.091
16+

1 5.904 5.496 5.895
18+

1 ∞ ∞
0+

2 4.594 4.613 4.491 4.594
2+

2 4.491 4.730 4.554
4+

2 4.390 4.538

and democratic mappings. Therefore, for each of the dif-
ferent IBM versions, there is a unique spectrum shown in
Table V which is identical to that of the shell-model hamil-
tonian when diagonalized in the corresponding (possibly
truncated) two-pair basis. While the OAI and democratic
mappings yield the same energy spectrum for four holes,
they lead to different boson-boson interaction matrix elements.
Hence, the OAI and democratic results are different for the six-
and eight-hole spectra shown in Tables VI and VII.

If the number of two-pair states equals the number of
independent four-hole shell-model states, then the two-boson
calculation reproduces the four-hole results exactly. According
to Table V this happens, for example, for the three Jπ =
0+ states with T = 0 which can be exactly described as
combinations of |S2; 0〉, |D2; 0〉, and |G2; 0〉. Consequently,
the three shell-model 0+ states are exactly reproduced in
sdg-IBM.

Because of the Pauli exclusion principle, no four-hole shell-
model state exists with J = 18 while this angular momentum
is allowed in the coupling of two bosons with J = 9. This
is an example of the complication mentioned at the end of
Sec. III, and the solution given there should be applied. In this
case it implies that the matrix element 〈B2; 18|Ĥ B

2 |B2; 18〉
should be taken to be infinitely repulsive and it is only by
adhering to this procedure that reasonable results can be
obtained.

Not much is known experimentally about 94Ag except
for the presence of two isomers, with tentative spin-parity
assignments 7+ (presumably the lowest T = 0 state) and
21+ at about 5.78(3) MeV above the 7+ [28]. The different
shell-model interactions SLGT0, GF, and Nb90 all predict
a 7+ as the T = 0 ground state, and a 21+ level at 6.464,
5.948, and 4.632 MeV, respectively. The b-IBM reproduces
the shell-model result for the binding energies of these isomers
to within about 100 keV for the 7+ and less than that
for the 21+ (see Table VI for the results of the SLGT0
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TABLE VI. Energies (in MeV) of T = 0 levels for six nucleons
in the 1g9/2 orbit (94Ag) calculated with the shell-model interaction
SLGT0 and compared with various versions of the IBM obtained
with two methods of mapping: democratic (Dem) and OAI. E0 is the
binding energy of the ground state.

SLGT0 b-IBM sb-IBM sd-IBM

Dem OAI Dem OAI

E0 11.276 11.368 11.368 11.368 8.592 8.592
0+

1

1+
1 0.126 4.340 4.340 4.340 0 0

2+
1 1.580

3+
1 0.298 3.540 3.540 3.540 0.547 0.547

4+
1 1.531 3.848 3.848 3.848

5+
1 0.674 2.163 2.163 2.163

6+
1 1.354 2.352 2.352 2.352

7+
1 0 0 0 0

8+
1 0.380 0.505 0.505 0.505

9+
1 0.432 0.796 0.572 0.538

10+
1 1.579 1.784 1.784 1.784

11+
1 1.572 1.833 1.833 1.833

12+
1 2.933 3.351 3.351 3.351

13+
1 2.734 3.220 3.220 3.220

14+
1 3.840 4.857 4.857 4.857

15+
1 3.577 4.602 4.602 4.602

16+
1 5.364 6.029 6.029 6.029

17+
1 5.219 5.677 5.677 5.677

18+
1 6.606 6.772 6.772 6.772

19+
1 6.155 6.324 6.324 6.324

20+
1 ∞ ∞ ∞

21+
1 6.464 6.609 6.609 6.609

interaction). This result is valid for the different shell-model
interactions: although the binding energies calculated with the
three shell-model interactions vary by several MeV, in each
case they are matched by the (appropriately mapped) b-IBM
to within about 100 keV, indicating that the B pair incorporates
most of the correlations for the 7+ and 21+ states.

The b-IBM results should be contrasted to those obtained
with sd-IBM which fails completely to reproduce the spec-

TABLE VII. Energies (in MeV) of T = 0 levels for eight nucleons
in the 1g9/2 orbit (92Pd) calculated with the shell-model interaction
SLGT0 and compared with various versions of the IBM obtained
with two methods of mapping: democratic (Dem) and OAI. E0 is the
binding energy of the ground state.

SLGT0 b-IBM sb-IBM sd-IBM

Dem OAI Dem OAI

E0 18.937 18.135 18.771 18.646 18.624 19.999
0+

1 0 0 0 0 0 0
2+

1 0.927 0.637 1.170 0.917 0.728 0.762
4+

1 1.728 1.104 1.740 1.608 1.561 2.054
6+

1 2.512 1.965 2.628 2.441 3.155 4.267
8+

1 3.198 2.836 3.501 3.320 5.486 6.861
10+

1 4.233 3.683 4.325 4.185
12+

1 5.123 4.414 5.050 4.924

troscopy of 94Ag. This is not surprising since it is known from
the work of Elliott and Evans [29] that IBM-3 cannot give a
satisfactory description of odd-odd nuclei which require the
addition of isoscalar s and d bosons leading to the so-called
IBM-4. While the latter is a realistic model when low-j shell-
model orbits are involved (e.g., for sd-shell nuclei [30,31]),
the present results seem to indicate that the mapping from a
shell-model space with high-j orbits calls for the inclusion of
an aligned isoscalar n-p pair with J = 2j .

While b-IBM and sb-IBM are largely equivalent for the
odd-odd nucleus 94Ag, this is not the case for the even-even
nucleus 92Pd. As can be seen from Table VII, the s boson
provides crucial additional correlation energy which brings the
boson result close to its shell-model equivalent. This nucleus
was studied recently in a fusion-evaporation experiment [3].
The excitation energies of the yrast levels, calculated with
the SLGT0 interaction, are in reasonable agreement with the
observed values of 0.874, 1.786, and 2.535 MeV, respectively.

D. Electric quadrupole properties

A further test of the aligned-n-p-pair hypothesis can be
obtained from electric quadrupole (E2) transition properties.
The E2 operator in the shell model is given by

T̂ F
µ (E2) = eν

∑
i∈ν

r2
i Y2µ(θi, φi) + eπ

∑
i∈π

r2
i Y2µ(θi, φi), (46)

where the sums are over neutrons and protons, and each sum is
multiplied with the appropriate effective charge. This operator
can be written alternatively as a sum of an isoscalar operator
multiplied by (eν + eπ ) and an isovector operator multiplied
by (eν − eπ ). For the E2 transitions between T = 0 levels
of interest here, only the former part contributes. In second
quantization, which is a convenient formalism for carrying out
the mapping, the fermion E2 operator can be written as

T̂ F
µ (E2) = −

√
55

3π
l2
ho

[
eν(a†

ν × ãν)(2)
µ + eπ (a†

π × ãπ )(2)
µ

]
,

(47)

where a†
ρ creates a neutron (ρ = ν) or a proton (ρ = π ) in the

1g9/2 orbit, and ãjm = (−)j+maj−m. Furthermore, the factor in
front comes from the radial integral over harmonic-oscillator
wave functions (with length parameter lho) involving the 1g9/2

orbit.
The lowest-order bosonic image of the fermion E2 operator

is defined by the diagonal (reduced) matrix element in the 9+
state of the 1n-1p system which is given by

〈(1g9/2)2; 9+||T̂ F(E2)||(1g9/2)2; 9+〉

= −
√

55

3π
l2
ho ×

√
1330

187
(eν + eπ ). (48)

The E2 operator of the b-IBM is of the form

T̂ B
µ (E2) = eb(b† × b̃)(2)

µ , (49)

and is necessarily of scalar character in isospin. Since the
mapping implies the equality

〈(1g9/2)2; 9+||T̂ F(E2)||(1g9/2)2; 9+〉 = 〈b||T̂ B(E2)||b〉,
(50)
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FIG. 2. Absolute values of the E2 reduced matrix elements for the
transitions J → J − 2 between four-nucleon-hole states with T = 0
in the 1g9/2 orbit (96Cd), calculated with the SLGT0 shell-model
interaction and compared with the mapped b-IBM. Matrix elements
are expressed in units

√
55/3π (eν + eπ )l2

ho (see text).

and the since the boson matrix element on the right-hand side
equals

√
5eb, we find the following expression of the boson

effective charge eb in terms of the shell-model neutron and
proton effective charges:

eb = −
√

55

3π
l2
ho ×

√
266

187
(eν + eπ ). (51)

In the following, the factor
√

55/3π (eν + eπ )l2
ho is divided out

of all matrix elements, fermionic as well as bosonic.
A first test is from E2 transitions between four-nucleon-hole

states with T = 0. The shell-model results obtained with the
SLGT0 interaction, shown in Fig. 2, display a characteristic
decrease in quadrupole strength for J ≈ 8 which can be viewed
as a remnant of a seniority-like classification. The figure also
shows the results found in b-IBM using the boson effective
charge derived in Eq. (51), with no adjustable parameter. Not
surprisingly, given that the J = 8 state is poorly described
in terms of aligned n-p pairs (and hence b bosons), the two
transitions involving this state deviate strongly in b-IBM from
the corresponding shell-model result. Other transitions agree,
however.

A second test is provided by E2 transitions between
six-nucleon-hole states with T = 0. They are shown in
Figs. 3 and 4 for J → J − 2 and J → J − 1, respectively.
Assuming that an agreement between shell model and b-IBM
is obtained only if both the initial and final states are adequately
represented by b bosons, we conclude that the b-IBM is a good
approximation for two ranges of angular momenta, namely
J = 6 to 13 and J = 17 to 21. This conclusion agrees, at least
qualitatively, with the one drawn on the basis of energies (see
Table VII). Since three b bosons cannot couple to total angular
momentum J = 2, this state is absent from b-IBM while it is
present in the shell model (see Table VII). As a consequence,
no 4 → 2 or 3 → 2 transitions occur in b-IBM (see Figs. 3
and 4). These transitions exist in the shell model but it is rather
striking that the calculated matrix elements are very small
indeed.

Finally, in Fig. 5 are shown the E2 transitions between
eight-nucleon-hole states with T = 0. A small depletion of

Ag94
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2

T
E
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FIG. 3. Absolute values of the E2 reduced matrix elements for the
transitions J → J − 2 between six-nucleon-hole states with T = 0
in the 1g9/2 orbit (94Ag), calculated with the SLGT0 shell-model
interaction and compared with the mapped b-IBM. Matrix elements
are expressed in units

√
55/3π (eν + eπ )l2

ho (see text).

the E2 strength calculated in the shell model is perceptible
for J ≈ 8 and is absent in b-IBM. Apart from this deviation
both calculations agree, indicating that the shell-model wave
functions can be adequately represented in terms of a single b

boson. We emphasize once more that the number of states that
can be written in terms of B pairs is small (of the order of 10),
so no effective charges are needed to arrive at the agreement
in Fig. 5.

Let us now formulate an overall evaluation of these results.
While the b-IBM gives in all cases an reasonable description of
the ground-state binding energy, the addition of the standard s

boson (with J = 0, T = 1) further improves the agreement. In
fact, the energies obtained in sb-IBM (both with the OAI and
democratic mappings) agree well with those of the shell-model
levels except for (i) the J = 8 level in the four-hole system,
(ii) low-J levels of the six-hole system, and (iii) levels with
J = 14 to 16 in the six-hole system. The first discrepancy is
obviously related to the small overlap of the J = 8 shell-
model state with |B2; J = 8〉, which is noted in Table IV
and explained in Sec. IV B. The second difference is also
understandable since a correct description of the low-J states
in the odd-odd nucleus 94Ag requires the consideration of
low-J pairs with T = 0 which have been omitted from the
present mapping. The third deviation could be related to an
unfavorable coupling of three B pairs to the angular momenta

Ag94
4747

SLGT0

b IBM

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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FIG. 4. Same caption as Fig. 3 for J → J − 1 transitions.
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FIG. 5. Same caption as Fig. 2 for eight-nucleon-hole states (92Pd).

J = 14, 15, and 16, akin to the coupling of two B pairs to
J = 8. The results as regards E2 transitions are consistent
with what is concluded from the analysis of spectra.

V. CONCLUSIONS

We have shown in this paper that part of the low-energy
spectroscopy of N = Z nuclei which have their valence
nucleons confined to a single high-j orbit, can be represented
in terms of an aligned isoscalar n-p B pair with J = 2j and
is further improved by the inclusion of an isovector S pair
coupled to J = 0. This was proven explicitly for a four-hole
system and indirectly, through a mapping onto a corresponding
boson system, for six and eight holes. Some deficiencies were
found in this approach. A first concerns states of the four-hole
system with angular momentum J ≈ 2j which turn out to
be poorly approximated with just S and B pairs. A second
deficiency is more generic and pertains to the low-J states in
odd-odd N = Z nuclei, the description of which calls for the
inclusion of isoscalar n-p pairs with low angular momentum.
Nevertheless, it should be noted that the two isomers that have
been observed so far in 94Ag, (7+) and (21+), are adequately
described in terms of b bosons.

These results were obtained for the 1g9/2 orbit and for
three different choices of two-body interaction. To what extent
are they valid in general and can they be considered as
representative of a system of neutrons and protons confined
to a high-j orbit? In essence, two ingredients, geometry and
dynamics, determine the outcome of the present pair analysis.
The geometry is defined by the CFPs and, provided j is
not too small, is expected to evolve only slowly with j . (It
would in fact be an exercise of some interest to perform
the pair analysis in the limit of large j .) The dynamics are
determined by the two-body interaction which, in our study,
was varied significantly but within reasonable bounds. The
matrix elements shown in Table I are typical of what is
obtained for a residual interaction with a short-range, attractive
character [32] and we may thus expect similar results when
we move to orbits other than 1g9/2.

This work calls for further studies. The pair analysis
of the shell-model wave functions should be extended to
higher particle numbers which can be achieved through an
isospin-invariant formulation of the nucleon-pair shell model.
Consequently, the present results require further confirmation
at higher particle number, but one is tempted to conclude at
this point that a realistic model can be formulated in terms of
s and b bosons. Due to its simplicity, such a model could be of
use to elucidate the main structural features of N ∼ Z nuclei
in this mass region. These topics are currently under study.
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