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Exact diagonalization of the Bohr Hamiltonian for rotational nuclei:
Dynamical γ softness and triaxiality
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Detailed quantitative predictions are obtained for phonon and multiphonon excitations in well-deformed rotor
nuclei within the geometric framework, by exact numerical diagonalization of the Bohr Hamiltonian in an SO(5)
basis. Dynamical γ deformation is found to significantly influence the predictions through its coupling to the
rotational motion. Basic signatures for the onset of rigid triaxial deformation are also obtained.
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I. INTRODUCTION

The Bohr Hamiltonian [1,2], together with its generaliza-
tions [3,4], has long served as the conceptual benchmark for
interpreting quadrupole collective dynamics in nuclei. The
conventional approach to numerical diagonalization of the
Bohr Hamiltonian, in a five-dimensional oscillator basis [4–6],
is slowly convergent and requires a large number of basis
states to describe a general deformed rotor-vibrator nucleus.
Therefore, it has commonly been necessary to apply varying
degrees of approximation in addressing the dynamics of
transitional and deformed nuclei, as in the rotation-vibration
model [7] and rigid triaxial rotor [8] treatments of the Bohr
Hamiltonian, or in more recent studies of critical phenomena
[9–12].

However, diagonalization of the Bohr Hamiltonian is now
possible [13] for potentials of essentially arbitrary stiffness.
In particular, the algebraic collective model (ACM) [14–18]
provides an efficient and straightforward computational frame-
work based on SU(1, 1) × SO(5) algebraic methods. The Bohr
Hamiltonian is diagonalized in a basis of SU(1, 1) × SO(5)
product wave functions on the Bohr deformation variables
β and γ and Euler angles �. These are of the form
Rλ

n(a; β)�vαLM (γ,�), where Rλ
n is an SU(1, 1) modified

oscillator wave function [19] and �vαLM is an SO(5) ⊃ SO(3)
spherical harmonic [20,21]. The SO(5) ⊃ SO(3) formulation
may be used either simply to extend the conventional oscil-
lator basis to higher phonon numbers sufficient to provide
full convergence [22–24] or, further, to obtain much faster
convergence as a function of basis size through the use of
SU(1, 1) β wave functions chosen optimally for the nuclear
deformation [15].

The Bohr Hamiltonian can consequently be applied, with-
out approximation, to the full range of nuclear quadrupole
rotational-vibrational structure, from spherical oscillator to
axial rotor to triaxial rotor. Full convergence can be obtained
for energies and electromagnetic transition strengths involving
high-lying states, for instance, interband transitions among β,
γ , and multiphonon bands in well-deformed rotor nuclei. The
Bohr Hamiltonian inherently induces coupling of the β, γ , and
rotational degrees of freedom, thereby yielding a rich set of
phenomena.

To approach an understanding of the full problem, we
shall consider, in this paper, the simpler but already extensive

implications of coupling of the γ and rotational degrees of
freedom. The relevant Hamiltonian is then the “angular” part
of the Bohr Hamiltonian, and the ACM calculation reduces
to diagonalization in a basis of SO(5) ⊃ SO(3) spherical
harmonics (Sec. II). The regime we address consists of
rotational structure with axially symmetric (axial) or weakly
triaxial deformation. However, even for a nominally axial
rotor, the Bohr description is found to mandate significant
dynamical fluctuations in γ , far from γ = 0◦. The evolution
of spectroscopic quantities (energies and transition matrix
elements) with respect to the γ confinement provided by
the potential is systematically investigated (Sec. III), and
the spectroscopic implications of the onset of rigid triaxial
structure are explored (Sec. IV). Probability distributions with
respect to γ and with respect to the K quantum number are
then used to examine the degree of adiabaticity, or separation
of rotational and vibrational degrees of freedom in the wave
functions (Sec. V). Preliminary results were presented in
Refs. [25,26].

II. HAMILTONIAN AND SOLUTION METHOD

A. Hamiltonian

The Bohr Hamiltonian [2] is given, in terms of the
quadrupole deformation variables β and γ and Euler angles
�, by

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
− �̂2

β2

]
+ V (β, γ ), (1)

where

�̂2 = −
(

1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4

∑
κ

L̂′2
κ

sin2
(
γ − 2

3πκ
)
)

.

(2)

The operator appearing in brackets in the kinetic energy is the
Laplacian in five dimensions. Its angular part �̂2 is the Casimir
operator for the five-dimensional rotation group SO(5), which
contains the rotations in physical space, acting on the Euler
angle coordinates, as an SO(3) subgroup. The Bohr coordinates
are five-dimensional spherical polar coordinates, in terms
of which the five components qM (M = −2, . . ., 2) of the
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quadrupole deformation tensor are expressed as

qM = β

[
cos γ D (2)

0,M (�) + 1√
2

sin γ
[
D (2)

2,M (�) + D (2)
−2,M (�)

]]
.

(3)

The potential energy V (β, γ ) must be periodic in γ , with
period 120◦, and it must be symmetric about γ = 0◦ and
γ = 60◦. The Bohr coordinate system and Hamiltonian are
reviewed in detail in, e.g., Ref. [27].

The restriction to angular coordinates (γ,�) then yields a
Hamiltonian

H = �̂2 + V (γ ). (4)

Such an angular Hamiltonian arises as a schematic limit of
the full Bohr Hamiltonian when the coordinate β in (1) is
taken to be rigidly fixed, as might be considered for a well-
deformed nucleus. However, a reduction to the angular form
(4) is more broadly applicable to transitional nuclei as well
[11,12], since it occurs by separation of variables when the
potential is of the form V (β, γ ) = u(β) + v(γ )/β2 [28]. The
explicit relations for reduction to an angular Hamiltonian are
reviewed in Appendix A. The symmetry conditions on V (γ )
are satisfied by the function cos 3γ and powers cosn 3γ thereof.

Let us therefore consider, in particular,

H = �̂2 + χ [(1 − cos 3γ ) + ξ cos2 3γ ]. (5)

The possible shapes of the potential appearing in this Hamil-
tonian are shown in Fig. 1. For ξ = 0, V (γ ) ∝ (1 − cos 3γ ),
as considered in Ref. [14], providing a minimum at γ = 0◦
(axial deformation). With increasing χ , a “deeper” potential
provides greater confinement or stabilization around γ = 0◦,
approximately harmonic (∝γ 2) for small γ . Including a
cos2 3γ term [Fig. 1 (dotted curve)] by taking ξ nonzero
introduces a richer extremum structure and a means for
studying the axial-triaxial shape transition [10]. For ξ = 1/2,
the potential is more softly confining in γ , with a quartic

FIG. 1. The shape of the potential V (γ ) used in (5), plotted for
various values of ξ (taking χ = 1). Note that a constant offset ξ has
been subtracted from each curve, so that V (0) = 0 in each case. The
dotted curve indicates the shape of the contribution from cos2 3γ .

minimum (locally ∝γ 4). This case is termed “critical” in
Ref. [10]. For ξ > 1/2, the potential has a minimum at a
nonzero value of γ , given by cos 3γ0 = 1/(2ξ ). For large
positive ξ , the cos2 3γ term dominates, and the minimum
approaches γ = 30◦. Although not considered here, with a
negative cos2 3γ contribution the Hamiltonian (5) may also be
used to investigate prolate-oblate shape coexistence [29].

B. Solution method

Any function of the coordinates (γ,�) with the requisite
symmetry properties for a wave function can be expressed in
terms of symmetric linear combinations of Wigner D functions
as (e.g., Ref. [27])

ψ(γ,�) =
L∑

K = 0
even

FK (γ )ξ (L)
KM (�), (6)

where [21]

ξ
(L)
KM (�) ≡ 1

(1 + δK )1/2

[
D (L)

KM (�) + (−)LD (L)
−KM (�)

]
. (7)

The wave function is thus fully specified by the FK (γ ).
A complete set for expanding wave functions ψ(γ,�)

is provided by the SO(5) ⊃ SO(3) spherical harmonics
�vαLM (γ,�) [20,21]. The SO(5) ⊃ SO(3) spherical harmon-
ics are defined as the eigenfunctions of the SO(5) Casimir
operator �̂2, with

�̂2�vαLM (γ,�) = v(v + 3)�vαLM (γ,�), (8)

chosen furthermore to possess definite angular momentum
with respect to the SO(3) subgroup of physical rotations. The
�vαLM are labeled by the SO(5) seniority quantum number v

(v = 0, 1, . . .), the SO(3) angular momentum quantum number
L, and its z-projection quantum number M . (A multiplicity
index α is also required to complete the labeling for v � 6
but will be omitted from the notation below when not needed.)
The �vαLM are explicitly realized by constructing the functions
FK (γ ) needed to express each spherical harmonic in the form
(6), as may be accomplished by the algorithm of Refs. [20,21].

Diagonalization of the Hamiltonian (5) is carried out in
a finite basis of these SO(5) ⊃ SO(3) spherical harmonics,
truncated to some maximum seniority vmax. In general, higher-
seniority spherical harmonics are needed for the construction
of more highly γ -localized wave functions. Thus, diagonal-
ization for Hamiltonians with stiffer γ confinement requires a
basis with higher vmax. A basis with vmax = 50 amply suffices
for convergence of all calculations in the present work.

It is first necessary to compute the Hamiltonian matrix
elements with respect to the SO(5) ⊃ SO(3) basis. For the
kinetic energy, the matrix elements 〈�v′α′LM |�̂2|�vαLM〉
are trivially evaluated by the eigenvalue equation (8). For
the potential energy, the matrix elements of cos 3γ may
be evaluated in terms of integrals of products of FK (γ )
functions [14]. Since �300(γ,�) = (8π2)−1/2(3/

√
2) cos 3γ ,

it may be noted that the matrix elements of interest are
triple overlaps 〈�v′α′LM |�300|�vαLM〉 of spherical harmon-
ics, which are equivalent to SO(5) ⊃ SO(3) generalized
Clebsch-Gordan coefficients [20,21]. These are calculated and
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tabulated electronically (for v � 50) in Ref. [21]. The matrix
elements of cosn 3γ follow immediately from those of cos 3γ ,
by insertion of resolutions of the identity, i.e., by matrix
multiplication.

Then, diagonalization of the Hamiltonian matrix yields the
amplitudes aLij in the decomposition

ψLiM (γ,�) =
∑

j

aLij�LjM (γ,�). (9)

Here we have denoted the ith eigenfunction of the Hamilto-
nian, for angular momentum L, by ψLiM (γ,�) and likewise
relabeled the j th SO(5) ⊃ SO(3) spherical harmonic of angu-
lar momentum L as �LjM , i.e., replacing v and α by a simple
running index [21].

The leading-order electric quadrupole operator in the Bohr
framework is M(E2) ∝ q. Under the present restriction
to angular coordinates, M(E2) ∝ Q, where Q is the unit
quadrupole tensor [20], defined by qM = βQM [see (3)].
It is straightforward to calculate transition matrix elements
between the Hamiltonian eigenstates (9), once the ma-
trix elements are obtained between the basis states. Since
�12M (γ,�) = (8π2)−1/2

√
15/2QM , the reduced matrix el-

ements are proportional to 〈�v′α′L′ ‖�12‖�vαL〉, which are
again given by SO(5) ⊃ SO(3) generalized Clebsch-Gordan
coefficients, available from Ref. [21].

III. PHONON AND MULTIPHONON EXCITATIONS

A. Spectra

The nature of the spectra obtained from the Hamiltonian
(5) depends both on the depth of the potential (determined
by χ ) and the shape of the potential (determined by ξ as
in Fig. 1). The depth of the potential effectively controls the
degree of γ confinement. It is worth first carefully considering
the implications of γ confinement, or conversely γ softness,
within this Bohr Hamiltonian framework. In this section, we
shall therefore investigate the structural dependence on χ (for
ξ = 0), before proceeding to the dependence of structure on
the shape of the potential, and in particular the onset of rigid
triaxiality, in Sec. IV.

The results of illustrative calculations are shown in Fig. 2,
for χ = 50, 100, and 200. The low-lying states form quasi-
bands which may be roughly identified as a ground-state
rotational band (K = 0), γ vibrational excitation (K = 2),
and two-phonon γ excitations (K = 4 and 0), denoted by γ γ4

and γ γ0.
The stiffness of the potential around γ = 0◦ simultaneously

determines both the γ -vibrational energy scale [increasing
from Figs. 2(a) to 2(c)] and also how well confined the wave
function is with respect to γ , as seen in the corresponding
approach to an ideal rotational spectrum. Thus, within the
framework of the Bohr Hamiltonian, the γ band energy—more
specifically, the energy ratio E(2+

γ )/E(2+
1 ), or separation of

vibrational and rotational energy scales—and the γ softness
of the wave function are inextricably linked.

As a starting point, it may be observed that for χ = 0 the
potential is strictly γ -independent, and the spectrum therefore
follows an SO(5) multiplet structure [30,31]. Successive

multiplets consist of angular momenta 0, 2, 4-2, 6-4-3-0, . . .,
for v = 0, 1, 2, 3, . . ., respectively, with multiplet energies
∝ v(v + 3), as depicted in Fig. 3(a). The system is simply a
Wilets-Jean [30] or SO(6) [32] rotor, but without β excitations
(see also Ref. [14]). Then, as γ confinement is introduced,
the familiar rotational band structure begins to emerge.
An intermediate spectrum, obtained for χ = 20, is shown
in Fig. 3(b).

For χ = 50 [Fig. 2(a)], rotational quasi-bands are well
developed, and E(2+

γ )/E(2+
1 ) ≈ 10, as appropriate to, e.g., the

well-deformed rare earth nuclei. However, it is seen from the
potential plot in Fig. 2(a) that the γ confinement for this value
of χ is still weak. The range of energetically accessible γ

values increases significantly for successive phonon excita-
tions, such that confinement is almost nonexistent at the energy
of the two-phonon excitation.

Dynamical γ deformation consequently plays a major role
in the calculated structure, through its interaction with the
rotational dynamics. This is reflected in significant deviations
from ideal rotational behavior in the spectroscopic predictions.

Most noticeably, on inspection of Fig. 2(a), level energies
within the γ quasi-band follow a gently γ -soft staggering
pattern [2(34)(56) . . .]. This staggering is reminiscent of the
SO(5) level degeneracies obtained for χ = 0, and it disappears
as the γ stiffness increases [Figs. 2(b) and 2(c)]. The deviations
from rotational energy spacings are even more pronounced for
the calculated two-phonon bands. Note especially the near
doubling of the rotational energy spacing scale for the two-
phonon bands, relative to the ground-state band, for χ = 50
[Fig. 2(a)].

The deviations from rotational energy spacings within
the γ band may be seen most clearly from plots of the
level energy second difference S(L) ≡ {[E(L) − E(L − 1)] −
[E(L − 1) − E(L − 2)]}/E(2+

1 ), as shown in Figs. 2(d)–2(f).
For an ideal rotational band with L(L + 1) energy spacings, the
curve is flat, with S(L) = 1/3. Alternatively, γ -soft staggering
is manifest in minima at even L. As surveyed in Ref. [33], the
observed level energies within the γ bands of most transitional
and rotational nuclei yield S(L) plots which are either gently
γ -soft or near constant (≈1/3). A few transitional nuclei (e.g.,
152Sm, 156Gd, or 162Er) exhibit a degree of staggering compara-
ble to that found for χ = 50 (see also Refs. [17,34]). However,
most rare earth rotational nuclei (see Fig. 3 of Ref. [33]) more
clearly follow an L(L + 1) energy spacing within the γ band.
There is thus an apparent disagreement between the degree
of dynamical γ softness expected in the Bohr picture given
E(2+

γ )/E(2+
1 ) ≈ 10 and the observed structure in nuclei, at

least if we assume the basic Hamiltonian (5).
Within the ground-state band, the Hamiltonian (5) is found

to yield relative energies [i.e., E(L+
1 )/E(2+

1 )] which fall below
the L(L + 1) expectation for an adiabatic rotor. The ideal
rotational energies are indicated, for comparison, by the dots in
Figs. 2(a)–2(c). The deviation from L(L + 1) spacing within
the ground-state band decreases, as would be expected, for
increasing γ stiffness. The effect has already been noted in
the context of a full β and γ calculation with the ACM in
Ref. [13] (see Fig. 5 of that reference). Such a deviation would
traditionally be characterized as “centrifugal stretching,” based
on an interpretation in which the β deformation increases, and
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FIG. 2. Level schemes for the angular Hamiltonian (5) with ξ = 0, for (a) χ = 50, (b) χ = 100, and (c) χ = 200. Rotational L(L + 1)
energies for the yrast band are indicated by the dots. The potential V (γ ) is shown in the inset, with the ground, quasi-γ , and quasi-γ γ bandhead
energies indicated. (d)–(f) Staggering of level energies within the quasi-γ band, as measured by the energy second difference S(L).

thus the rotational moments increase, with increasing angular
momentum. However, here the effect is seen to arise purely
from the interaction of γ and rotational degrees of freedom,
for a system in which “stretching” in the β degree of freedom
is strictly impossible.

B. Evolution of observables

The evolution of the numerical predictions, with increasing
γ stiffness, is examined more quantitatively and systematically
in Fig. 4. Both the energy spectrum [Fig. 4(left)] and
electromagnetic (specifically, electric quadrupole) moments
and transition matrix elements [Fig. 4(right)] are shown, as
functions of χ .

The onset and evolution of rotational band structure, as
γ confinement is introduced, may be traced in the full
energy spectrum [Fig. 4(a)]. Note especially the correlation
between the γ band energy [Fig. 4(a)] and the ground-state
band energy ratio E(4+

1 )/E(2+
1 ) [Fig. 4(b)], which varies

from 2.5 for γ -independent rotation to 3.33 for rigid axial

rotation. This ratio is commonly taken as an indicator of
rotational adiabaticity. For the present restricted problem,
adiabaticity represents separation of the γ and rotational
degrees of freedom, but in general for the Bohr Hamiltonian
the quantitative details will also be affected by the β degree
of freedom. The evolution of multiphonon band energies can
also be followed in Fig. 4. These begin anharmonically low,
at less than twice the γ band energy—for χ = 50, an estimate
based on low-lying band members gives Eγγ,4/Eγ ≈ 1.7 and
Eγγ,0/Eγ ≈ 1.9—but approach harmonicity as χ increases.
The relative energies of the bands may also be seen in
Figs. 2(a)–2(c).

The evolution of electromagnetic properties is traced for
representative quadrupole moments and transition strengths in
Fig. 4(right). In the γ -independent limit, the wave functions are
simply the SO(5) ⊃ SO(3) spherical harmonics themselves,
and electromagnetic matrix elements are governed by SO(5)
selection rules and related by SO(5) ⊃ SO(3) Clebsch-Gordan
coefficients. On the other hand, in the limit of large γ stiffness,
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FIG. 3. Level schemes for the angular Hamil-
tonian (5) with ξ = 0, for (a) the γ -independent
limit χ = 0 and (b) χ = 20, with levels arranged
anticipating the quasiband structure of Fig. 2.
Rotational L(L + 1) energies for the yrast band
are indicated by the dots. The potential V (γ )
for χ = 20 is shown in the inset, with the
ground, quasi-γ , and quasi-γ γ bandhead energies
indicated.

electromagnetic matrix elements are expected to approach
the Alaga rule ratios [2,35] of the adiabatic axial rotor, given
by ordinary angular momentum Clebsch-Gordan coefficients.

The electric quadrupole moments Q(2+
1 ) and Q(2+

γ ) are
shown in Fig. 4(c). All quadrupole moments vanish in the

γ -independent limit, by a selection rule arising from a parity
quantum number defined in the five-dimensional space of the
Bohr coordinates (R5 parity) [13,21,36]. In the rotational limit,
these quadrupole moments are expected to approach values
of ±8

√
π/7 ≈ ±2.03, negative for the ground-state band

FIG. 4. Evolution of spectroscopic properties with γ stiffness, for the angular Hamiltonian (5) with ξ = 0. Quantities shown are (a)
excitation energies of low-lying levels, normalized to E(2+

1 ), (b) the energy ratio E(4+
1 )/E(2+

1 ), specifically, (c) electric quadrupole moments
of the ground-state band and γ band 2+ members, (d) electric quadrupole reduced transition probabilities for one-phonon transitions between
the ground, γ , and two-phonon γ (K = 0 and 4) bandhead states, and (e) reduced transition probabilities for the transitions depopulating the
2+

γ bandhead state. All electromagnetic quantities are normalized to B(E2; 2+
1 → 0+

1 ) ≡ 1.
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(K = 0) and positive for the γ band (K = 2), expressed
relative to B(E2; 2+

1 → 0+
1 )1/2. These values are rapidly

attained, as χ increases, by χ ≈ 25.
For harmonic γ vibration, the γ → g, γ γ4 → γ , and

γ γ0 → γ interband intrinsic matrix elements 〈f |M′|i〉 [2]
are expected to be in the proportion 1:

√
2:1 [18]. The overall

normalization of these intrinsic matrix elements, i.e., the
γ → g strength, decreases with increasing γ stiffness [4]. For
the transitions among the bandhead states, in particular, these
intrinsic matrix element ratios correspond to B(E2; 2+

γ →
0+

g ), B(E2; 4+
γ γ,4 → 2+

γ ), and B(E2; 0+
γ γ,0 → 2+

γ ) strengths
in the proportion 1:2.8:5. The approach to harmonic values is
seen in Fig. 4(d). Simply from considering these transitions,
harmonic behavior would appear to set in very gradually for
χ � 50. However, a more comprehensive consideration of
the electromagnetic transition strengths, which leads to some
modification of this conclusion, is provided by the Mikhailov
analysis in Sec. III D. The branching ratios for electric
quadrupole transitions between bands likewise approach the
Alaga rule ratios. For the transitions from the 2+

γ bandhead to
the ground-state band members [Fig. 4(e)], for instance, the
adiabatic rotor has B(E2; 2+

γ → 0+
g ), B(E2; 2+

γ → 2+
g ), and

B(E2; 2+
γ → 4+

g ) strengths in the proportion 0.4:0.57:0.029.

C. Effective γ deformation

Although we have so far examined γ softness indirectly,
through its spectroscopic signatures, the wave function
ψ(γ,�) is directly accessible for the eigenstates calculated
in the diagonalization of the Bohr Hamiltonian, and thus
the deviation of γ from 0◦ can be considered directly. The
simplest measure is provided by an effective γ value γ̄ ,
defined by

cos 3γ̄ ≡ 〈cos 3γ 〉. (10)

The matrix elements of cos 3γ in the SO(5) ⊃ SO(3)
spherical harmonic basis are already available, as noted in
Sec. II, so this expectation value may readily be calculated.
The definition (10) is consistent with the quadrupole
shape-invariant approach [37,38], in which an effective
γ for the full (β, γ,�) coordinate space is defined by
cos 3γeff = 〈β3 cos 3γ 〉/〈β2〉3/2 [39–41].

The evolution of γ̄ for the ground-state, γ , and γ γ band
members (for L � 4) is shown in Fig. 5. In the χ = 0
(γ -independent) limit, 〈cos 3γ 〉 = 0 by theR5-parity selection
rule, and thus γ̄ = 30◦ for all states. As χ increases past χ ≈
50, it is seen that the γ̄ values for the members of each band
cluster and decrease with increasing χ . The γ̄ value jumps sub-
stantially between bands, increasing from ground to γ to γ γ

bands, indeed, as expected for successive phonon excitations.
The situation for “axial rotor” nuclei within the Bohr Hamil-

tonian framework is very much contrary to the classic but
schematic characterization of such nuclei as having “γ ≈ 0◦,”
which may be more concretely interpreted as γ � 30◦. Recall
that the γ -band excitation energies matching the experimental
values for rotor nuclei are obtained for χ ≈ 50. For this stiff-
ness, the ground-state band members have γ̄ ≈ 15◦, and the γ

band members have γ̄ ≈ 23◦. These large γ̄ values are consis-
tent with the large range of energetically accessible γ values for

FIG. 5. Evolution of the effective values γ̄ with respect to
stiffness parameter χ , for the angular Hamiltonian (5) with ξ = 0.
Values are shown for ground-state, γ , γ γ4, and γ γ0 quasi-band
members with L � 4.

these states [Fig. 2(a,inset)]. The full probability distribution
with respect to the γ coordinate is considered in Sec. V.

D. Intrinsic matrix elements

A more comprehensive and meaningful examination of
electromagnetic transition strengths is realized by consider-
ing the interband transitions in aggregate, according to the
Mikhailov mixing formalism [42]. Within this framework,
all transition amplitudes are expressed in terms of a single
intrinsic electromagnetic matrix element and single mixing
parameter between each pair of bands. The amplitudes are
expected to fall on a straight line on an appropriate (Mikhailov)
plot of 〈K2J2‖M‖K1J1〉 or, commonly, B(E2)1/2 versus
J2(J2 + 1) − J1(J1 + 1). The intrinsic matrix elements and
mixing parameter are identified from the slope and intercept.

Specifically, for interband transitions with �K = 2, the
leading-order band-mixing relation for E2 reduced matrix
elements is [2, (4-210)]

〈K2J2‖M‖K1J1〉 = σ1(2J1 + 1)1/2(J1K122|J2K2)

×[M1 + M2[J2(J2 + 1) − J1(J1 + 1)]],

(11)

where it is assumed that K2 = K1 + 2, and where σ1 = √
2 if

K1 = 0 or σ1 = 1 otherwise. The parameters in this expression
are related to the intrinsic matrix element 〈K2|M′|K1〉,
mixing matrix element 〈K2|ε+2|K1〉, and intrinsic quadrupole
moment Q0 by M1 = 〈K2|M′|K1〉 − 4(K1 + 1)M2 and M2 =
[15/(8π )]1/2eQ0〈K2|ε+2|K1〉 [2, (4-211)]. The intrinsic ma-
trix element may thus be extracted from the slope and intercept
as

〈K2|M′|K1〉 = M1 + 4(K1 + 1)M2. (12)

More specific expressions for K-decreasing and K-increasing
transitions, in terms of B(E2) reduced transition probabilities,
are given in Appendix B.

The interband quadrupole transition strengths for the Bohr
Hamiltonian calculations of Sec. III A are shown in Fig. 6 in
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FIG. 6. Interband transition amplitudes
B(E2)1/2, from the γ quasi-band to the
ground-state band (top), from the γ γ4

quasi-band to the γ quasi-band (middle), and
from the γ γ0 quasi-band to the γ quasi-band
(bottom), for Mikhailov analysis. Plots are
included for the calculations of Fig. 2, with
χ = 50 (left), χ = 100 (middle), and χ = 200
(right) and ξ = 0. The values shown are
for transitions between levels with L � 6,
normalized to B(E2; 2+

1 → 0+
1 ) ≡ 1.

Mikhailov form. They are plotted as B(E2)1/2 versus Lf (Lf +
1) − Li(Li + 1), for transitions between states with L � 6.
For the most part, the transition amplitudes do indeed follow
an essentially linear pattern, and it is therefore meaningful to
extract effective intrinsic matrix elements, as well as mixing
parameters, from the Mikhailov analysis. (The Mikhailov
formalism has been applied to extract effective intrinsic
matrix elements from the interacting boson model [43], in
a similar fashion, in Refs. [44,45].) However, deviations from
a linear relation are significant for transitions involving the
two-phonon quasi-bands for χ = 50 [Fig. 6(left)], as might
be expected from the substantial γ -softness and deviations

from rotational energy spacings already noted for these
bands. The resulting intrinsic matrix elements for the γ → g,
γ γ4 → γ , and γ γ0 → γ transitions, obtained from (B2)
and (B4), are listed in Table I, together with the dimen-
sionless mixing parameter a = |M2/M1| (see Appendix B).
The normalization of the electric quadrupole operator
M(E2) is arbitrary in the present analysis. To provide a
scale for comparison with experiment, the intrinsic matrix
elements in Table I are given relative to the square root of the
in-band B(E2; 2+

1 → 0+
1 ).

For harmonic γ vibration, the ratios of the γ γ → γ

intrinsic matrix elements to the γ → g intrinsic matrix element

TABLE I. Electric quadrupole interband intrinsic matrix elements 〈f |M′|i〉 and mixing parameters a, for different γ stiffnesses, as
extracted from the Mikhailov analyses of Fig. 6. Ratios, as indicators of anharmonicity, are tabulated in the final two columns. The values for
an adiabatic rotor with harmonic γ vibration [18] are included for comparison. The values for the intrinsic matrix elements are normalized to
B(E2; 2+

1 → 0+
1 ) ≡ 1.

γ → g γ γ4 → γ γ γ0 → γ γ γ4 → γ γ γ0 → γ

〈f |M′|i〉 a 〈f |M′|i〉 a 〈f |M′|i〉 a γ → g γ → g

χ = 50a 0.42 0.025 ∼0.6a ∼0.03 ∼0.5a ∼0.03 ∼1.4a ∼1.1a

χ = 100 0.30 0.012 0.43 0.012 0.30 0.018 1.44 1.01
χ = 200 0.23 0.007 0.33 0.007 0.23 0.009 1.43 1.00
Harmonic – – – 1.41 1

aThe γ γ → γ intrinsic matrix elements for χ = 50 can only be crudely approximated, since the Mikhailov plot yields values which are not
strongly linear [Figs. 6(d) and 6(g)]. The estimated parameters used in the analysis are M1 ≈ 0.9 for γ γ4 → γ and M1 ≈ 0.4 for γ γ0 → γ .
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are expected to be 〈γ |M′|γ γ4〉/〈g|M′|γ 〉 = √
2 ≈ 1.41

and 〈γ |M′|γ γ0〉/〈g|M′|γ 〉 = 1, according to the proportion
noted in Sec. III B. For comparison, ratios of the intrinsic ma-
trix elements extracted from the Bohr Hamiltonian numerical
calculations are given in the last two columns of Table I. Note
the rapid quantitative approach of these calculated ratios to the
expected harmonic values. Even the γ γ → γ transitions for
the soft χ = 50 case are essentially consistent with harmonic
ratios, to the extent that slope and intercept parameters can
meaningfully be extracted in this instance [Figs. 6(d) and 6(g)].
For χ = 200, harmonic values are obtained to within ∼1%.

The band mixing, indicated by the Mikhailov plot slopes, is
substantial in all the cases considered in Table I. The harmonic-
ity of the intrinsic matrix elements is therefore not apparent
simply from the plot intercepts but only after the leading-order
band-mixing corrections (B2) and (B4) are taken into account.
For example, even for the most adiabatic case, χ = 200, the
γ → g [Fig. 6(c)] and γ γ4 → γ [Fig. 6(f)] Mikhailov plots
both have slope parameters a ≈ 0.012, resulting in a 5%
adjustment to the γ → g intrinsic matrix element and a 14%
adjustment to the γ γ4 → γ intrinsic matrix element.

In summary, although the strengths of the individual
interband transitions only approach the limit of an adiabatic
rotor (and, more specifically, harmonic vibration) gradually,
as observed from Fig. 4(d), this deviation is quantitatively
well described in terms of a rapid approach to harmonic
values of the interband intrinsic matrix elements, but with
the individual transition strengths modified by leading-order
�K = 2 band mixing (11). The strength of this mixing then
gradually decreases with increasing γ stiffness.

IV. ONSET OF RIGID TRIAXIALITY

The excitation spectrum may be expected to change dramat-
ically with the onset of rigid triaxiality. The Bohr Hamiltonian
predictions ultimately approach a γ = 30◦ Davydov rotor
spectrum [8] for confinement by a sufficiently stiff cos2 3γ po-
tential [13]. However, the initial onset of triaxiality is reflected
in much more subtle deviations from the characteristics of
an axially symmetric rotor. The difference between axial and
triaxial minima in the potential is obscured by the substantial
dynamical fluctuations in γ present in both cases. As noted
in Sec. II, the onset of triaxiality may be investigated by
considering the introduction of a cos2 3γ contribution, i.e.,
nonzero ξ , in the Hamiltonian (5).

The results of calculations for two representative potentials
are shown in Fig. 7: the soft or “critical” axial minimum
(ξ = 0.5) [Fig. 7(b)] and a weakly triaxial minimum (ξ = 0.8)
[Fig. 7(c)]. For each of these calculations, the potential depth,
or χ , is chosen to give E(2+

γ )/E(2+
1 ) ≈ 10, again appropriate

to the well-deformed rare earth nuclei. The comparable axial
rotor calculation with the same γ band energy, i.e., χ = 50, is
shown again as a baseline for comparison [Fig. 7(a)].

In Fig. 7, the γ -phonon quasi-band structure is seen to
remain intact. Our concern is therefore with the principal
spectroscopic properties of these bands—excitation energies
of the bands, deviations from rotational energy spacing within
the bands, and electric quadrupole intrinsic matrix elements.

The two-phonon energy anharmonicities evolve from slightly
negative (Eγγ /Eγ < 2) for ξ = 0 [Fig. 7(a)] to positive
(Eγγ /Eγ > 2) [Figs. 7(b) and 7(c)] with the introduction of
triaxial tendencies. The anharmonicity of the γ γ0 band rises
more rapidly than that of the γ γ4 quasi-band. Qualitatively,
this is consistent with evolution toward a γ -stiff, adiabatic
triaxial rotor [18], for which the K = 4 quasi-band is a
triaxial rotational excitation and the K = 0 quasi-band is a
γ vibrational excitation.

The level energies within the γ band progress, with increas-
ing ξ , from γ -soft staggering [2(34)(56) . . .] to the reverse
pattern associated with triaxial rotation [(23)(45) . . .] [8]. As
in Sec. III A, the staggering may be seen most immediately
from plots of the second difference S(L) [Figs. 7(d)–7(f)],
which has minima at even L for γ -soft staggering or at odd L

for triaxial staggering.
The “centrifugal stretching” phenomenon in the yrast band,

i.e., reduction of E(L+
1 )/E(2+

1 ) relative to L(L + 1) spacing,
persists [Figs. 7(b) and 7(c)] at about the same level as for
χ = 50. However, the growth in rotational constant (and
general deviation from rotational behavior) for the excited,
especially γ γ , bands is tamed relative to the axial calculation.
This may be at least qualitatively understood by comparing
the potential plots in the insets of Figs. 7(a)–7(c). The axial
calculation of Fig. 7(a), as noted in Sec. III A, provides
only weak confinement at the γ γ band energies (γ � 40◦).
Although the nominally “softer” calculation of Fig. 7(b)
does provide weaker confinement, compared to this axial
calculation, at the ground-state energy, it actually provides
stiffer confinement, to a smaller range of γ values (γ � 30◦),
at the γ γ band energies. [This effect may be more properly
considered a reflection of the steep rise in the cos2 3γ term used
to create the triaxial confinement than an intrinsic property of
the onset of triaxiality per se. There is no inherent calculational
reason not to consider a potential with, for instance, a triaxial
minimum located at the same position as in Fig. 7(c,inset)
but a lower barrier at γ = 60◦.1] A similar observation may
be made for the calculation of Fig. 7(c), which provides
confinement to triaxial γ at the ground-state energy, but
simply provides (axial) confinement to γ � 30◦ at the γ γ band
energies.

For the weakly triaxial calculations considered here, the
interband transition strengths continue to follow an essentially
linear pattern on a Mikhailov plot, as expected for rotational
band mixing, as seen in Fig. 8. The γ γ → γ transitions, in
fact, demonstrate better linear behavior [Figs. 8(e)–8(f) and
8(h)–8(i)] than for χ = 50 [Figs. 8(d) and 8(g)]. Interband
intrinsic matrix elements may therefore again be extracted
from the Mikhailov analysis, as given in Table II. The γ → g

intrinsic matrix element remains essentially constant and equal
to that for the axial χ = 50 calculation, but the γ γ4 → γ ,

1Any potential V (γ ) satisfying the basic requirements from the
Bohr coordinate symmetries may be expanded in terms of the form
cosn 3γ (which is equivalent to Fourier decomposition in terms of
the form cos 3nγ ) and therefore may readily be accommodated for
calculations within the ACM.
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FIG. 7. Level schemes for the angular Hamiltonian (5), for (a) ξ = 0 with χ = 50, (b) ξ = 0.5 with χ = 100, and (c) ξ = 0.8 with χ = 500.
Rotational L(L + 1) energies for the yrast band are indicated by the dots. The potential V (γ ) is shown in the inset, with the ground, quasi-γ ,
and quasi-γ γ bandhead energies indicated. (d)–(f) Staggering of level energies within the quasi-γ band, as measured by the energy second
difference S(L). Figure adapted from Ref. [21].

and γ γ0 → γ intrinsic matrix elements decrease substantially
compared to the harmonic γ -vibrational values.

Such a reduction of the γ γ → γ intrinsic matrix elements,
relative to the harmonic values, has already been proposed
[10] on relatively simple grounds. Supposing an adiabatic
separation of rotation from vibration, and furthermore im-
posing a small-γ approximation, yields a one-dimensional
Schrödinger equation problem in γ . In Ref. [10], a square well

is then adopted for V (γ ) to simulate the onset of triaxiality.
This yields the Y(5) estimate shown for comparison in
Table II.

V. WAVE FUNCTION PROBABILITY DISTRIBUTIONS

In the limit of adiabatic separation of the γ and rotational
degrees of freedom, the wave functions of all members of a

TABLE II. Electric quadrupole interband intrinsic matrix elements 〈f |M′|i〉 and mixing parameters, for different γ potential shapes chosen
to reproduce the onset of weak rigid triaxiality, as extracted from the Mikhailov analyses of Fig. 8. Ratios, as indicators of anharmonicity, are
tabulated in the final two columns. The Y(5) triaxial estimate [10] is included for comparison. The values for the intrinsic matrix elements are
normalized to B(E2; 2+

1 → 0+
1 ) ≡ 1. The results in this table also serve to correct intrinsic matrix element values given previously in Table I

of Ref. [26]. The roles of initial and final bands were interchanged, in that analysis, when extracting the slope parameter from (B1) and (B3),
resulting in the use of an incorrect sign for the band-mixing correction term in (B2) and (B4).

γ → g γ γ4 → γ γ γ0 → γ γ γ4 → γ γ γ0 → γ

〈f |M′|i〉 a 〈f |M′|i〉 a 〈f |M′|i〉 a γ → g γ → g

ξ = 0.5 (χ = 100) 0.43 0.025 0.58 0.022 0.37 0.035 1.36 0.87
ξ = 0.8 (χ = 500) 0.43 0.028 0.51 0.018 0.27 0.015 1.18 0.63
Y(5) – – – 1.23 0.73
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FIG. 8. Interband transition amplitudes
B(E2)1/2, from the γ quasi-band to the
ground-state band (top), from the γ γ4

quasi-band to the γ quasi-band (middle),
and from the γ γ0 quasi-band to the γ

quasi-band (bottom), for Mikhailov analysis.
Plots are included for the calculations of
Fig. 7, with ξ = 0 (χ = 50) (left), ξ = 0.5
(χ = 100) (middle), and ξ = 0.8 (χ = 500)
(right). The values shown are for transitions
between levels with L � 6, normalized to
B(E2; 2+

1 → 0+
1 ) ≡ 1. Figure panels (a)–(f)

adapted from Ref. [21].

band would be given by

ψKLM (γ,�) = FK (γ )ξ (L)
KM (�), (13)

where the function FK (γ ) would be identical for all states
within the same band, independent of L. The band is
characterized by intrinsic angular momentum projection K .
This may be contrasted to the general situation (6), in which
all even K with 0 � K � L (or 2 � K � L for L odd) can
contribute, and the coefficients FK (γ ) need not be directly
related for different states. The breaking of adiabaticity
has already been seen to have spectroscopic consequences
(Secs. III and IV). Here we shall more directly inspect the wave
functions themselves, through the probability distributions.
Specifically, we examine the probability distribution P (γ ),
with respect the γ coordinate, after integration over Euler
angles, and the probability decomposition PK , with respect
to the K quantum number for the Euler angle (rotational)
dependence, after integration over γ . The calculational details
are given in Appendix C.

First, for P (γ ), results are given in Fig. 9 for the softest
axial calculation of Sec. III (χ = 50) [Fig. 9(left)], the stiffest
axial calculation of Sec. III (χ = 200) [Fig. 9(middle)], and
the weakly triaxial calculation of Sec. IV (ξ = 0.8 with χ =
500) [Fig. 9(right)]. Successive panels (top to bottom) show
the P (γ ) distributions for the ground, γ , γ γ4, and γ γ0 band
members, respectively, with L � 6. All the P (γ ) vanish at

γ = 0◦ and γ = 60◦, due to the volume element for the Bohr
coordinates (see Appendix C).

The basic features seen in Fig. 9 may be qualitatively
understood in terms of the small-γ limit of (5), which reduces
(e.g., Ref. [10]) to a two-dimensional harmonic oscillator
problem, with two-dimensional angular momentum m = K/2
and with γ as the “radial” variable. The K = 2nγ (or m = nγ )
bands, i.e., the ground, γ , and γ γ4 bands, have probability
distributions which are nodeless. These move toward higher γ

with increasing phonon number nγ [Figs. 9(a), 9(d), and 9(g)
or Figs. 9(b), 9(e), and 9(h)]. The centers of the probability dis-
tributions are at substantially nonzero γ values, in the 10◦–30◦
range, but move toward smaller γ for larger stiffess [compare
Fig. 9(left) with Fig. 9(middle)]. All these properties are as
anticipated from the γ̄ values in Fig. 5. For the γ γ0 band, which
is characterized by K = 2(nγ − 2) (or m = nγ − 2), the prob-
ability distributions have a single node [Figs. 9(j) and 9(k)].

Adiabatic separation (13) implies identical P (γ ) distribu-
tions for all members of the same band. Indeed, the P (γ )
curves are virtually indistinguishable between band members
for the examples in Fig. 9. The exceptions are, once again,
the γ γ bands in the χ = 50 calculation [Figs. 9(g) and 9(j)].
There is some slight displacement between the curves for the
different members of the ground or γ bands in this calculation
as well. The breaking of adiabaticity is also apparent for the
γ γ0 band members with L > 0, from the disappearance of the
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FIG. 9. Probability distributions with respect to γ for low-lying quasi-band members in calculations with Hamiltonian (5), for the axial cases
χ = 50 (left) and χ = 200 (middle), both with ξ = 0, and for the weakly triaxial case ξ = 0.8 with χ = 500 (right). Probability distributions
are shown for members of the ground-state, γ , γ γ4, and γ γ0 quasi-bands (top to bottom, respectively), with L � 6.

node in P (γ ), which indicates that multiple K values must
contribute to the wave function.2

It is interesting to note the qualitative differences of
the more triaxial calculation [Fig. 9(right)] from the axial
calculations [Fig. 9(left and middle)]. The P (γ ) for the ground,
γ , and γ γ4 bands (i.e., those with nodeless distributions)
[Figs. 9(c), 9(f), and 9(i)] are peaked at γ values roughly
comparable to those for the χ = 50 “axial” calculation
[Figs. 9(a), 9(d), and 9(g)] (recall that the parameters were
chosen so that these calculations share the same γ band
energy) but are more sharply peaked. The γ γ0 distribution
[Fig. 9(l)] shows a marked enhancement of the peak at small
(axial) γ . This may seem counterintuitive for a “triaxial”
calculation, but, as already remarked in Sec. IV, the triaxial
confinement is limited to the ground-state band energy.3

2When only one K term contributes to (6), as in (13), a zero
crossing in FK (γ ) necessarily yields a zero-valued minimum in P (γ ).
If, instead, the minimum is washed out, it may be concluded that
multiple K terms are contributing in (C2), such that these terms do
not simultaneously have nodes at the same γ value.

3Moreover, under adiabatic separation, the γ wave function for the
excited K = 0 band must be orthogonal to the ground-state-band
wave function. Since this distribution has moved to larger γ values,
the redistribution in probability to the smaller-γ peak for the excited
band can be understood from orthogonality constraints, following
arguments similar to those applied in Ref. [29] for prolate-oblate
coexistence.

In interpreting the P (γ ) distributions as indicators of adia-
baticity, it should be noted that, although adiabatic separation
implies identical P (γ ) distributions, the converse is not strictly
true. Adiabaticity might be violated, and several K values
might contribute in (6), but the various FK (γ ) for the different
band members may be related such that, nonetheless, the same
P (γ ) distributions are obtained after integration over Euler
angles. Therefore, these distributions can only be conclusively
taken to indicate adiabaticity if it is also known that only one
K value contributes significantly.

The contributions of different K values in each of the bands
(ground, γ , γ γ4, and γ γ0) are shown in Fig. 10, for each
band member with L � 10. For the calculations in Fig. 10,
the bandhead states have essentially pure K . The largest
admixture in a bandhead state is ∼3% for the γ γ4 bandhead in
the χ = 50 calculation, but the bandhead K admixtures in the
other calculations are all <10−3. (Note that the γ γ0 bandhead,
as an L = 0 state, trivially has pure K = 0.) The admixtures
increase with L within each band. Again, the extremes are
in the γ γ bands for χ = 50, where the admixtures account
for approximately half the probability at L = 10 [Figs. 10(g)
and 10(j)]. In contrast, for the weakly triaxial calculation
[Fig. 10(right)], the K admixtures in the γ γ bands are actually
slightly smaller than for the ground-state band. Indeed, they
closely match the K admixtures of the corresponding bands
in the stiff axial χ = 200 calculation [Fig. 10(middle)]. This
observation is consistent with the characterization of these
bands as relatively “good” axial rotational bands, as suggested
spectroscopically in Sec. IV.
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FIG. 10. The K content of low-lying quasi-band members in calculations with Hamiltonian (5), for the axial cases χ = 50 (left) and
χ = 200 (middle), both with ξ = 0, and for the weakly triaxial case ξ = 0.8 with χ = 500 (right). Probabilities PK for K = 0 (solid curve),
K = 2 (dashed curve), and K = 4 (dotted curve) are shown for members of the ground-state, γ , γ γ4, and γ γ0 quasi-bands (top to bottom,
respectively), with L � 10.

VI. CONCLUSION

The possibility of exact diagonalization of the Bohr Hamil-
tonian for essentially arbitrary β and γ stiffness opens the door
for direct comparison of the Bohr Hamiltonian predictions with
experiment throughout the range of possible dynamics for the
nuclear quadrupole degree of freedom. At a phenomenological
level, this permits meaningful tests of the Bohr Hamiltonian
for general rotor-vibrator nuclei.

For instance, in the past, interpretation of rotational
“phonon” states, although nominally within the Bohr descrip-
tion, has largely been at a schematic level (e.g., Refs. [44,
46–49]): adiabatic separation of the rotational and vibrational
degrees of freedom is assumed, the β and γ excitations are
taken to be harmonic, and phonon selection rules are assumed
for electric quadrupole transitions. These predictions are then
adjusted by the leading-order spin-dependent band-mixing
relation, but with ad hoc mixing parameters. Here, instead,
we explore exact predictions of the Bohr Hamiltonian, both
for axial and weakly triaxial confinement.

The present analysis, which has been restricted to the γ

and rotational degrees of freedom, provides a starting point
for understanding the full dynamics involving all five Bohr
coordinate degrees of freedom, i.e., considering coupling

with the β degree of freedom as well. Many of the qualitative
properties of the present solution may be expected to carry
over (see, e.g., Fig. 4 of Ref. [26]). However, the introduction
of β softness may generally be expected to quantitatively
alter the results, for instance, further attenuating the rotational
character of the bands [e.g., reducing the ratio E(4+

1 )/E(2+
1 )].

Moreover, in the case of near degeneracy of the γ phonon or
multiphonon bands with bands involving β excitations, band
mixing can substantially alter the results. Therefore, detailed
comparison with experiment should be made in the context of
a full treatment incorporating β softness.

Microscopic descriptions of nuclear collectivity rely upon a
reduction of the many-body problem to one involving effective
collective degrees of freedom. Mean-field approaches to
deriving the quadrupole collective dynamics (reviewed in, e.g.,
Refs. [27,50,51]) yield a Hamiltonian involving a much more
general, coordinate-dependent form for the kinetic energy
operator than the conventional but schematic Laplacian form
considered in (1). The resulting generalized Bohr Hamiltonian
[27] may be represented in terms of coordinate-dependent
moments of inertia. It should be noted that the ACM can readily
accommodate Hamiltonians involving much more general
differential operators [16] in the β and angular variables
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than the simple Laplacian form. For instance, scalar-coupled
products of the quadrupole momentum tensor p and coordinate
tensor q constitute an important special case considered
in the geometric collective model [4,6]. The Bohr kinetic
energy is obtained as the lowest-order term (p × p)(0), and
attention in phenomenological studies has largely been limited
to the next term (p × q × p)(0). These and higher-order
terms in the coordinate dependence may be combined to
recover much or all of the flexibility of the generalized Bohr
Hamiltonian [52].

Even further generalizations may be required. For instance,
the Sp(3,R) symplectic shell-model framework gives rise to a
collective model in which the generalized Bohr Hamiltonian
must be augmented with a vorticity degree of freedom [53].
Since the collective model serves as the intermediate link
between microscopic theories and spectroscopic predictions,
it is essential to determine the limitations of the Bohr
Hamiltonian and the nature of the modifications required
such that its predictions can accurately describe the observed
phenomena.
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APPENDIX A: RESTRICTION TO ANGULAR
COORDINATES

In this appendix, the reduction of the full Bohr Hamiltonian
(1) to an angular Hamiltonian (4) is briefly summarized. First,
for convenience, let us simplify the Bohr Hamiltonian to its
equivalent dimensionless form

H = −
[
�̂ − �̂2

β2

]
+ V (β, γ ), (A1)

where

�̂ = 1

β4

∂

∂β
β4 ∂

∂β
, (A2)

by rescaling H → (2B/h̄2)H and V → (2B/h̄2)V . The two
routes to obtaining an angular Hamiltonian indicated in
Sec. II A proceed more precisely as follows:

(1) Schematically, rigid β deformation (β ≈ β0) is obtained
if the nuclear wave function �(β, γ,�) is highly localized by
a stiff potential with respect to β. For specificity, consider
V (β, γ ) = u(β) + v(γ ). Then H ≈ Hβ + β−2

0 Hγ�, where
Hβ = −�̂ + u(β) and Hγ� = �̂2 + β2

0v(γ ). The separated
eigenfunctions �(β, γ,�) = f (β)ψ(γ,�) satisfy Hβf (β) =
εβf (β) and Hγ�ψ(γ,�) = εγ�ψ(γ,�). Note that the angular
problem is thus of the form (4), with V (γ ) ≡ β2

0v(γ ).

The total energy eigenvalues E, defined by H�(β, γ,�) =
E�(β, γ,�), are obtained additively as E = εβ + β−2

0 εγ�.
Therefore, for fixed β excitation (e.g., the ground state for the
β problem), the eigenvalues of the angular problem directly
give the energy spectrum. These arguments apply only in the
limit of stiff β confinement, and finite β softness may be
expected to lead to β-γ coupling [17].

(2) Alternatively, for V (β, γ ) = u(β) + v(γ )/β2, the Bohr
Hamiltonian eigenproblem is exactly separable [28]. In
this case, H = Hβ + β−2Hγ�, where Hβ = −�̂ + u(β)
and now Hγ� = �̂2 + v(γ ). The separated eigenfunctions
�(β, γ,�) = f (β)ψ(γ,�) satisfy (Hβ + β−2εγ�)f (β) =
Ef (β) and Hγ�ψ(γ,�) = εγ�ψ(γ,�). Note that the angular
problem is of the form (4) with V (γ ) ≡ v(γ ). The eigenvalue
εγ� from the angular problem now appears in the β equa-
tion as a “centrifugal” coefficient, i.e., multiplying β−2. It
therefore enters indirectly into the total eigenvalue E, through
the β eigenproblem, rather than directly giving the energy
spectrum.

APPENDIX B: MIKHAILOV RELATIONS

This appendix adapts the leading-order �K = 2 band-
mixing relations (11) and (12) to the form required for the
analysis of Figs. 6 and 8. For K-decreasing transitions (e.g.,
γ → g and γ γ4 → γ ), in terms of B(E2) reduced transition
probabilities,

B(E2; KiJi → Kf Jf ) = σ 2
i (JiKi2 − 2|Jf Kf )2

×M2
1 [1 + a[Jf (Jf + 1) − Ji(Ji + 1)]]2, (B1)

with normalized positive slope parameter a = −M2/M1.
Thus, the intrinsic matrix element is extracted as

〈Kf |M′|Ki〉 = M1[1 − 4(Kf + 1)a]. (B2)

Similarly, for K-increasing transitions (e.g., γ γ0 → γ ),

B(E2; KiJi → Kf Jf ) = σ 2
i (JiKi2 + 2|Jf Kf )2

×M2
1 [1 + a[Jf (Jf + 1) − Ji(Ji + 1)]]2, (B3)

where now the positive slope parameter is a = +M2/M1, and
thus the intrinsic matrix element is extracted as

〈Kf |M′|Ki〉 = M1[1 + 4(Ki + 1)a]. (B4)

APPENDIX C: WAVE FUNCTION PROBABILITY
RELATIONS

In this appendix, expressions are given for the probability
distribution P (γ ), with respect to the γ coordinate, and the
decomposition PK , with respect to the K quantum number,
for a wave function ψ(γ,�). Note that the volume element for
the coordinates (γ,�) is given by | sin 3γ | dγ d�.
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The probability distribution P (γ ) is obtained by integration
over Euler angles as

P (γ ) = | sin 3γ |
∫

|ψ(γ,�)|2 d�, (C1)

and thus, in terms of the (real) coefficient functions FK (γ )
appearing in (6),

P (γ ) = 16π2

2L + 1
| sin 3γ |

L∑
K = 0
even

[FK (γ )]2. (C2)

The angular integration has been carried out using
the orthogonality integral for the D functions [54],
which gives

∫
ξ

(L′) ∗
K ′M ′ (�)ξ (L)

KM (�) d� = [(16π2)/(2L + 1)]δL′L
δK ′KδM ′M , unless K = 0 with L odd, in which case the
integral vanishes [21]. For the eigenfunctions ψLiM (γ,�)
obtained with respect to the SO(5) ⊃ SO(3) basis, the known
quantities are the diagonalization coefficients aLij appearing
in (9) and the functions FLiK (γ ) in the representation of the
SO(5) ⊃ SO(3) spherical harmonics

�LiM (γ,�) =
L∑

K = 0
even

FLiK (γ )ξ (L)
KM (�), (C3)

where we again use a counting index to label the spherical
harmonics. In terms of these,4

PLi(γ ) = 16π2

2L + 1
| sin 3γ |

L∑
K = 0
even

∑
jk

aLij aLikFLjK (γ )FLkK (γ ).

(C4)

The contribution of each K value to ψ(γ,�), integrated
over γ , is

PK = 16π2

2L + 1

∫ π/3

0
[FK (γ )]2 sin 3γ dγ. (C5)

For the functions ψLiM (γ,�), represented by aLij coefficients
with respect to the SO(5) ⊃ SO(3) basis, these probabilities
may be computed as

PLi;K = 16π2

2L + 1

∑
jk

aLij aLik

∫ π/3

0
FLjK (γ )FLkK (γ) sin 3γ dγ.

(C6)

4The expression (C4) for P (γ ) is equivalent to (A7) of Ref. [17].
However, the normalization factors appearing in these expressions
differ, due to the different normalization conventions defined for the
FK (γ ) coefficients in Ref. [17] and in the present work, which follows
Ref. [21].
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