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Spin- and isospin-polarized states of nuclear matter in the Dirac-Brueckner-Hartree-Fock model
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Spin-polarized isospin asymmetric nuclear matter is studied within the Dirac-Brueckner-Hartree-Fock
approach. After a brief review of the formalism, we present and discuss the self-consistent single-particle
potentials at various levels of spin and isospin asymmetry. We then move to predictions of the energy per particle,
also under different conditions of isospin and spin polarization. Comparison with the energy per particle in isospin
symmetric or asymmetric unpolarized nuclear matter shows no evidence for a phase transition to a spin-ordered
state, neither ferromagnetic nor antiferromagnetic.
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I. INTRODUCTION

Describing the properties of nuclear matter, especially
under extreme conditions, is a topic of current interest which
still presents considerable theoretical challenges. Of particular
interest is the equation of state of matter with unequal
concentrations of protons and neutrons, because of its many
applications ranging from the physics of rare isotopes to the
properties of neutron stars. In spite of recent and fast-growing
effort, the density dependence of the symmetry energy is
not sufficiently constrained and theoretical predictions show
considerable model dependence.

When isospin and spin asymmetries are considered to-
gether, available constraints are even more limited and pre-
dictions regarding magnetic properties of nuclear matter are
sometimes found to be in qualitative disagreement. Polariza-
tion properties of neutron and nuclear matter have been studied
extensively with a variety of theoretical methods [1–28], often
with contradictory conclusions. In the study in Ref. [29],
the possibility of phase transitions into spin-ordered states
of symmetric nuclear matter was explored based on the Gogny
interaction [30] and the Fermi liquid formalism. There, the
appearance of an antiferromagnetic state (with opposite spins
for neutrons and protons) was predicted, whereas the transition
to a ferromagnetic state was not observed. This is in contrast
with predictions based on the Skyrme interaction [31].

The properties of polarized neutron matter (NM), in
particular, have gathered much attention lately, in conjunction
with the issue of ferromagnetic instabilities together with
the possibility of strong magnetic fields in the interior of
rotating neutron stars. The presence of polarization would
impact neutrino cross section and luminosity, resulting in a
very different scenario for neutron star cooling.

There are other, equally important, motivations to undertake
studies of polarized matter. In Ref. [32], for instance, we
focused on the spin degrees of freedom of symmetric nuclear
matter (SNM), having in mind a terrestrial scenario as a
possible “laboratory.” We payed particular attention to the
spin-dependent symmetry potential, namely the gradient be-
tween the single-nucleon potentials for upward and downward
polarized nucleons in SNM. The interest around this quantity
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arises because of its natural interpretation as a spin-dependent
nuclear optical potential, defined in perfect formal analogy to
the Lane potential [34] for the isospin degree of freedom in
isospin-asymmetric nuclear matter (IANM).

Whether one is interested in rapidly rotating pulsars or more
conventional nuclear physics, it is important to consider the
general case where both spin and isospin asymmetries can
be present. First, neutron star matter contains a nonnegligi-
ble proton fraction. Concerning laboratory nuclear physics,
one way to access information related to the spin dependence
of the nuclear interaction in nuclear matter is the study of
collective modes such as giant resonances. Because a spin
unsaturated system is usually also isospin asymmetric, both
degrees of freedom need to be taken into account.

In previous calculations [32,33], we have investigated
spin-polarized pure neutron matter and symmetric matter. The
purpose of this paper is to extend our previous predictions to
include matter with different concentrations of neutrons and
protons where each nucleon species can have definite spin
polarization. Our framework consists of the Dirac-Brueckner-
Hartree-Fock (DBHF) approach to nuclear matter together
with a realistic meson-theoretic potential, which we choose
to be the Bonn B potential [35]. To the best of our knowledge,
this kind of calculation for spin-polarized asymmetric nuclear
matter (SPANM) is not in the literature.

This paper is organized as follows. In the next section
we review the main aspects of the procedure leading to
the self-consistent determination of the one-body potentials
experienced by a single nucleon in SPANM together with the
effective interaction. The characteristics of those potentials
are discussed in Sec. III. We then proceed to show results for
the energy per particle, namely the equation of state (EoS) of
SPANM under extreme conditions of polarization (Sec. IV).
The existence (or not) of a possible phase transition can be
argued by comparing the energies of the fully polarized and
the unpolarized phases. A brief summary and our conclusions
are contained in the last section.

II. BRIEF REVIEW OF THE SELF-CONSISTENT METHOD

Our calculation is microscopic and treats nucleons
relativistically. Within the Dirac-Brueckner-Hartree-Fock
(DBHF) method, the interactions of the nucleons with the

064304-10556-2813/2011/83(6)/064304(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.064304


FRANCESCA SAMMARRUCA PHYSICAL REVIEW C 83, 064304 (2011)

nuclear medium are expressed as self-energy corrections to
the nucleon propagator. That is, the nucleons are regarded as
“dressed” quasiparticles. Relativistic effects lead to an intrin-
sically density-dependent interaction which is approximately
consistent with the contribution from three-body forces (TBF)
typically employed in nonrelativistic approaches, particularly
those TBF of the “Z-diagram” type, which originate from the
presence of negative energy Dirac states (antinucleons).

The starting point of any microscopic calculation of nuclear
structure or reactions is a realistic free-space nucleon-nucleon
interaction. Our standard framework consists of the Bonn B
one-boson-exchange (OBE) potential [35] together with the
DBHF approach to nuclear matter. A detailed description of
our application of the DBHF method to SNM, NM, and IANM
can be found in a recent review of our work [36]. (In the
bibliography of Ref. [36] the reader will find a fairly complete
list of original DBHF papers concerning SNM.)

In a spin-polarized and isospin asymmetric system with
fixed total density ρ, the partial densities of each species are

ρn = ρnu + ρnd, ρp = ρpu + ρpd, ρ = ρn + ρp, (1)

where u and d refer to up and down spin polarizations,
respectively, of protons (p) or neutrons (n). The isospin and
spin asymmetries, α, βn, and βp, are defined in a natural way:

α = ρn − ρp

ρ
, βn = ρnu − ρnd

ρn

, βp = ρpu − ρpd

ρp

. (2)

The density of each individual component can be related to
the total density by

ρnu = 1 + βn

2

1 + α

2
ρ, (3)

ρnd = 1 − βn

2

1 + α

2
ρ, (4)

ρpu = 1 + βp

2

1 − α

2
ρ, (5)

ρpd = 1 − βp

2

1 − α

2
ρ, (6)

where each partial density is related to the corresponding

Fermi momentum through ρτσ = (kτσ
F )3

6π2 . The average Fermi
momentum and the total density are related in the usual way

as ρ = 2k3
F

3π2 .
The single-particle potential of a nucleon in a particular τσ

state, Uτσ , is the solution of a set of four coupled equations,

Unu = Unu,nu + Unu,nd + Unu,pu + Unu,pd, (7)

Und = Und,nu + Und,nd + Und,pu + Und,pd, (8)

Upu = Upu,nu + Upu,nd + Upu,pu + Upu,pd, (9)

Upd = Upd,nu + Upd,nd + Upd,pu + Upd,pd, (10)

to be solved self-consistently along with the two-nucleon G

matrix. In the above equations, each Uτσ,τ ′σ ′ term contains
the appropriate (spin and isospin dependent) part of the
interaction, Gτσ,′τ ′σ ′ . More specifically,

Uτσ (�k) =
∑

σ ′=u,d

∑
τ ′=n,p

∑
q�kτ ′σ ′

F

〈τσ, τ ′σ ′|G(�k, �q)|τσ, τ ′σ ′〉,

(11)

where the third summation indicates integration over the Fermi
seas of protons and neutrons with spin-up and spin-down, and

〈τσ, τ ′σ ′|G(�k, �q)|στ, σ ′τ ′〉

=
∑

L,L′,S,J,M,ML,T

∣∣∣∣
〈

1

2
σ ;

1

2
σ ′|S(σ + σ ′)

〉∣∣∣∣
2

×
∣∣∣∣
〈

1

2
τ ;

1

2
τ ′|T (τ + τ ′)

〉∣∣∣∣
2

〈LML; S(σ + σ ′)|JM〉

× 〈L′ML; S(σ + σ ′)|JM〉iL′−LY ∗
L′,ML

(k̂rel)YL,ML
(k̂rel)

×〈LSJ |G(krel, Kcm)|L′SJ 〉. (12)

Consistent with the DBHF method, the G matrix contains
medium effects from Pauli blocking, dispersion, and mod-
ification of the spin-dependent nucleon field applied to the
nucleon-nucleon potential.

The need to separate the interaction by spin components
brings along angular dependence, with the result that the
single-particle potential depends also on the direction of
the momentum, although such dependence was found to be
weak [33]. The G-matrix equation is solved using partial
wave decomposition and the matrix elements are then summed
as in Eq. (12) to provide the new matrix elements in the
representation needed for Eq. (11), namely with spin and
isospin components explicitly projected out. Furthermore, the
scattering equation is solved using relative and center-of-mass
coordinates, krel and Kcm, since the former is a natural
coordinate for the evaluation of the nuclear potential. Those are
then easily related to the momenta of the two particles, k and q,
in order to perform the integration indicated in Eq. (11). Notice
that solving the G-matrix equation requires knowledge of the
single-particle potential, which in turn requires knowledge
of the effective interaction. Hence, Eqs. (7)–(10) together
with the G-matrix equation constitute a rather lengthy self-
consistency problem. The latter starts with an ansatz for the
single-particle potential as suggested by the most general
structure of the nucleon self-energy operator consistent with all
symmetry requirements. (See Ref. [36] and references therein.)
Parametrization of the ansatz and comparison with Eq. (11) at
every step of the iterative procedure, a method known as the
“reference spectrum approximation,” allow the determination
of the single-nucleon potentials in each τσ channel.

The kernel of the G-matrix equation contains the Pauli
operator for scattering of two particles with two different Fermi
momenta, kτσ

F and kτ ′σ ′
F , which is defined in analogy with the

one for IANM [37],

Qτσ,τ ′σ ′
(
k, q, kτσ

F , k
′τ ′σ ′
F

) =
{

1 if p > kτσ
F and q > kτ ′σ ′

F ,

0 otherwise.

(13)

The Pauli operator is then expressed in terms of krel and Kcm

and angle averaged in the usual way.
Once a self-consistent solution for Eqs. (7)–(11) has

been obtained, the average potential energy for a given τσ

component can be calculated. A final average over all τσ

components provides, along with the kinetic energy Kτσ , the
average energy/particle in spin-polarized isospin-asymmetric
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nuclear matter. Specifically,

E

A
= 1

A

∑
σ=u,d

∑
τ=n,p

∑
k�kτσ

F

(
Kτσ (k) + 1

2
Uτσ (k)

)
, (14)

where E/A is a function of ρ, α, βn, and βp. We recall that,
in the DBHF approach, the kinetic energy is obtained from
the expectation value of the free-particle operator in the Dirac
equation.

All calculations are conducted including values of the total
angular momentum from 0 to 6, which we have verified to
provide satisfactory convergence.

III. ONE-BODY POTENTIALS IN SPANM

The single-particle potential in nuclear matter is a very
important quantity as it can be viewed as the optical potential
in the interior of a nucleus and thus, to a certain extent, can be
constrained by optical potential analyses. In this section, we
present and discuss its dependence on the momentum and on
spin/isospin asymmetries.

A. Momentum dependence

In Fig. 1(a) we show the momentum dependence of the one-
body potentials for upward- and downward-polarized neutrons
in isospin symmetric (α = 0) nuclear matter. The protons are
unpolarized whereas the neutron spin polarization parameter
is taken to be 0.6. Figure 1(b) shows the same quantity for
protons. In both cases, the solid curve is the prediction of the
single-particle potential in unpolarized matter. All potentials
are calculated at a density equal to 0.185 fm−3. In all cases,
the polar angle of the momentum vector �k is taken to be zero.

With a larger number of upward-polarized neutrons, Unu(k)
becomes more repulsive while Und (k) turns more attractive.
Notice that the opposite trend is displayed by Upu(k) and
Upd (k). The reason for the observed splittings is of course in
the spin dependence of the G matrix (and isospin dependence,
when applicable), together with the fact that the number of
interactions a single nucleon (with specified τσ ) can undergo
with other (τ ′σ ′) nucleons changes as the population of one
species increases or decreases.

Figures 1(c)–1(d) show a situation parallel to the one
presented in Figs. 1(a)–1(b), except that the neutrons are
now unpolarized. Comparison between Figs. 1(a)–1(b) and
Figs. 1(c)–1(d) shows that, as can be expected, the roles
of neutrons and protons are perfectly interchanged when
βn → βp and βp → βn.

In Figs. 1(e)–1(f), we investigate the impact of including
isospin asymmetry as well, specifically a neutron excess given
by α = 0.5. [Notice that the neutron and proton potentials in
absence of polarization (solid curves) are different to begin
with due to the isospin asymmetry.] The splitting remains
qualitatively similar to the case seen in Figs. 1(a)–1(b), but
it is more pronounced for the nucleon type whose density is
larger.

In all cases, the momentum dependence remains qualita-
tively similar to the one displayed in unpolarized SNM, with
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FIG. 1. (Color online) The neutron (left side) and the proton (right
side) single-particle potentials in isospin symmetric or asymmetric
matter with isospin asymmetry and neutron and proton polarizations
as indicated inside the frames. The (black) solid line is the prediction
for unpolarized matter. In all frames, the (red) dotted and (green)
dashed lines are the predicted Uτu and Uτd , respectively. The
horizontal axis is the momentum in units of the average Fermi
momentum, which is equal to 1.4 fm−1.

the size of the splitting larger at the lower momenta, which may
be due to weaker sensitivity of a high-momentum nucleon to
medium and asymmetry effects.

B. Spin and isospin asymmetry dependence

Here we focus on the dependence of the single-particle
potentials on various levels of asymmetries, for fixed total
density and momentum �k. First, we show the splitting of
the single-neutron and single-proton potentials in isospin
symmetric matter with changing neutron polarization (and for
zero proton polarization), see Fig. 2(a). Figure 2(b) confirms
that the appropriate symmetry is respected when neutron and
proton polarizations are interchanged.

For the predictions of Figs. 2(c)–2(d), isospin asymmetry
has been introduced as well. Notice that the predictions shown
in Figs. 2(c)–2(d) are not, and should not be, symmetric with
respect to n ↔ p exchange. This is the case if α → −α,
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FIG. 2. (Color online) The neutron (solid lines) and the proton
(dashed lines) single-particle potentials in isospin symmetric or
asymmetric matter vs the neutron (left side) and the proton (right
side) spin polarizations. The nucleon momentum is fixed and equal
to the average Fermi momentum, 1.4 fm−1.

in addition to βn → βp and βp → βn (that is, under charge
exchange).

As pointed out in the previous subsection, the size and
direction of the various splittings depend sensitively on the
strength of the partial contributions, Uτσ,τ ′σ ′ , to each Uτσ

potential, see Eqs. (7)–(11), which in turn receive contributions
from G-matrix elements in different spin and isospin channels.
We will come back to this point in the next section when
discussing the energy per particle.

The curves displayed in Figs. 2(a)–2(d) show an ap-
proximately linear behavior, although some deviations from
linearity can be seen, especially for the weaker potentials in
asymmetric matter. We observed a similar trend when only
isospin splitting or only spin splitting (in NM or SNM) was
considered [32].

IV. ENERGY PER PARTICLE IN SPANM

When the potential and kinetic energies are averaged
as in Eq. (14), one obtains the energy per nucleon for a
given state of isospin asymmetry and spin polarization. To
render the four-dimensional self-consistent calculation more
manageable, we ignore the angular dependence, which was
found to be weak both in nuclear and in neutron matter [16,33],
and keep the polar angle of the nucleon momentum vector
at a constant value, for which we choose π/4. We have
tested this choice in a few cases and found it to give good
agreement with the result of averaging over all angles. (Notice
that single-nucleon potentials in polarized matter have their
maximum or minimum values at either zero or π/2.)

In the left panel of Fig. 3, we show, in comparison with
unpolarized symmetric matter (solid line), the EoS for the
case of fully polarized neutrons and completely unpolarized
protons (dashed line); the EoS for the case of protons and
neutrons totally polarized in the same direction, that is, matter
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FIG. 3. (Color online) The energy per particle as a function of
density and various degrees of proton and neutron polarizations in
symmetric matter (left) and asymmetric matter (right). In both frames,
the (blue) dashed line corresponds to totally polarized neutrons and
unpolarized protons (βn = 1, βp = 0); the (green) dash-dotted line is
the prediction for the FM state (βn = 1, βp = 1); the (red) dotted line
shows the energy of the AFM state (βn = 1, βp = −1). The (black)
solid line shows the predictions for unpolarized matter.

in the ferromagnetic (FM) state (dashed-dotted line); and the
EoS for the case of protons and neutrons totally polarized in
opposite directions, namely, matter in the antiferromagnetic
(AFM) state (dotted line). A similar comparison is shown in
the right panel of Fig. 3, but for isospin asymmetric matter.
(Notice that all predictions are invariant under a global spin
flip, as we have verified directly.)

To better understand our findings, we have examined the
contributions to the potential energy from singlet and triplet
states separately. Taking as an example the case of unpolarized
asymmetric matter, up to the densities considered here (about
0.4 fm−3) the contribution to the potential energy from singlet
states was found to be attractive. Such contribution is absent
in the fully polarized case, implying increased repulsion in the
latter. Concerning triplet states, we found their contribution to
the potential energy to be more repulsive in the fully polarized
case as compared to the unpolarized one. A similar analysis
can explain the origin of the larger energy in the AFM state as
compared to the unpolarized one.

In summary, we find that, for both symmetric and asym-
metric matter, the energies of the FM and AFM states are
higher than those of the corresponding unpolarized cases,
with the AFM state being the most energetic. Thus, a phase
transition is not anticipated in our model. This conclusion
seems to be shared by predictions of microscopic models,
such as those based on conventional Brueckner-Hartree-
Fock theory [18]. On the other hand, calculations based on
various parametrizations of Skyrme forces result in different
conclusions. For instance, with the SLy4 and SLy5 forces and
the Fermi liquid formalism a phase transition to the AFM state
is predicted in asymmetric matter at a critical density equal to
about 2–3 times the normal density [29].

It is interesting to observe that models based on realistic
nucleon-nucleon potentials, whether relativistic or nonrel-
ativistic, are at least in qualitative agreement with one
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another in predicting more energy for totally polarized states
(FM or AFM) up to densities well above normal density.
For instance, our predictions are in good agreement with
the corresponding ones from Ref. [18]. In particular, the
qualitative behavior of the various curves relative to one
another is remarkably consistent, considering differences in
the many-body approaches (BHF vs DBHF) and the bare
two-nucleon interactions (Bonn B vs model NSC97e by the
Nijmegen group [38]). The main signature of the DBHF
framework is additional repulsion due to the quenching of the
σ contribution in the medium associated with the reduction
of the nucleon mass. This is especially noticeable at densities
above saturation, where the relativistic Dirac effect becomes
stronger. Indeed, quantitatively speaking, our energies do show
more repulsion. On the other hand, the Nijmegen model
for the nucleon-nucleon interaction is more repulsive than
Bonn B (without Dirac effect) due to a stronger tensor force
(typical for a local potential). The combination of these two
mechanisms, and their relative importance as a function of
density, is most likely the reason why the agreement between
our predictions and those from Ref. [18] may be better than
expected.

On the other hand, qualitative disagreement is encountered
with nonmicroscopic approaches [29] and also with relativis-
tic Hartree-Fock models based on effective nucleon-meson
Lagrangians. For instance, in Ref. [12] it was reported that the
onset of a ferromagnetic transition in neutron matter, and its
critical density, are crucially determined by the inclusion of
isovector mesons and the nature of their couplings. Notice that
our microscopic model also includes the isovector mesons
π , ρ, and δ (a0), but does not predict a similar scenario.
The reason for this difference is most likely due to the
fact that in our model all meson-nucleon couplings are
constrained by a fit to the free-space nucleon-nucleon data.
In relativistic Hartree-Fock models no such constraints are
applied.

V. CONCLUSIONS

Continuing with our broad analysis of nuclear matter and
its extreme states, we have extended our framework and
gone beyond existing predictions. As usual, we adopt the
microscopic approach for our nuclear matter calculations.
Concerning our many-body method, we find DBHF to be a
good starting point to look beyond the normal states of nuclear
matter, which it describes successfully. The main strength of
this method is its inherent ability to effectively incorporate
crucial TBF contributions through relativistic effects.

In this paper, we extended previous calculations to in-
corporate the general case of spin and isospin unsaturated
matter. Our main result is that we do not predict, or foresee, a
phase transition to a ferromagnetic or antiferromagnetic state.
In microscopic models one starts with the bare interaction
and includes correlations through the G-matrix calculation,
where all important meson contributions are constrained by
free-space data. The handling of spin and isospin dependent
amplitudes, in particular, whether they are tightly constrained
or not, is most likely at the origin of the divergence of predic-
tions between microscopic and nonmicroscopic approaches.

In the near future, we hope to construct a convenient
and sufficiently accurate parametrization of our ρ, α, βn,
and βp dependent EoS. This may be helpful for application
purposes, given that the self-consistency problem can be time
consuming.

We point out that empirical constraints are desirable to
test predictions of the spin and isospin dependence of nuclear
matter properties. At normal densities, systematic analyses
of spin- and isospin-dependent optical potentials can help
constrain Uστ .
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