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The spectrum of strange multibaryons (baryon number B = 2 and 3) is considered within the chiral soliton
model using one of several possible SU(3) quantization models (the bound state rigid oscillator version). The
states with energy below that of an antikaon and its corresponding nucleus can be interpreted as antikaon-nucleus
bound states. In the formal limit of small kaon mass the number of such states becomes large, and for a real
value of this mass there are at least several states with positive and negative parity in the energy gap of one kaon
mass. For large values of binding energies the interpretation of such states as just antikaon-nuclear bound states
becomes more ambiguous.
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I. INTRODUCTION

The studies of multibaryon states with different values
of flavor quantum numbers are always of interest. They are
closely related to the problem of the existence of strange quark
matter and its fragments, strange stars (analogs of neutron
stars). In addition to traditional approaches to this problem,
based usually on the potential and/or quark models, the chiral
SU(3) dynamics, mean-field theories, etc., the chiral soliton
approach (CSA) proposed by Skyrme [1] is effective and
has certain advantages over the conventional methods (some
early descriptions of this model can be found in Ref. [2]).
The quantization of the model performed first in the SU(2)
configuration space for the baryon number one states [3],
and somewhat later for configurations with an axial symmetry
[4,5] and for multiskyrmions [6–8], allowed, in particular, to
describe the properties of nucleons and the � isobar [3] and,
more recently, some properties of light nuclei, including the
so-called “symmetry energy” [9] (recently the neutron-rich
isotope 18B has been found to be unstable relative to the
decay 18B →17 B + n [10], in agreement with prediction of
the CSA [9]; this can be considered as an illustration of the
fact that the CSA provides quite realistic predictions for the
case of nonstrange nuclei) and many other properties [11].

The SU(3) quantization of the model has been performed
within the rigid [12] or soft [13] rotator approach and also
within the bound state model [14]. The binding energies of
the ground states of light hypernuclei have been described
within a version of the bound state chiral soliton model [15],
in qualitative, and even semiquantitative, agreement with
empirical data [16]. The collective motion contributions have
been taken into account here (single-particle excitations should
be added), and a special subtraction scheme has been used to
remove uncertainties in absolute values of masses intrinsic
to the CSA. It makes sense therefore to extend such an
investigation to the higher in energy (excited) states, because
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some of them may be interpreted as antikaon-nuclei bound
states.

Recently the antikaon-nuclei interactions and possible
bound states of antikaons and nuclei have attracted much
attention [17–27]. Theoretically, deeply bound states of
antikaons in nuclei have been obtained as a solution of
a many-body problem by Akaishi and Yamazaki [17,18].
Most recent reviews of this topic within the framework of
conventional approaches can be found in Refs. [26] and [27].
Here we investigate the possibility of interpreting such states
as quantized multiskyrmions (a configuration with baryon
number 1 is usually called a skyrmion). The spectrum of
quantized multiskyrmions is very rich, and some of these states
are appropriate for interpretation as bound antikaon-nuclei
states.

Within the CSA there is a simple argument that at small
value of the kaon mass mK there should be quantized states
of multiskyrmions with the mass below the sum of masses of
the kaon and the corresponding number of nucleons. Indeed,
the strangeness (flavor) excitation energies at small mK are
proportional to m2

K , both in the rotator [12,13] and in the
bound state models of skyrmion quantization [14]. Therefore,
the mass of any state with baryon number B, strangeness S,
isospin I , and spin J can be presented as sum of two terms
(see Sec. V below)

M(B, S, I, J, . . .) � M(B, S = 0, . . .)

+m2
K�B C(B, S, I, J, . . .), (1)

where �B is the � term (see Table I), and C(B, S, I, J, . . .)
is some quantity of the order ∼1, depending on quantum
numbers of the system. Evidently, at small enough mK the
contribution given by (1) is smaller than the sum M(B, S =
0, . . .) + |S|mK , and the number of states with the mass
given by (1) in the gap between M(B, S = 0, . . .) and
M(B, S = 0, . . .) + |S|mK becomes large. This argument is
quite rigorous, however, for realistic value of mK it is a
question of calculating numerically to find out which states
have the energy below that of the multibaryon plus the antikaon
system (here we consider the case of strangeness S = −1).
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TABLE I. Characteristics of classical skyrmion configurations
which enter the mass formulas for multibaryons. The numbers are
taken from Refs. [32] and [33]: moments of inertia � and �-term �

are in units GeV−1, ωS is in MeV, and µS is dimensionless (see
the next sections for explanations). (In some formulas we add a
lower index B for all quantities to emphasize the dependence on the
baryon number, e.g., µS,B .) Parameters of the model Fπ = 186 MeV;
e = 4.12 [16,32,33].

B �I �J �3 �S � ωS µS

1 5.55 5.55 5.55 2.04 4.80 306 3.165
2 11.47 19.74 7.38 4.18 9.35 293 3.081
3 14.4 49.0 14.4 6.34 14.0 289 3.066
4 16.8 78.0 20.3 8.27 18.0 283 2.972

The interpretation of these states with fixed external
quantum numbers in terms of hadronic constituents is not
straightforward and not unique. Each state is the whole
Fock column of hadronic components with different weights.
We could only, in some particular situations, make state-
ments about the dominance of some components of this
Fock column.

It should be especially pointed out that here we are using
one of the possible SU(3) quantization models—the rigid
oscillator version of the bound state model [15] which seems
to be the simplest one. This quantization scheme can provide
quantized states with definite restrictions on allowed quantum
numbers of the states, including their spatial parity, e.g.,
only positive parity baryons appear when the basic baryon
number 1 hedgehog-type SU(2) configuration is quantized in
this way. To get the states with negative parity, for example,
the low-mass �(1405) state, an actual candidate to be the
antikaon-nucleon bound state, one should provide at least a
second-order expansion in the mesonic fluctuations around
the basic classical configuration (hedgehog). Considerable
success in describing the properties of �(1405) has been
reached in this way in Ref. [28].

For the case of multiskyrmions a similar approach is tech-
nically very complicated and has not been performed, except
for a few attempts [29,30]. In the SU(2) case the qualitative
description of some dibaryon states was obtained in Ref. [30].
Therefore, the expected spectrum of the negative strangeness
states may be considerably richer than that obtained in present
paper.

In the next section the isotopical properties of the K̄NN

and K̄NNN systems are briefly discussed. Section III con-
tains a description of the starting positions of the CSA;
in Sec. IV we recollect the spectrum of SU(2) quantized
dibaryons. Section V contains the formulas summarizing
the CSA results for strange (flavored) multiskyrmions, and
our main results for the spectrum of strange baryonic states
with B = 2 and 3 are presented in Secs. VI and VII. Our
former results for strange dibaryons are recollected in Sec. VI.
Excitations of the ground states of the B = 2 and 3 systems
in some cases could be interpreted as antikaon-nuclei bound
states.

II. PHENOMENOLOGY

The K−pp cluster has been proposed in Ref. [18] as
a fundamental unit which plays an important role in the
formation of similar strangeness S = −1 clusters in heavier
nuclei.

Here we discuss first some consequences of isotopic
invariance of strong interactions involving strange particles.
The state K−pp, which has the third component of isospin
I3 = 1/2, is in fact a coherent combination of states with
isospins I = 3/2 and I = 1/2:

|K−pp〉 =
√

1

3
|K̄NN ; 3/2,+1/2〉

+
√

2

3
|K̄NN ; 1/2,+1/2〉. (2)

Another physical state with the same quantum numbers is

|K̄0(pn)I=1〉 =
√

2

3
|K̄NN ; 3/2,+1/2〉

−
√

1

3
|K̄NN ; 1/2,+1/2〉, (3)

where the (pn)I=1 system has isospin I = 1. So, the same
cluster which can be seen in the K−pp system should be seen
also in the K̄0(pn) system, but with approximately four times
smaller probability (we take into account that the pn system
has isospin I = 1 with probability 1/2). In the K̄NN state
with isospin I = 3/2 includes the state with charge +2, it is
K̄0pp, and the state with charge −1, it is K−nn.

Another possibility to have the state with isospin I = 1/2
is to combine the antikaon state with the isospin zero 2N state:

|K̄NN ; 1/2,+1/2〉 = |K̄〉|(pn)I=0〉. (4)

In total, for the K̄NN system we have eight different compo-
nents which can be split into a quartet (isospin I = 3/2) and
two doublets. Within the CSA we shall obtain the states with
baryon number 2 and the quantum numbers—strangeness,
isospin, spin—as indicated above, and estimate their masses.

This is similar for the B = 3 systems. In the case of a
K̄NNN system we have in total 16 components which can be
separated into one quintet with a maximal isospin I = 2, three
triplets with I = 1, and two singlets. The maximal value of
the third component of isospin is I3 = +2 (K̄0ppp system),
and the minimal value is I3 = −2 (K−nnn system). For an
arbitrary nucleus with atomic number A = B the isospin of any
antikaon-nucleus state should evidently satisfy the inequality
IK̄A � (A + 1)/2. As it was shown previously and as we shall
see here, within the CSA there is a specific dependence of the
mass of baryonic system on its isospin—usually states with a
higher isospin have greater energy.

III. BASIC INGREDIENTS AND FEATURES OF THE CSA

The CSA is based on a few principles and ingredients
incorporated into the truncated effective chiral Lagrangian
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[1–3],

Leff = −F 2
π

16
Tr lµlµ + 1

32e2
Tr[lµlν]2

+ F 2
πm2

π

8
Tr(U + U † − 2) + · · · , (5)

the chiral derivative lµ = ∂µUU †, U ∈ SU(2) or U ∈ SU(3)
is the unitary matrix depending on chiral fields, mπ is the pion
mass, Fπ is the pion decay constant known experimentally,
and e is the only parameter of the model in its minimal variant
proposed by Skyrme [1].

The mass term ∼F 2
πm2

π changes the asymptotics of the
profile f and the structure of the multiskyrmions at large B,
in comparison with the massless case. For the SU(2) case,

U = cos f + i(�n�τ ) sin f, (6)

the unit vector �n depends on two functions, α, β. Three
profiles {f, α, β}(x, y, z) parametrize the four-component
unit vector on the three-sphere S3.

The topological soliton (skyrmion) is a configuration of
chiral fields, possessing topological charge identified with the
baryon number B [1],

B = 1

2π2

∫
s2
f sαI [(f, α, β)/(x, y, z)] d3r, (7)

where I is the Jacobian of the coordinate transformation, sf =
sin f . So, the quantity B shows how many times the unit sphere
S3 is covered when integration over 3D space R3 is made.

The chiral and flavor symmetry breaking term in the
Lagrangian density depends on the kaon mass and decay
constant mK and FK (FK/Fπ � 1.23 from experimental data):

LFSB = F 2
Km2

K − F 2
πm2

π

24
T r(U + U † − 2)(1 −

√
3λ8)

−F 2
K − F 2

π

48
T r(Ulµlµ + lµlµU †)(1 −

√
3λ8). (8)

This term defines the mass splittings between strange and non-
strange baryons (multibaryons), modifies some properties of
the skyrmions, and is crucially important in our consideration.

As we have stressed in previous publications, the great
advantage of the CSA is that multibaryon states—nuclei,
hypernuclei, etc.—can be considered on equal footing with
the B = 1 case. Masses, binding energies of classical config-
urations, the moments of inertia �I , �J , . . . the � term (we
call it �), and some other characteristics of chiral solitons
contain implicit information about the interaction between
baryons. Minimization of the mass functional Mcl provides
three profiles {f, α, β}(x, y, z) and allows to calculate the
moments of inertia, etc.

IV. MASS FORMULA FOR MULTIBARYONS
QUANTIZED IN SU(2)

In the SU(2) case, the rigid rotator model (RRM) used
at first in Ref. [3] for the B = 1 case is most effective and
successful. It allowed to describe successfully the properties
of nucleons, the �(1232) isobar, as well as many properties of
light nuclei [11], and also mass splittings of nuclear isotopes,

including neutron-rich nuclides with atomic numbers up
to ∼30 [9].

When the basic classical configuration possesses definite
symmetry properties, the interference between iso- and usual
space rotations becomes important. We consider here first an
example of the axially symmetrical configuration which is
believed to provide the absolute minimum of the classical
static energy (mass) for the B = 2 case. The mass formula for
the axially symmetric configuration has been obtained first for
the nonstrange states in Ref. [4] and, in greater detail somewhat
later, in Ref. [5]:

M(B, I, J, κ) = Mcl + I (I + 1)

2�I

+ J (J + 1)

2�J

+ κ2

2

(
1

�I,3
− 1

�I

− 4

�J

)
, (9)

where κ = I bf
3 , I bf and J bf are the body-fixed isospin and spin

of the system, and the relation takes place J bf
3 = −2I bf

3 as a
consequence of the generalized axial symmetry of the B = 2
classical configuration [see Eq. (10)].

This formula is in agreement with the known quantum
mechanical formulas for the energy of the axially symmetrical
rotator [31]. The classical characteristics of the lowest baryon
numbers states, moments of inertia �I ,�J ,�I,3, which
enter formula (9), as well as other quantities, necessary for
calculating the spectrum of SU(3) quantized states, are given
in Table I.

The rational map approximation [34] considerably simpli-
fies the calculations of the various characteristics of classical
multiskyrmions presented in Table I (explicit expressions for
the quantities shown in this table can be found in Refs. [11]
and [33]). To get the numbers presented in Table I we used the
SU(2) configurations given by the rational map ansatz [34]
as the starting configurations in the full 3D minimization
algorithm [35], where the configuration is described by eight
functions of three variables [the complete SU(3) case]. The
final numbers differ from the initial numbers given by rational
maps by a only a few percent, thus showing the good quality
of the rational map approximation. The value of �J in Table I
for the baryon numbers B = 3 and 4 is the average one of the
diagonal elements of the orbital inertia tensor.

Here in Tables II and III we present for completeness the
result of the calculation of the dibaryon spectrum according
to the above formula. Many of the states shown in Table II
have been presented in Ref. [5], where parametrization of the
model by Adkins et al. [3] has been used, which allowed
to describe the absolute values of the masses of the nucleon
and the �(1232) isobar. Unlike Ref. [5] and following the
approach proposed later, we calculate the differences of the
masses of the quantized states, since the absolute values of
the masses depend on the poorly known Casimir energy of
the states calculated approximately for the B = 1 case; see
Refs. [36] and [37]. For our choice of the model parameters the
mass differences presented in Tables II and III are somewhat
smaller (by few tens of MeV) than the mass differences which
can be extracted from the results of Ref. [5] obtained with the
parameters of Ref. [3].
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TABLE II. The quantum numbers, possible hadronic content, and the energy (in MeV) of positive parity dibaryon states above the singlet
NN scattering state with I = 1, J = 0.

I J κ Content �E �E (MeV)

1 0 0 NN (1S0) 0 0
0 1 0 NN (3S1) 1/�J − 1/�I −36
∗1 1 0 NNπ? 1/�J 51
1 2 0 NN (1D2); �N (5S2) 3/�J 153
0 3 0 NN (3D3); ��(7S3) 6/�J − 1/�I 219
2 1 0 �N (3S1); �N (3D1) 1/�J + 2/�I 225
3 0 0 ��(1S0); NNππ 5/�I 435
2 4 2 �N (5D4); NNπ 2/�J + 1/�I + 2/�I,3 462

As it was shown first in Ref. [5], the parity of such dibaryon
states is

Pax,B=2 = (−1)κ . (10)

The deuteronlike state (I = 0, J = 1) has an energy that is
36 MeV lower than the NN scattering state (I = 1, J = 0)
[4,5] (the measured value of the deuteron binding energy is
εd � 2.2 MeV; within the CSA the deuteronlike state is lower
in energy than the singlet NN scattering state because the
orbital inertia �J is considerably—by a factor 1.5—greater
than the isotopic moment of inertia �I ; see Table I. This
remarkable property takes place in all known variants of
the CSA), so the value ∼40 MeV can be considered as the
uncertainty of our predictions of the masses in the SU(2) case.

The coefficient after κ2 in Eq. (9) is negative, therefore,
the states with a maximal possible value of |κ| at fixed I, J

have the lowest energy, linearly dependent on I and J after
cancellation of the quadratic terms,

Ekin = I

2�I

+ J

2�J

+ I

2�I,3
. (11)

This formula is valid for negative parity states with I = 1,
J = 2, κ = ±1, or, generally, J = 2I , κ = ±I .

Some comment is necessary concerning the state with
I = J = 1, κ = 0, which is forbidden by the Finkelstein-
Rubinstein (FR) constraint and cannot decay into the NN pair
due to the Pauli principle. Such a state, if it exists, is an example
of an elementary particle with B = 2, which is different from
an ordinary deuteron or a singlet scattering state consisting
mainly of two nucleons [38]. Such states have been considered
earlier in Refs. [39] and [40], where their masses were found to
be higher—greater than 2120 MeV. An experimental situation

with a possible observation of such states has been described
in Ref. [41].

The energy of such a state, shown in Table II, does not
include the possible difference of Casimir energies (or loop
corrections) between the FR-allowed and FR-forbidden states.
If this energy is large, this state, as well as the I = J = 0 state,
should have an energy larger than shown in Table II.

Generally, for multiskyrmions the internal constituents—
nucleons, first of all—are not identifiable immediately. Some
guesses and analyses of quantum numbers are necessary for
this purpose. A possible hadronic content of the dibaryon states
is shown in Tables II and III. Evidently, states with a value of
isospin I � 2 cannot be made of two nucleons only; additional
pions are needed, or � isobars instead of some nucleons. For
the same reason, the states with I � 2 cannot be observed
in nucleon-nucleon interactions. The states with isospin 0 or
1 could appear as some enhancements in the corresponding
partial wave of the NN scattering amplitude.

For a configuration with baryon number B = 3 the sym-
metry properties of the classical configuration important for
quantization have been established first by Carson [6] and
exploited recently in Ref. [11]. As a consequence of the
symmetry properties of the classical B = 3 configuration,
which has a characteristic tetrahedral shape, the equality
between the body fixed spin and isospin takes place, K = L.
The parity of the quantized states equals [6]

P = (−1)(K3+L3)/2 = (−1)M3/2. (12)

The analysis and interpretation of the B = 3 states are more
complicated than the B = 2 states, and only a few of them
were considered in Refs. [6] and [11]. Only a negative parity
state with M3 = ±2 was found to be allowed for the case

TABLE III. The quantum numbers, possible hadronic content, and the energy of negative parity dibaryon states above the NN scattering
state with I = 1, J = 0.

I J κ Content �E �E (MeV)

1 2 ±1 NN (3P2) 1/�J − 1/2�I + 1/2�I,3 75
1 3 ±1 NN (3P3,

3 F3) 4/�J − 1/2�I + 1/2�I,3 229
2 2 ±1 �N (3P2); NNπ 1/�J + 3/2�I + 1/2�I,3 249
2 3 ±1 �N (5P3); NNπ 4/�J + 3/2�I + 1/2�I,3 402
2 4 ±1 �N (3F4); NNπ 8/�J + 3/2�I + 1/2�I,3 606
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of grandspin M = 3 ( �M = �K + �L) due to the symmetry
properties of the basic classical configuration with B = 3 [6].

V. SPECTRUM OF MULTIBARYONS WITH
STRANGENESS IN THE RIGID OSCILLATOR MODEL

The observed spectrum of the strange multibaryon states
(hypernuclei) is obtained by means of the SU(3) quantization
procedure and depends on the quantum numbers and charac-
teristics of skyrmions presented in Table I.

Within the bound state model (BSM) [14–16], the antikaon
is bound by the SU(2) skyrmion. The mass formula takes place,

M = Mcl + ωS + ωS̄ + |S|ωS + �MHFS, (13)

where strangeness and antistrangeness excitation energies are

ωS = Nc(µS − 1)/8�S, ωS̄ = Nc(µS + 1)/8�S, (14)

µS =
√

1 + m̄2
K/M2

0 � 1 + m̄2
K

2M2
0

,

M2
0 = N2

c /(16��S) ∼ N0
c , (15)

m̄2
K = m2

KF 2
K/F 2

π , µS ∼ N0
c ,

and Nc is the number of colors of the underlying Quantum
Chromodynamics (QCD).

The hyperfine splitting correction depending on the hy-
perfine splitting constants cS , c̄S , isospin, “strange isospin” IS ,
and angular momentum J equals, in the case when interference
between usual space and isospace rotations is negligible or not
important,

�MHFS = J (J + 1)

2�J

+ cSIr (Ir + 1) − (cS − 1)I (I + 1) + (c̄S − cS)IS(IS + 1)

2�I

. (16)

The hyperfine splitting constants are equal:

cS =1 − �I

2�SµS

(µS − 1), c̄S =1 − �I

�Sµ
2
S

(µS − 1), (17)

The strange isospin equals IS = 1/2 for S = ±1, and for
negative strangeness in most cases of interest IS = |S|/2,
which minimizes this correction (but generally it may be not
so). We recall that the body-fixed isospin �I bf = �Ir + �IS , where
�Ir is the isospin of the skyrmion without added antikaons. It
is quite analogous to the so-called “right” isospin within the
rotator quantization scheme. When IS = 0, i.e., for nonstrange
states, I = Ir , and this formula goes over into the SU(2)
formula for multiskyrmions,

Ekin = J (J + 1)

2�J

+ I (I + 1)

2�I

, (18)

where we neglect the interference terms [11,33]. Correction
�MHFS ∼ 1/Nc is small at large Nc, and also for heavy flavors
[14,33].

For the case of a classical state with a generalized axial
symmetry (B = 2), an additional term appears,

�Eaxial = κ2

2

[
1

�3
− 1

�I

− 4

�3

]
= κ2δ(�), (19)

which differs for states with different parities (different κ , see
Tables II and II).

The mass splitting within SU(3) multiplets is important
and convenient for us here since the unknown for the B > 1
soliton Casimir energy cancels in the mass splittings. For
the difference of energies of states with strangeness S and
with S = 0 which belong to multiplets with equal values of
(p, q) numbers we obtain, using the above expressions for the

constants cS and c̄S ,

�E(p, q; I, J, S; Ir , J0, 0) = |S|ωS + µS − 1

4µS�S

[I (I + 1)

− Ir (Ir + 1)] + (µS − 1)(µS − 2)

4µ2
S�S

IS(IS + 1)

+ 1

2�J

[J (J + 1) − J0(J0 + 1)] + (
κ2 − κ2

0

)
δ(�), (20)

if the underlying classical configuration possesses an axial
symmetry. For arbitrary strangeness IS � |S|/2, and J0 = J

if these states belong to the same SU(3) multiplet. The
values of the quantities which enter the above formulas
are shown in Table I. As mentioned in the Introduction,
�E(p, q; I, J, S; Ir , J, 0) ∼ m2

K at small mK , since in this
case µS − 1 ∼ m2

K and ωS ∼ m2
K .

VI. DIBARYONS WITH STRANGENESS

Strange dibaryons have attracted much attention beginning
with the pioneering papers [39,40,42–44]. Recent discussion
of this topic and important references can be found in Ref. [26].
Here we do not discuss the S = −2 H dibaryon [42], which is
the SU(3) singlet and appears as the SO(3) soliton within the
chiral soliton approach [45–47].

For completeness we present here the former results by
Schwesinger et al. [48] for energies of different strange
dibaryons within the soft rotator model with an SU(3)
configuration mixing. As can be seen from Table IV, we
did not predict in Ref. [48] the bound states of dibaryons;
all states of the lowest energy shown in this table are above
the corresponding two-baryon thresholds (for consistency we
took the theoretical values of the baryon masses which do not
coincide with the empirical values). These lowest states can be
and should be interpreted as virtual states, or scattering states
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TABLE IV. The energy above threshold �E in MeV for dibaryons with JP = 0+, and different values of strangeness S and isospin I . The
SU(3) multiplet, which the main component of the dibaryon configuration belongs to, is indicated in the upper line (see Fig. 1). Calculations
are made according to the soft rotator model [48].

Multiplet {10} {27} {10} {27} {27} {27} {27} {35} {28}
S, I −1, 1/2 −1, 1/2 −2, 1 −2, 0 −3, 1/2 −3, 3/2 −4, 0 −5, 1/2 −6, 0
State �N �N �N �� �� �� �� �� ��

�ESRM 30 70 100 110 140 90 150 40 30

similar to the (NN ) 1S0 scattering state, the so-called singlet
deuteron. The presence of such states leads to the enhancement
of the scattering cross section in the corresponding channel, as
seen in the �N or �� data; see, e.g., Ref. [26]. In view
of considerable numerical uncertainty about these results,
there still remains a chance that the dibaryons, nearest to the
threshold, can be bound.

In a previous publication on this subject [49] we obtained
bound dibaryons, but the poorly known Casimir energies of
the order of N0

c [36,37] (discussed already in this paper in
connection with nonstrange dibaryons) have not been taken
into account in Ref. [49]. In fact, we should write for the
baryons

M1(p, q; Y, I ) = Mclass
1 + �M1(p, q; Y, I ) + MCas

1 (21)

and for the dibaryons (multibaryons in general case)

M2(p, q; Y, I ) = Mclass
2 + �M2(p, q; Y, I ) + MCas

2 . (22)

�M(p, q; Y, I ) is the quantum-number-dependent quantum
correction, hypercharge Y = B + S, and MCas ∼ N0

c is the
Casimir energy or loop correction. When we calculated the
energy (mass) difference,

�M = M1(p1, q1; Y1, I1) + M1(p2, q2; Y2, I2)

−M2(p, q; Y, I ) = 2Mclass
1 − Mclass

2

+�M1(p1, q1; Y1, I1) + �M1(p2, q2; Y2, I2)

−�M(p, q; Y, I ) + 2MCas
1 − MCas

2 , (23)

in Ref. [49] we ignored the term 2MCas
1 − MCas

2 and ob-
tained strong binding due to the large contribution of

Y

I3

B = 2, {10}, J = 1 (2, ...)

D

(ΛN)

(ΞN), (ΛΣ)

(ΞΣ)

Y

I3

B = 2, {27}, J = 0 (1, ...)

(nn) (np) (pp)

(ΣN)

(ΣΣ)

(ΣΞ)

(ΞΞ)

FIG. 1. I3-Y diagrams of the lowest multiplets of dibaryons,
B = 2. Virtual levels (scattering states) are shown in brackets, e.g.,
(�N ) scattering state which appears as near threshold enhancement.

�M1(p1, q1; Y1, I1) and �M1(p2, q2; Y2, I2). This very large
binding seemed apparently unrealistic, and a reasonable way
out of this situation appeared when it was recognized that the
contributions of the order of N0

c due to poorly known loop
corrections, or to the Casimir energy, make a large negative
contribution both to M1 [36,37] and, probably, to M2. To obtain
the NN singlet scattering state on the right place, we should
have [48]

2MCas
1 − MCas

2 � −820 MeV (24)

for the choice of parameters made in Ref. [48], and results
shown in Table IV follow immediately. Up to now these
contributions to the classical masses of the skyrmions were
calculated very approximately only for the unit (B = 1)
skyrmion [36,37]. These contributions are negative MCas

1 ∼
−1 GeV, i.e., they act in the right direction. For larger baryon
numbers the Casimir energy has not been calculated yet,
because it is a very nontrivial computational problem.

The prediction of the S = −3 dibaryons with
(JP ; I ) = (1+, 2+; 1/2) below the �� threshold was
made long ago by Goldman et al. [43] within a variant
of the Massachusetts Institute of Technology (MIT) bag
model. Recently a strong attraction was found in some
two-baryon channels with strangeness S = −3 and −4, in the
leading order of the chiral effective field theory, suggesting the
possible existence of bound states [50]. In the S = −1 channel
quasibound π�N state with JP = 2+, I = 3/2 has been
obtained in Ref. [25] by solving the nonrelativistic Faddeev
equation. The latest studies of strange dibaryons within quark
models are presented in Ref. [51] and references therein.

To get the spectrum of the strange dibaryons in our chiral
soliton approach we should transform basic formula (16)
for the quantum correction to the energy of multiskyrmions
to

�M = |S|ωS + 1

2�I

[cIr (Ir + 1) + (1 − c)I (I + 1)

+ (c̄ − c)IS(IS + 1)] + J (J + 1)

2�J

+ κ2

2

(
1

�I,3
− 1

�I

− 4

�J

)
, (25)

where B = 2 in all quantities �, ωS to be taken from Table I.
Ir (the right isospin within the rigid rotator quantization
scheme) is the isospin of the nonstrange state, IS � |S|/2 is
the isospin carried by the strange mesons, and the observed
isospin �I = �Ir + �IS . For S = 0 and I = Ir we recover the
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TABLE V. B = 2 states: Set of quantum numbers and the energy
�E above the NN singlet scattering state for the S = −1 states with
Ir = 0 and different values of spin, to be ascribed to the antidecuplet,
(p, q) = (0, 3), shown in Fig. 1(a).

Ir J I S κ �E (MeV)

0 1 1/2 −1 0 289
0 2 1/2 −1 0 392
0 3 1/2 −1 0 546

above formula (9) for the quantum correction to the SU(2)
quantized dibaryons.

For the difference of energies of states which belong to
antidecuplet and singlet (NN ) 1S0 state we obtain

E(0, 3; I, J, S) − E(2N,1 S0)

= |S|ωS + µS,B − 1

4µS,B�S,B

× I (I + 1)

+ (µS,B − 1)(µS,B − 2)

4µ2
S,B�S,B

IS(IS + 1)

+ 1

2�J

J (J + 1) − 1

�I

+ κ2δ(�), (26)

and in our case of S = −1 we should take IS = 1/2. The
only allowed possibility for κ is κ = 0, because Ir = 0. The
numerical values of the dibaryon energies are given for several
lowest states in Table V and Fig. 2.

The state with J = Ir = 0, S = −1, I = 1/2, not shown
in Table V, has energy �E(0, 0, 1/2,−1) � 238 MeV, but this
state cannot belong to the antidecuplet containing a deuteron
with J = 1.

For dibaryon states which belong to {27}-plet we can use
Eq. (20) with Ir = 1, IS = 1/2, J0 = 0, κ0 = 0. Numerical

TABLE VI. B = 2 states: Set of quantum numbers and the energy
above the NN threshold for the S = −1 states with Ir = 1, which
can be ascribed to the 27-plet, (p, q) = (2, 2)—see Fig. 1(b).

Ir J I S κ �E (MeV)

1 0 1/2 −1 0 262
1 1 1/2 −1 0 313
1 1 3/2 −1 0 357
1 2 1/2 −1 0 416
1 2 1/2 −1 1 339
1 2 3/2 −1 1 434
1 3 1/2 −1 1 493

results are shown in Table VI and Fig. 2. We would like to
stress again that we are not fitting—here and previously—the
absolute values of masses of nucleons, hyperons, and nuclei
(opposite to what was done in Refs. [3] and [11]) because they
are controlled by poorly known loop corrections or Casimir
energy [see the discussion of Eqs. (21)–(24)].

As we can see from Table VI, the state with isospin I = 3/2
has a greater mass than the state with I = 1/2 and the same
other quantum numbers (J = 1, S = −1, P = +1). At J = 2
the state with negative parity has a smaller mass than the
state with positive parity. For JP = 2+, I = 3/2 the energy
of the state is greater than the threshold energy of the π�N

system and close to the K̄NN threshold, so we do not obtain
a quasibound π�N state. However, this cannot be considered
as a contradiction with Ref. [25], where such a quasibound
state was obtained, because we used only one of the possible
ways of the SU(3) quantization of the B = 2 skyrmion.

The following comment is necessary here. The CSA with
our choice of the quantization scheme and model parameters
Fπ, FK, e overestimates systematically the strangeness exci-
tation energies ωS for all baryon numbers (Table I). For this

100

500

(ΜeV

Κ̄ΝΝ

ΝΝ − threshold

100

ΜeV

(J, Ι, S )

(3, 1/ 2, −1)

(2, 3/ 2, −1)

(2, 1/ 2, −1)

P = −1
κ = 1

(2, 1/ 2, −1)
(2, 1/ 2, −1)
(1, 3/ 2, −1)

(1, 1/ 2, −1)

(0, 1/ 2, −1)

P = +1
κ = 0

(J, I , S)

(4, 2, 0)

(3, 2, 0)

(2, 2, 0)

(3, 1, 0)

(2, 1, 0)

P = −1

- - - - - - - - - - - - - - - - - - -
ΛΝ (experim.)

(4, 2, 0)

(0, 3, 0)

(1, 2, 0)

(3, 0, 0)

(2, 1, 0)

(1, 0, 0)

(0, 1, 0)P = +1 )

)

)

FIG. 2. Position of the B = 2 states above the NN threshold with negative strangeness, negative and positive parities (first two columns),
and with zero strangeness, negative and positive parities (columns 3 and 4). The K̄NN threshold is shown by a black line, as well as the
NN threshold. The dashed line indicates the �N threshold with an empirical value of M�. The accuracy of the calculation is not better than
∼40 MeV.
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Y

I3

(a)B = 3 , J = 1/2 (3/2)

3H 3He

3
ΛH

Y

I3

(b) B = 4 , J = 0 (1, ...)

4He

4
ΛH

4
ΛHe

FIG. 3. (a) Location of the isoscalar ground state (shown by
double circle) and isovector states with B number B = 3 and S = −1
in the upper part of the (I3-Y ) diagram. (b) The same for the isodoublet
states with B = 4, S = −1 4

�H, and 4
�He. Excited states with greater

values of the right isospin Ir should belong to larger SU(3) multiplets.
The lower parts of the diagrams with Y � B − 3 are not shown here.

reason, to estimate the binding energies of light hypernuclei
in Ref. [16] we used the double subtraction scheme, where
differences of the strangeness excitation energies enter into
the final result for the differences of the binding energies
of hypernuclei and ordinary nuclei—see Fig. 3, where the
location of the lightest hypernuclei within the SU(3) multiplets
is shown. More realistic (lower) values of ωS will lead to an
increase of the number of excited states in the gap of the one
mK presented in Fig. 2 as well as in Fig. 4 for the B = 3 state.

VII. SOME OF THE B = 3, S = −1 STATES

For the B = 3 system the expression for the difference of
energies (masses) of state with strangeness S, isospin I , spin
J , and the ground state with zero strangeness, isospin Ir is
similar to (26)

�E(p, q; I, J, S; Ir , J0, 0)

� |S|ωS + µS,B − 1

4µS,B�S,B

[I (I + 1) − Ir (Ir + 1)]

+ (µS,B − 1)(µS,B − 2)

4µ2
S,B�S,B

IS(IS + 1) + 1

2�′
J

×
[
J (J + 1) − J0(J0 + 1) + M(M + 1)

�int

�I − �int

]
,

(27)

TABLE VII. Some of the possible B = 3 states: Set of quantum
numbers and the energy �E above the 3H-3He nuclei for states with
Ir = 1/2 and 3/2, strangeness S = −1, and different values of spin,
isospin, grandspin M , and parity P = (−1)M3/2 [6].

Ir J I M, P �E (MeV)

1/2 1/2 0 0, + 280
1/2 1/2 1 0, + 330
3/2 3/2 1 0, + 440
3/2 3/2 2 0, + 550
3/2 3/2 1 3, − 350
3/2 3/2 2 3, − 460

100

500

MeV

K̄(3H −3 He)

- - - - - - - - - - - - - - - - - - - - - - - - -
3
ΛH −3

Λ He (experim.)

3H −3 He − threshold

100

MeV

(J, I, M )
(J, I, M)

(3/2, 1, 3)

(3/2, 2, 3)

P = −1

(1/2, 0, 0)

(1/2, 1, 0)

(3/2, 1, 0)

(3/2, 2, 0)

P = +1

( (

FIG. 4. Some of the B = 3 rotationally excited states (above the
ground states of the 3H-3He doublet), strangeness S = −1, different
isospin and spin, negative and positive parities, Ir = J .

with �′
J = (�J �I − �2

int)/(�I − �int), all quantities should
be taken from Table I for B = 3, �int � −9.4 GeV−1. �M =
�K + �L is the sum of the body-fixed spin and isospin of the

system [6]. Therefore, the relation 0 � M � 2Ir takes place.
For the ground B = 3 state the SU(3) multiplet

with (p, q) = (1, 4), Ir = J0 = 1/2 ({35}-plet) is shown in
Fig. 3(a). Figure 3(b) for even B numbers is included for
illustration. The equality J0 = Ir follows from the symmetry
properties of the B = 3 classical configuration, which has a
tetrahedral form—see Ref. [6].

Our results for S = −1 excited tribaryons are presented in
Table VII and Fig. 4. The lowest in energy state with J =
Ir = 1/2, I = M = 0 can be naturally interpreted as a 3

�H
hypernucleus (see the discussion in Sec. IV and at the end of
the previous section). States with J = Ir = 3/2 should belong
to other SU(3) multiplets.

These results should be considered as preliminary; further
studies of this issue are desirable, also for greater baryon
numbers B � 4.

The restriction on the allowed isospin of nonexotic states
(i.e., the states without additional quark-antiquark pairs) takes
place: I � (3B + S)/2, and for antikaon-nuclei bound states,
evidently, I � (B + 1)/2. The second restriction becomes
stronger for B � 2, so only states with not too large an
isospin can be interpreted as antikaon-nuclei bound states.
Generally, rotational excitations have an additional energy
�E = J (J + 1)/2�J . The orbital inertia grows fast with in-
creasing baryon (atomic) number, �J ∼ Bp, and p is between
1 and 2 [11,33]. For this reason the number of rotational states
becomes greater with increasing baryon number.

VIII. SUMMARY AND CONCLUSIONS

To summarize, we have considered here rotational-type
excitations of S = −1 baryonic systems (nuclei) with baryon
number B = 2 and, partly, B = 3 using the chiral soliton
approach. It was assumed that during the collective motion
the shape of the basic classical configuration is not changed.
We did not consider the vibration-breathing excitations which
are possible as well. For the baryon number 1 it was possible
to describe in this way some properties of the negative parity
�(1405) state [28]. For the case of dibaryons, some nonstrange
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states have been considered in Ref. [30], although numerical
results have not been presented. Similar states should exist
for strange multibaryons, but numerical computations are
extremely complicated.

We investigated only one of several possible variants of
multiskyrmion quantization in the SU(3) extension of the
chiral soliton model, the rigid oscillator variant. The rich
spectrum of strange multibaryons is predicted within this
approach, with positive as well as with negative parities.
There is a rigorous theoretical statement that at a small
value of the kaon mass there should be quantized states
with strangeness −1, with energy below the NN · · · + K̄

threshold.
The existence of strange excited nuclear states, which could

be interpreted as bound antikaon-nuclear states within the
CSA, seems to be quite natural and not unexpected. For a
realistic value of the kaon mass some states are definitely
predicted, but with considerable numerical uncertainty in their
position (∼40 MeV). The deepest states are the most probable
to be bound relative to the decay into the antikaon and the
corresponding nuclear state. For B = 2 these are the states with
JP = 2−, I = 1/2; JP = 0+, I = 1/2; JP = 1+, I = 1/2
and I = 3/2—see Fig. 2. For B = 3 these states have quantum
numbers JP = 3/2−, I = 1 and JP = 1/2+, I = 1 (Fig. 4).

When the energy below the threshold becomes large,
the interpretation of such states as the bound state of an
antikaon and its corresponding nonstrange nucleus becomes
less straightforward, due to the increase of the weight of the
other components, first of all, containing hyperons. In view
of theoretical uncertainties, experimental investigations could
play an important role in determining the position of these
states. Since several such states are expected in the energy
gap equal to one kaon mass, a good enough experimental
resolution in the energy (mass) of the observed states is of
great importance. Another option can be that there are several
wide overlapping states, and in this case better resolution in
energy will not help much. The partial wave analysis of the
decay product angular distributions would be useful in this
situation.
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