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One plus two-body random matrix ensembles with parity: Density of states and parity ratios
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One plus two-body embedded Gaussian orthogonal ensemble of random matrices with parity [EGOE(1 + 2) -π ]
generated by a random two-body interaction (modeled by GOE in two-particle spaces) in the presence of a mean
field for spinless identical fermion systems is defined, generalizing the two-body ensemble with parity analyzed
by Papenbrock and Weidenmüller [Phys. Rev. C 78, 054305 (2008)], in terms of two mixing parameters and a
gap between the positive (π = +) and negative (π = −) parity single-particle (sp) states. Numerical calculations
are used to demonstrate, using realistic values of the mixing parameters appropriate for some nuclei, that the
EGOE(1 + 2) -π ensemble generates Gaussian form (with corrections) for fixed parity eigenvalue densities (i.e.,
state densities). The random matrix model also generates many features in parity ratios of state densities that
are similar to those predicted by a method based on the Fermi-gas model for nuclei. We have also obtained,
by applying the formulation due to Chang et al. [Ann. Phys. (NY) 66, 137 (1971)], a simple formula for
the spectral variances defined over fixed-(m1, m2) spaces, where m1 is the number of fermions in the positive
parity sp states and m2 is the number of fermions in the negative parity sp states. Similarly, using the binary
correlation approximation, in the dilute limit, we have derived expressions for the lowest two-shape parameters.
The smoothed densities generated by the sum of fixed-(m1, m2) Gaussians with lowest two-shape corrections
describe the numerical results in many situations. The model also generates preponderance of positive parity
ground states for small values of the mixing parameters, and this is a feature seen in nuclear shell-model results.
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I. INTRODUCTION

Random matrix theory (RMT), starting with Wigner and
Dyson’s Gaussian random ensembles [1,2] introduced to de-
scribe neutron resonance data [3,4], has emerged as a powerful
statistical approach leading to paradigmatic models describing
generic properties of complex systems [5–9]. Developments
and applications of RMT in nuclear physics in the last 30
years have been reviewed recently by Weidenmüller and
collaborators [10,11]. The Wigner-Dyson classical Gaussian
orthogonal (GOE), unitary (GUE), and symplectic (GSE)
ensembles are ensembles of multibody interactions, while the
nuclear interparticle interactions are essentially two body in
nature. This, together with nuclear shell-model examples, led
to the introduction of random matrix ensembles generated
by two-body interactions in 1970–1971 [12,13]. These two-
body ensembles are defined by representing the two-particle
Hamiltonian by one of the classical ensembles, and then the
m-particle (m > 2) H matrix is generated by the Hilbert space
geometry. Thus, the random matrix ensemble in the two-
particle spaces is embedded in the m-particle H matrix and,
therefore, these ensembles are generically called embedded
ensembles (EEs). The simplest of these ensembles is the
embedded Gaussian orthogonal ensemble of random matrices
generated by two-body interactions for spinless fermion
(boson) systems, denoted by EGOE(2) [BEGOE(2); here, B
stands for bosons]. In addition to the complexity generating
two-body interaction, Hamiltonians for realistic systems such
as nuclei consist of a mean-field one-body part. Then, the
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appropriate random matrix ensembles are EE(1 + 2). The
spinless fermion and boson EGEs (orthogonal and unitary
versions) have been explored in detail from the 1970s with
a major revival from 1995, and it is now well understood
that EGEs model many-body chaos or stochasticity exhibited
by isolated finite interacting quantum systems [9,14]. Aside
from the mean field and the two-body character, realistic
Hamiltonians also carry a variety of symmetries. In many
applications of EGEs, generic properties of EGEs for spinless
fermions are “assumed” to extend to symmetry subspaces [15].
More importantly, there are several properties of real systems
that require explicit inclusion of symmetries, and they are
defined by a variety of Lie algebras. This led to studies on EGEs
with symmetries such as spin [16–20], spin-isospin SU(4) [21],
J symmetry [22], and many others (see, for example, [23,24]).
In this paper, we consider parity symmetry in EE as there
are several nuclear structure quantities that require explicit
inclusion of parity. Some of these are as follows.

Parity ratios of nuclear level densities are an important
ingredient in nuclear astrophysical applications. Recently, a
method based on the noninteracting Fermi-gas model for
proton-neutron systems has been developed, and the parity
(π ) ratios as a function of excitation energy in a large number
of nuclei of astrophysical interest have been tabulated [25].
The method is based on the assumption that the probability to
occupy s out of N given single-particle (sp) states follows
Poisson distribution in the dilute limit (m � N,N → ∞,
where m is the number of particles). Then, the ratio of the
partition functions for the positive (+ve) and negative (−ve)
parity states is given by the simple formula Z−/Z+ = tanh f ,
where f is average number of particles in the +ve parity
states. Starting with this, an iterative method is developed
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with inputs from the Fermi-Dirac distribution for occupancies
including pairing effects and the Fermi-gas form for the total
level density. In the examples studied in [25], parity ratios are
found to equilibrate only around 5–10 MeV excitation energy.
However, ab initio interacting particle theory for parity ratios
is not yet available.

A closely related question is about the form of the density
of states defined over spaces with fixed π . In general, fixed-π
density of states can be written as a sum of appropriate partial
densities. In the situation wherein the form of the partial
densities is determined by a few parameters (as it is with
a Gaussian or a Gaussian with one or two corrections), it
is possible to derive a theory for these parameters and, by
using these, one can construct fixed-π density of states and
calculate parity ratios. Such a theory with interactions, in
general, follows from random matrix theory [15].

In addition to the questions related to fixed-π density of
states and parity ratios, there is also the important recognition
in the past few years that random interactions generate regular
structures [22,26,27]. It was shown in [28] that the shell
model for even-even nuclei gives preponderance of +ve parity
ground states. A parameter-free EGOE with parity has been
defined and analyzed recently [29] to address the question
of preponderance of ground states with positive parity for
systems with even number of fermions. They show that, in
the dilute limit, +ve parity ground states appear with only
50% probability. Thus, a random matrix theory describing
shell-model results is not yet available.

With the success of the embedded random matrix ensembles
(EE) [9,14], one can argue that the EE generated by parity
preserving random interaction may provide generic results for
the three nuclear structure quantities mentioned above. For
nuclei, the GOE versions of EE are relevant. Then, with a
random (modeled by GOE) two-body interaction preserving
parity in the presence of a mean field, we have embedded
Gaussian orthogonal ensemble of one plus two-body inter-
actions with parity [hereafter called EGOE(1 + 2)-π ]. This
model contains two mixing parameters and a gap between the
+ve and −ve parity sp states and it goes much beyond the
simpler model considered in [29]. In the random matrix model
used in this paper, proton-neutron degrees of freedom and
angular momentum (J ) are not considered. Let us add that, in
this paper, for the first time, a random matrix theory for parity
ratios is attempted. Now we will give a preview.

Section II gives the definition of EGOE(1 + 2)-π and a
method for its construction. From the results known for EE for
spinless fermion (boson) systems, for fermions (bosons) with
spin and from shell-model calculations [3,14,18], it is expected
that the fixed-π state densities (more appropriately partial
densities) approach Gaussian form in general. Therefore, exact
propagation formulas for fixed-π energy centroids and spectral
variances are derived and the results are given in Sec. III. Used
here is the group theoretical formulation developed by Chang
et al. [30]. Similarly, in Appendix B, the formulas are given
for the ensemble averaged skewness γ1(m1,m2) and excess
γ2(m1,m2) parameters for fixed-(m1,m2) partial densities
(with m1 fermions distributed in N+ number of +ve parity sp
levels and, similarly, m2 fermions in N− number of −ve parity
sp levels) and used is the binary correlation approximation

method described in [31–34]. These will provide corrections
to the Gaussian state densities. In Sec. IV, we present the
numerical results for (i) fixed-π state densities, (ii) parity ratios
of state densities, and (iii) probability for +ve parity ground
states. Finally, Sec. V gives conclusions and future outlook.

II. EGOE(1 + 2) -π ENSEMBLE

Given N+ number of positive parity sp states and, similarly,
N− number of negative parity sp states, let us assume, for
simplicity, that the +ve and −ve parity states are degenerate
and separated by energy � (see Fig. 1). This defines the one-
body part h(1) of the Hamiltonian H with N = N+ + N−
sp states. The matrix for the two-body part V (2) of H [we
assume H is (1 + 2)-body] will be a 3 × 3 block matrix in
two-particle spaces as there are three possible ways to generate
two-particle states with definite parity: (i) both fermions in
+ve parity states, (ii) both fermions in −ve parity states, and
(iii) one fermion in +ve and the other fermion in −ve parity
states. They will give the matrices A, B, and C, respectively, in
Fig. 1. For parity preserving interactions, only the states (i) and
(ii) will be mixed, and the mixing matrix is D in Fig. 1. Note
that the matrices A, B, and C are symmetric square matrices,
while D is in general a rectangular mixing matrix. Consider N

sp states arranged such that the states 1 to N+ have +ve parity
and states N+ + 1 to N have −ve parity. Then, the operator
form of H preserving parity is

H = h(1) + V (2),

h(1) =
N+∑
i=1

ε
(+)
i n̂

(+)
i +

N∑
i=N++1

ε
(−)
i n̂

(−)
i ,

ε
(+)
i = 0, ε

(−)
i = �,

V (2) =
N+∑

i, j, k, l = 1
(i<j, k<�)

〈νkν�|V |νiνj 〉a†
ka

†
�ajai

+
N∑

i ′, j ′, k′, �′ = N+ + 1
(i ′<j ′, k′<�′)

〈νk′ν�′ |V |νi ′νj ′ 〉a†
k′a

†
�′aj ′ai ′

+
N+∑

i ′′,k′′=1

N∑
j ′′,�′′=N++1

〈νk′′ν�′′ |V |νi ′′νj ′′ 〉a†
k′′a

†
�′′aj ′′ai ′′

+
N+∑

P, Q=1
(P<Q)

N∑
R, S=N+ + 1

(R<S)

× [〈νP νQ|V |νRνS〉a†
P a

†
QaSaR + h.c.].

(1)

In Eq. (1), the νi’s are sp states with i = 1, 2, . . . , N (the
first N+ states are +ve parity and the remaining states are
−ve parity). Similarly, 〈· · · |V | · · · 〉 are the two-particle matrix
elements, n̂i are number operators, and a

†
i and ai are creation

and annihilation operators, respectively. Note that the four
terms in the right-hand side of the expression for V (2) in
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FIG. 1. Parity preserving one plus two-body H with a sp spectrum
defining h(1) along with a schematic form of the V (2) matrix.
Dimension of the matrices A, B, and C are N+(N+ − 1)/2, N−(N− −
1)/2, and N+N−, respectively. Note that DT is the transpose of the
matrix D. See text for details.

Eq. (1) correspond, respectively, to the matrices A, B, C, and
D shown in Fig. 1.

Many-particle states for m fermions in the N sp states can
be obtained by distributing m1 fermions in the +ve parity sp
states (N+ in number) and, similarly, m2 fermions in the −ve

parity sp states (N− in number) with m = m1 + m2. Let us
denote each distribution of m1 fermions in N+ sp states by m1

and, similarly, m2 for m2 fermions in N− sp states. The many-
particle basis defined by (m1, m2) with m2 even will form the
basis for +ve parity states and, similarly, with m2 odd for
−ve parity states. In the (m1, m2) basis with m2 even (or odd),
the H matrix construction reduces to the matrix construction
for spinless fermion systems. The method of construction for
spinless fermion systems is well known [14] and, therefore, it
is easy to construct the many-particle H matrices in +ve and
−ve parity spaces. The matrix dimensions d+ for +ve parity
and d− for −ve parity spaces are given by

d+ =
∑

m1,m2(m2 even)

(
N+
m1

)(
N−
m2

)
,

(2)

d− =
∑

m1,m2(m2 odd)

(
N+
m1

)(
N−
m2

)
.

Some examples for the dimensions d+ and d− are given in
Table I.

The EGOE(1 + 2)-π ensemble is defined by choosing the
matrices A, B, and C to be independent GOEs with matrix
elements variances v2

a , v2
b , and v2

c , respectively. Similarly, the
matrix elements of the mixing D matrix are chosen to be
independent (independent of A, B, and C matrix elements)
zero-centered Gaussian variables with variance v2

d . Without
loss of generality, we choose � = 1 so that all the v’s
are in � units. This general EGOE(1 + 2)-π model will
have too many parameters (v2

a, v
2
b, v

2
c , v

2
d , N+, N−,m) and,

therefore, it is necessary to reduce the number of parameters.
A numerically tractable and physically relevant (as discussed
below) restriction is to choose the matrix element variances of
the diagonal blocks A, B, and C to be the same, and then we
have the EGOE(1 + 2)-π model defined by (N+, N−,m) and

TABLE I. Hamiltonian matrix dimensions d+ and d− for various
values of (N+, N−, m).

N+ N− m d+ d− N+ N− m d+ d−

6 6 6 452 472 8 8 4 924 896
7 5 6 462 462 5 2184 2184
7 7 5 1001 1001 6 3976 4032

6 1484 1519 10 6 4 900 920
7 1716 1716 5 2202 2166

8 6 5 1016 986 6 4036 3972
6 1499 1504 6 10 4 900 920

9 5 5 1011 911 5 2166 2202
6 1524 1479 6 4036 3972

5 10 4 665 700 9 9 6 9240 9324
5 1501 1502 10 8 6 9268 9296

10 10 5 7752 7752
6 19 320 19 440

the variance parameters (τ ,α), where

v2
a

�2
= v2

b

�2
= v2

c

�2
= τ 2,

v2
d

�2
= α2. (3)

Thus EGOE(1 + 2) -π we employ is

A : GOE(0 : τ 2), B : GOE(0 : τ 2),

C : GOE(0 : τ 2), D : GOE(0 : α2), (4)

A,B,C,D are independent GOEs.

Note that the D matrix is a GOE only in the sense that
the matrix elements Dij are all independent zero-centered
Gaussian variables with variance α2. In the limit τ 2 → ∞
and α = τ , the model defined by Eqs. (1), (3), and (4) reduces
to the simpler model analyzed in [29].

Before proceeding further, it is useful to mention that
we are considering in this paper spinless fermion systems
(with parity included) just as in the previous investigation
[29]. It is possible to extend the ensemble to nucleons in
shell-model j orbits (including both +ve and −ve orbits
such as, for example, sd and fp) and construct the ensemble
in many-nucleon spaces with a given Jπ or JπT using a
shell-model code. However, such an attempt has not been
made, just as in [29], as our focus is on parity. Also, the
ensemble for spinless systems will give the essential features
due to parity and these can be used in later explorations using
ensembles with Jπ or JπT , which are more complicated
numerically and more importantly from an analytical point of
view [3,22]. In fact, due to the severe problems associated with
analytical tractability, a variety of EGOE are being analyzed
since 1995 (see [9,14,22] for reviews). At this point, it is
also useful to mention that EGOE(1 + 2)’s are also called
TBRE in literature (see Sec. 5.7 in [9] for clarifications on
this nomenclature). Brody et al. state the following [3]: “The
most severe mathematical difficulties with TBRE are due to
angular momentum constraints . . .. Another type of ensemble,
. . . much closer to being mathematical tractable abandons the
J restrictions entirely . . . an embedded GOE, or EGOE for
short.”

Starting with the EGOE(1 + 2)-π ensemble defined by
Eqs. (1), (3), and (4), we have numerically constructed
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100 (in some examples 200) members of the ensemble in
many-particle +ve and −ve parity spaces with dimensions d+
and d− given by Eq. (2) for several values of (N+, N−,m)
and varying the parameters τ and α. This means that we
have considered 100 realizations of EGOE(1 + 2)-π random
matrices in (N+, N−,m) spaces; we use the phrase “members”
throughout the paper instead of “realizations” (other names
used by some authors are “sets,” “samples,” and “trials”)
as in all our previous papers. Before discussing the nu-
merical calculations, we present the results for the energy
centroids, variances, and also the shape parameters (skewness
and excess) defining the normalized fixed-(m1,m2) partial
densities

ρm1,m2 (E)=〈δ(H − E)〉m1,m2 = 1

d(m1,m2)

∑
α,β

∣∣Cm1,m2,α
E,β

∣∣2
;

|m1,m2, α〉=
∑

β

C
m1,m2,α
E,β |E, β〉 , (5)

where, 〈· · · 〉 corresponds to average and α and β are extra
labels required to specify completely the states with a given
(m1,m2) and E, respectively. Later, we use the symbol 〈〈· · · 〉〉
that denotes the trace. These will allow us to understand some
of the numerical results. Let us add that the fixed-π eigenvalue
densities I±(E) are sums of the appropriate partial densities
as given by Eq. (16) below. Note that the densities I±(E) are
normalized to d±.

III. ENERGY CENTROIDS, VARIANCES, SKEWNESS,
AND EXCESS PARAMETERS FOR FIXED-(m1, m2)

PARTIAL DENSITIES

Let us call the set of +ve parity sp states as unitary
orbit no. 1 and, similarly, the set of −ve parity sp states as
unitary orbit no. 2; see [15] for unitary orbits notation and
significance. For convenience, from now on, we denote the
sp states by the letters (i, j, . . .) and unitary orbits by Greek
letters (α, β, . . .). Note that α = 1 corresponds to the +ve

parity unitary orbit and α = 2 corresponds to the −ve parity
unitary orbit (with this notation, N1 = N+ and N2 = N−).
The sp states that belong to a unitary orbit α are denoted as
iα, jα, . . . . Propagation formulas for the energy centroids and
variances of the partial densities ρm1,m2 (E) follow from the
unitary decomposition of V (2) with respect to the subalgebra
U (N+) ⊕ U (N−) contained in U (N ). Note that (m1,m2) label
the irreducible representations (irreps) of U (N+) ⊕ U (N−)
and they all belong to the U (N ) irreps labeled by m. The
(m1,m2) are often called unitary configurations [15]. With
respect to U (N+) ⊕ U (N−), the operator V (2) decomposes
into three parts V (2) → V [0] + V [1] + V [2]. The V [0] gen-
erates the energy centroids 〈V 〉m1,m2 , V [1] corresponds to
the algebraic mean field generated by V , and V [2] is the
remaining irreducible two-body part. By extending the unitary
decomposition for the situation with a single orbit for spinless
fermions (given in Appendix A) and also using the detailed
results in [30], we obtain the following formulas for the V [ν]’s.

The V [0] is given by (with α = 1, 2 and β = 1, 2)

V [0] =
∑
α�β

n̂α(n̂β − δαβ)

(1 + δαβ)
Vαβ,

Vαα =
(

Nα

2

)−1 ∑
i>j

Viαjαiαjα
, (6)

Vαβ = (NαNβ)−1
∑
i,j

Viαjβ iαjβ
; α �= β.

Then, the traceless part Ṽ = V − V [0] = V [1] + V [2], where
(Ṽ )iαjβ iαjβ

= Viαjβ iαjβ
− Vαβ and (Ṽ )ijk� = Vijk� for all others.

Now, the V [1] part is

V [1] =
∑
iα,jα

ξ̂iαjα
a
†
iα
ajα

,

ξ̂iαjα
=

∑
β

n̂β − δαβ

Nβ − 2δαβ

ζiαjα
(β), (7)

ζiαjα
(β) =

∑
kβ

Ṽkβ iαkβjα
.

Finally, the V [2] part is as follows:

V [2] = Ṽ − V [1],

V
[2]
iαjβ iαjβ

= Ṽiαjβ iαjβ
−

[
ζiαjα

(β)

Nβ − 2δαβ

+ ζiβjβ
(α)

Nα − 2δαβ

]
,

V
[2]
kαiβkαjβ

= Ṽkαiβkαjβ
− ζiβjβ

(α)

Nα − 2δαβ

; iβ �= jβ,

V
[2]
ijk� = Ṽijk� for all others.

(8)

Given Eqs. (6), (7), and (8), by intuition and using Eq. (A3), it
is possible to write the propagation formulas for the energy
centroids and variances of ρm1,m2 (E). Note that these are
essentially traces of H and H 2 over the space defined by
the two-orbit configurations (m1,m2) [see Eqs. (9) and (10)
below]. A direct approach to write the propagation formulas
for centroids and variances for a multiorbit configuration was
given in detail first by French and Ratcliff [35]. The formula
for the variance given in [35] is cumbersome and it is realized
later [30] that they can be made compact by applying group
theory (see, also, [14,15,36]). We have adopted the group
theoretical approach for the two-orbit averages and obtained
formulas. Propagation formula for the fixed-(m1,m2) energy
centroids is

Ec(m1,m2) = 〈H 〉m1,m2 = m2� +
∑
α�β

mα(mβ − δαβ)

(1 + δαβ)
Vαβ.

(9)

The first term in Eq. (9) is generated by h(1) and it is simple
because of the choice of the sp energies as shown in Fig. 1.
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The propagation formula for fixed-(m1,m2) variances is

σ 2(m1,m2) = 〈H 2〉m1,m2 − [〈H 〉m1,m2 ]2

=
∑

α

mα(Nα − mα)

Nα(Nα − 1)

∑
iα,jα

[ξiα,jα
(m1,m2)]2 +

′∑
α,β,γ,δ

mα(mβ − δαβ)(Nγ − mγ )(Nδ − mδ − δγ δ)

Nα(Nβ − δαβ)(Nγ − δγα − δγβ)(Nδ − δδα − δδβ − δδγ )
(X),

ξiα,jα
(m1,m2) =

∑
β

mβ − δαβ

Nβ − 2δαβ

ζiαjα
(β), X =

′∑(
V

[2]
iαjβkγ �δ

)2
. (10)

The prime over summations in Eq. (10) implies that the
summations are not free sums. Note that (α, β, γ, δ) take values
(1, 1, 1, 1), (2, 2, 2, 2), (1, 2, 1, 2), (1, 1, 2, 2), and (2, 2, 1, 1).
Similarly, in the sum over (iα, jβ), i � j if α = β and,
otherwise, the sum is over all i and j ; similarly, for (kγ , �δ).
Using Ec(m1,m2) and σ 2(m1,m2), the fixed parity energy
centroids and spectral variances [they define I±(E)] can be
obtained as follows:

Ec(m,±) = 〈H 〉m,± = 1

d±

′∑
m1,m2

d(m1,m2)Ec(m1,m2),

σ 2(m,±) = 〈H 2〉m,± − [〈H 〉m,±]2, (11)

〈H 2〉m,± = 1

d±

′∑
m1,m2

d(m1,m2)
[
σ 2(m1,m2) + E2

c (m1,m2)
]
.

The prime over summations in Eq. (11) implies that m2 is even
(odd) for +ve (−ve) parity.

It should be pointed out that the formulas given by Eqs. (9),
(10), and (11) are compact and easy to understand compared
to Eqs. (10)–(14) of [29] and also those that follow from
Eqs. (129) and (133) of [35], where unitary decomposition
is not employed. We have verified Eqs. (9) and (10) by
explicit construction of the H matrices in many examples. In
principle, it is possible to obtain a formula for the ensemble-
averaged variances using Eq. (10); the ensemble-averaged
centroids derive only from h(1). Simple asymptotic formulas
for ensemble-averaged variances follow by neglecting the
δ functions that appear in Eq. (10) and replacing (V [2]

ijk�)2

by τ 2 and α2 appropriately. Then, the final formula for the
ensemble-averaged fixed-(m1,m2) variances is

σ 2(m1,m2) ≈ m

[
2∑

α=1

mα (Nα − mα)

]
τ 2 +

[(
m1

2

)(
m̃1

2

)
+

(
m2

2

)(
m̃2

2

)
+ m1m2m̃1m̃2

]
τ 2 (12)

+
[(

m1

2

)(
m̃2

2

)
+

(
m2

2

)(
m̃1

2

)]
α2.

Here, m̃1 = N1 − m1 and m̃2 = N2 − m2. The overbar in
Eq. (12) denotes ensemble average. In Table II, we compare the
results obtained from Eq. (12) with those obtained for various
100-member ensembles using Eq. (10), and the agreements
are quite good. Therefore, in many practical applications, one
can use Eq. (12).

The skewness and excess parameters γ1 and γ2 give
information about the shape of the partial densities and they
are close to zero implies Gaussian form. Formulas for the

Mr , r = 3, 4, for a given one plus two-body Hamiltonian
defined by Eq. (1) follow from the results given in [36–41]
many years back. However, these formulas contain a very
large number of complicated terms (in particular, for M4), and
carrying out analytically ensemble averaging has proved to
be impractical (we are not aware if anyone was successful
in the past). Some idea of the difficulty in carrying out
simplifications can be seen from the attempt in [42]. An
alternative is to program the exact formulas and evaluate the
moments numerically for each member of EGOE(1 + 2) -π
by considering, say, 500 members in two-particle spaces. As
pointed out by Terán and Johnson [43] in their most recent
attempt, these calculations for the fourth moments are time
consuming if not impractical. All the problems with the exact
formulas have been emphasized in [15]. Because of these (in
the future with much faster computers, it may be possible to
use the exact formulas), we have adopted the binary correlation
approximation, first used by Mon and French [31,32] and later
by French et al. [33,34], which is good in the dilute limit:
m1, N1,m2, N2 → ∞, m/N1 → 0, and m/N2 → 0, where m

is m1 or m2, for deriving formulas for the ensemble averaged
M3 and M4. The final formulas are given in Appendix B and
details of the derivations will be reported elsewhere [44]. The
following results are inferred from the results in Appendix B.

It is seen from Eq. (B9) that γ1(m1,m2) will be nonzero
only when α �= 0 and the τ dependence is weak. Also, it
is seen that, for N+ = N−, γ1(m1,m2) = −γ1(m2,m1).
Similarly, Eq. (B10) shows that, for N+ = N−,
γ2(m1,m2) = γ2(m2,m1). In the dilute limit, with some
approximations as discussed after Eq. (B10), the expression for
γ2(m1,m2) is given by Eq. (B11). This shows that, for α � τ or
τ � α, the C1 and C2 in Eq. (B11) will be negligible and then
γ2 ∼ −4/m for m1 = m2 = m/2 and N1 = N2 = N . This is
same as the result for spinless fermion EGOE(2) [31,32] and
shows that, for a range of (τ, α) values, ρm1,m2 (E) will be close
to Gaussian. Moreover, to the extent that Eq. (B11) applies, the
density ρm1,m2 (E) is a convolution of the densities generated by
X(2) and D(2) operators. Let us add that the binary correlation
results presented in Appendix B, with further extensions,
will be useful in the study of partitioned EGOE discussed
in [14,45].

IV. RESULTS AND DISCUSSION

In order to proceed with the numerical calculations, we
need to have some idea of the range of the parameters
(τ, α,m/N+, N+/N−). Toward this end, we have used realistic
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TABLE II. Ensemble-averaged fixed-(m1,m2) widths σ (m1,m2) and the total spectral width σt for different (τ, α) values. For each (τ, α),
the σ (m1, m2) are given in the table and they are obtained using the exact propagation formula given in Eq. (10) for each member of the
ensemble. In all the calculations, ensembles with 100 members are employed. Numbers in the parentheses are obtained by using the asymptotic
formula given in Eq. (12). The last row for each (N+, N−) gives the corresponding σt values. All the results are given for six particle systems
and the dimensions d(m1,m2) are also given in the table. See text for details.

(N+, N−) m1 m2 d(m1, m2) (τ, α/τ )

(0.1,0.5) (0.1,1.5) (0.2,0.5) (0.2,1.5)

(8,8) 0 6 28 1.36(1.39) 3.21(3.21) 2.73(2.77) 6.41(6.42)
1 5 448 1.76(1.79) 2.70(2.72) 3.52(3.57) 5.41(5.44)
2 4 1960 2.05(2.09) 2.48(2.50) 4.11(4.17) 4.96(5.01)
3 3 3136 2.16(2.19) 2.42(2.45) 4.31(4.38) 4.84(4.90)
4 2 1960 2.05(2.09) 2.48(2.50) 4.11(4.17) 4.95(5.01)
5 1 448 1.76(1.79) 2.70(2.72) 3.52(3.57) 5.41(5.44)
6 0 28 1.37(1.39) 3.21(3.21) 2.75(2.77) 6.42(6.42)

2.29(2.32) 2.68(2.71) 4.24(4.30) 5.08(5.13)

(6,10) 0 6 210 1.67(1.70) 2.70(2.72) 3.34(3.41) 5.41(5.44)
1 5 1512 2.04(2.07) 2.48(2.51) 4.08(4.15) 4.97(5.02)
2 4 3150 2.19(2.22) 2.41(2.44) 4.37(4.44) 4.82(4.88)
3 3 2400 2.11(2.14) 2.43(2.46) 4.22(4.28) 4.86(4.91)
4 2 675 1.84(1.87) 2.60(2.62) 3.67(3.73) 5.20(5.24)
5 1 60 1.46(1.48) 3.06(3.06) 2.92(2.96) 6.12(6.13)
6 0 1 1.30(1.30) 3.90(3.90) 2.60(2.60) 7.81(7.79)

2.31(2.33) 2.65(2.67) 4.30(4.36) 5.02(5.07)

(10,10) 0 6 210 1.97(2.01) 4.16(4.19) 3.95(4.01) 8.33(8.37)
1 5 2520 2.44(2.49) 3.63(3.66) 4.90(4.98) 7.25(7.32)
2 4 9450 2.76(2.81) 3.36(3.40) 5.53(5.61) 6.71(6.79)
3 3 14400 2.87(2.92) 3.28(3.32) 5.74(5.83) 6.56(6.64)
4 2 9450 2.76(2.81) 3.36(3.40) 5.53(5.61) 6.71(6.79)
5 1 2520 2.44(2.49) 3.63(3.66) 4.90(4.98) 7.25(7.32)
6 0 210 1.97(2.01) 4.16(4.19) 3.95(4.01) 8.33(8.37)

2.95(2.99) 3.54(3.57) 5.62(5.70) 6.83(6.91)

nuclear effective interactions in sdfp [46] and fpg9/2 [47]
spaces and calculated the variances v2

a , v2
b , v2

c , v2
d for these

interactions. Note that it is easy to identify the matrices
A, B, C, and D given the interaction matrix elements
〈(j1j2)JT |V |(j3j4)JT 〉. To calculate the mean-squared matrix
elements v2’s, we set the diagonal two-particle matrix elements
to zero and use the weight factor (2J + 1)(2T + 1). By
assuming that � = 3 and 5 MeV (these are reasonable
values for A = 20−80 nuclei), we obtain τ ∼ 0.09−0.24 and
α ∼ (0.9–1.3) × τ . These deduced values of α and τ clearly
point out that one has to go beyond the highly restricted
ensemble employed in [29] and it is necessary to consider the
more general EGOE(1 + 2) -π defined in Sec. II. Similarly,
for sdfp and fpg9/2 spaces, N+/N− ∼ 0.5−2.0. Finally, for
nuclei with m number of valence nucleons (particles or holes),
where sdfp or fpg9/2 spaces are appropriate, usually m � N+
or N−, whichever is lower. Given these, we have selected
the following examples: (N+, N−,m) = (8, 8, 4), (8, 8, 5),
(10, 6, 4), (10, 6, 5), (6, 10, 4), (6, 10, 5), (8, 8, 6), (6, 6, 6),
(7, 7, 7), and (7, 7, 6). To go beyond the matrix dimensions
∼5000 with 100 members is not feasible at present with
the High Performance Computing (HPC) cluster that is used
for all the calculations. Most of the discussion in this paper
is restricted to N = N+ + N− = 16 and m � N as in this
dilute limit, it is possible to understand the ensemble results

better. Following the nuclear examples mentioned above, we
have chosen τ = 0.05, 0.1, 0.2, 0.3 and α/τ = 0.5, 1.0, 1.5.
We will make some comments on the results for other (τ, α)
values at appropriate places.

Now we will present the results for (i) the form of the +ve

and −ve parity state densities I+(E) and I−(E), respectively,
(ii) the parity ratios I−(E)/I+(E) versus E, where E is the
excitation energy of the system, and (iii) the probability for
+ve parity ground states generated by the EGOE(1 + 2) -π
ensemble.

A. Gaussian form for fixed-π state densities

By using the method discussed in Sec. II, we have
numerically constructed in +ve and −ve parity spaces
EGOE(1 + 2) -π ensembles of random matrices consisting of
100 Hamiltonian matrices in large number of examples, i.e.,
for (N+, N−,m) and (τ, α) parameters mentioned above. By
diagonalizing these matrices, ensemble-averaged eigenvalue
(state) densities

I±(E) = 〈〈δ(H − E)〉〉± (13)

are constructed. From now on, we drop the overbar sym-
bol when there is no confusion. Results are shown for
(N+, N−,m) = (8, 8, 4), (8, 8, 5), (10, 6, 5), and (6, 10, 5) for
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FIG. 2. (Color online) Positive and negative parity state densities for various (τ, α) values for (N+, N−,m) = (8, 8, 4) system. See text for
details.

several values of (τ, α) in Figs. 2, 3, and 4. To construct the
fixed-parity eigenvalue densities, we first make the centroids
Ec(m,±) of all the members of the ensemble to be zero and
variances σ 2(m,±) to be unity, i.e. for each member we have
the standardized eigenvalues Ê = [E − Ec(m,±)]/σ (m,±).
Then, by combining all the Ê and using a bin size �Ê = 0.2,

histograms for I±(E) are generated. It is seen that the state
densities are multimodal for small τ values and, for τ � 0.1,
they are unimodal and close to a Gaussian. Note that, in our
examples, α = (0.5 − 1.5) × τ .

For V (2) = 0, the eigenvalue densities will be a sum of
spikes at 0, 2�, 4�, . . . for +ve parity densities and similarly
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FIG. 3. (Color online) Positive and negative parity state densi-
ties for various (τ, α) values for (N+, N−,m) = (8, 8, 5) system.
Histograms are numerical ensemble results. The dashed (red) curve
corresponds to Gaussian form for ρm1,m2 (E) in Eq. (16) and, similarly,
the solid (green) curve corresponds to Edgeworth corrected Gaussian
form with γ1(m1, m2) and γ2(m1, m2) obtained using the results in
Appendix B. See text for details.

at �, 3�, 5�, . . . for −ve parity densities. As we switch on
V (2), the spikes will spread due to the matrices A, B, and C in
Fig. 1 and mix due to the matrix D. The variance σ 2(m1,m2)
can be written as

σ 2(m1,m2) = σ 2(m1,m2 → m1,m2)

+ σ 2(m1,m2 → m1 ± 2,m2 ∓ 2). (14)

The internal variance σ 2(m1,m2 → m1,m2) is due to A, B,
and C matrices and it receives contribution only from the
τ parameter. Similarly, the external variance σ 2(m1,m2 →
m1 ± 2,m2 ∓ 2) is due to the matrix D and it receives
contribution only from the α parameter. When we switch
on V (2), as the ensemble-averaged centroids generated by

V (2) will be zero, the positions of the spikes will be largely
unaltered. However, they will start spreading and mixing as
τ and α increase. Therefore, the density will be multimodal
with the modes well separated for very small (τ, α) values.
Some examples for this are shown in Fig. 5. As τ and
α start increasing from zero, the spikes spread and will
start overlapping for σ (m1,m2) � �. This is the situation
with τ = 0.05 shown in Figs. 2, 3, and 4. However, as τ

increases (with α ∼ τ ), the densities start becoming unimodal
as seen from the τ = 0.1 and 0.2 examples. Also, the m

dependence is not strong as seen from Figs. 2, 3, and 4.
Now we will discuss the comparison of the ensemble results
with the smoothed densities constructed using Ec(m1,m2),
σ 2(m1,m2), γ1(m1,m2), and γ2(m1,m2).

As the particle numbers in the examples shown in Figs. 2,
3, and 4 are small, the excess parameter γ2(m,π ) ∼ −0.7 to
−0.8 [skewness parameter γ1(m,π ) ∼ 0 in all our examples].
Therefore, the densities are not very close to a Gaussian
form. It has been well established that the ensemble-averaged
eigenvalue density takes Gaussian form in the case of spinless
fermion (as well as boson) systems and also for the embedded
ensembles extending to those with good quantum numbers (see
[3,9,14,18] and references therein). Thus, it can be anticipated
that Gaussian form is generic for the state densities or, more
appropriately, for the partial densities ρm1,m2 (E) generated by
EGOE(1 + 2) -π for some range of (τ, α) values. Results for
the fixed-π densities for (N+, N−,m) = (8, 8, 6), (6, 10, 6),
and (10, 6, 6) systems are shown in Fig. 6. The smoothed +ve

and −ve parity densities are a sum of the partial densities
ρm1,m2 (E):

ρ±(E) = 1

d±

′∑
m1,m2

d(m1,m2)ρm1,m2 (E). (15)

Note that the summation in Eq. (15) is over m2 even for +ve

parity density and similarly over m2 odd for −ve parity density.
Here, ρ±(E) as well as ρm1,m2 (E) are normalized to unity.
However, in practice, the densities normalized to dimensions
are needed and they are denoted, as used earlier, by I±(E) and
Im1,m2 (E), respectively:

I±(E) = d±ρ±(E) =
′∑

m1,m2

Im1,m2 (E),

(16)
Im1,m2 (E) = d(m1,m2)ρm1,m2 (E).

We employ the Edgeworth (ED) form that includes γ1 and γ2

corrections to the Gaussian partial densities ρ
m1,m2
G (E). Then,

ρm1,m2 (E) → ρ
m1,m2
G (E) → ρ

m1,m2
ED (E)

and, in terms of the standardized variable Ê, the ED form is
given by

ηED(Ê) = ηG(Ê)

{
1 +

[
γ1

6
He3(Ê)

]
+

[
γ2

24
He4(Ê) + γ 2

1

72
He6(Ê)

]}
, (17)

ηG(Ê) = 1√
2π

exp

(
− Ê2

2

)
.
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FIG. 4. (Color online) Positive and negative parity state densities for various (τ, α) values for (N+, N−, m) = (10, 6, 5) and (6, 10, 5)
systems. Histograms are numerical ensemble results. The dashed (red) curve corresponds to Gaussian form for ρm1,m2 (E) in Eq. (16) and,
similarly, the solid (green) curve corresponds to Edgeworth corrected Gaussian form with γ1(m1, m2) and γ2(m1, m2) obtained using the results
in Appendix B. See text for details.

Here, He are Hermite polynomials: He3(x) = x3 − 3x,
He4(x) = x4 − 6x2 + 3, and He6(x) = x6 − 15x4 + 45x2 −
15. By using Eqs. (15) and (17) with exact centroids and
variances given by the propagation formulas in Sec. III and
the binary correlation results for γ1 and γ2 as given by the
formulas in Appendix B, the smoothed +ve and −ve parity

state densities are constructed. We set ηED(Ê) = 0 when
ηED(Ê) < 0. It is clearly seen from Fig. 6 that the sum of
partial densities, with the partial densities represented by
ED corrected Gaussians, describes extremely well the exact
fixed-π densities in these examples. Therefore, for the (τ, α)
values in the range determined by nuclear sdfp and fpg9/2
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FIG. 5. (Color online) Positive and negative parity state densities
for some small values of (τ, α). The (N+, N−, m) values are given in
the figures. See text for details.

interactions, i.e., τ ∼ 0.1–0.3 and α ∼ 0.5τ–2τ , the partial
densities can be well represented by ED corrected Gaussians,
and total densities are also close to ED corrected Gaussians.
Unlike Fig. 6, densities in Figs. 2, 3, and 4 show, in many
cases, strong departures from Gaussian form. Therefore, it is
important to test how well Eq. (16) with ED corrected Gaussian
for ρm1,m2 (E) describes the numerical results for I±(E). We
show this comparison for all the densities in Figs. 3 and 4. It is
clearly seen that the agreements with ED corrected Gaussians
are good in all the cases. Therefore, the large deviations from
the Gaussian form for I±(E) arise mainly because of the
distribution of the centroids [this involves dimensions of the
(m1,m2) configurations] of the partial densities involved. It
is possible that the agreements in Figs. 3 and 4 may become
more perfect if we employ, for the partial densities, some
noncanonical forms defined by the first four moments as
given, for example, in [48,49]. However, as these forms are
not derived using any random matrix ensemble, we have not
used these for the partial densities in our present investigation.
In conclusion, for the physically relevant range of (τ, α) values,
the propagation formulas for centroids and variances given by
Eqs. (9) and (10) or, alternatively, with Ec(m1,m2) = m2� and
Eq. (12) along with the EGOE(1 + 2) -π ensemble-averaged
γ1(m1,m2) and γ2(m1,m2) formulas (obtained using the
binary correlation approximation as given in Appendix B),
can be used to construct fixed-π state densities for larger
(N+, N−,m) systems.

B. Parity ratios for state densities

As stated in the beginning, parity ratio of state densities
at a given excitation energy (E) is a quantity of considerable

interest in nuclear structure. For the systems shown in Figs. 2,
3, and 4 and also for many other systems, we have studied
the parity ratios and the results are shown in Figs. 7–10.
As the parity ratios need to be calculated at a given value
of excitation energy E, we measure the eigenvalues in both
+ve and −ve parity spaces with respect to the absolute
ground-state energy Egs of the N = N+ + N− system. Thus,
Egs is defined by taking all the +ve and −ve parity eigenvalues
of all members of the ensemble and choosing the lowest of
all these. The ground-state energy can also be determined
by averaging the +ve and −ve parity ground-state energies
over the ensemble, and then the ground-state energy is the
minimum of the two. It is seen that the results for parity ratios
are essentially independent of the choice of Egs and, thus, we
employ absolute ground-state energy in our calculations. We
use the ensemble-averaged total (+ve and −ve eigenvalues
combined) spectrum width σt of the system for scaling. The
total widths σt can be calculated also by using Ec(m1,m2)
and σ 2(m1,m2). Examples for σt are shown in Table II and
they are in good agreement with the results obtained using
the simple formula given by Eq. (12). We use the variable
E = (E − Egs)/σt for calculating parity ratios. Starting with
Egs and using a bin size of �E = 0.2, we have calculated
the number of states I+(E) with +ve parity and also the
number of states I−(E) with −ve parity in a given bin, and
then the ratio I−(E)/I+(E) is the parity ratio. Note that
the results in Figs. 7–10 are shown for E = 0 − 3 as the
spectrum span is ∼ 5.5σt . To go beyond the middle of the
spectrum, for real nuclei, one has to include more sp levels
(also a finer splitting of the +ve and −ve parity levels may be
needed) and, therefore, N+ and N− change. Continuing with
this, one obtains the Bethe form for nuclear level densities
[15].

General observations from Figs. 7–10 are as follows.
(i) The parity ratio I−(E)/I+(E) will be zero up to an energy
E0. (ii) Then, it starts increasing and becomes larger than unity
at an energy Em. (iii) From here on, the parity ratio decreases
and saturates quickly to unity from an energy E1. In these
examples, E0 � 0.4, Em ∼ 1, and E1 ∼ 1.5. It is seen that the
curves shift toward left as τ increases. Also, the position of the
peak shifts to much larger value of Em and equilibration gets
delayed as α increases for a fixed τ value. Therefore, for larger
τ , the energies (E0, Em, E1) are smaller compared to those
for a smaller τ . The three transition energies also depend on
(N+, N−,m). We have also verified, as shown in Fig. 9, that the
general structure of the parity ratios will remain the same even
when we change � → −� (i.e., −ve parity sp states below the
+ve parity sp states). For the (N+, N−,m) = (8, 8, 4) system,
results for � = 1 are given in Fig. 7 and they are almost the
same as the results with � = −1 given in Fig. 9. The general
structures (i)–(iii) are clearly seen in the numerical examples
shown in [25], where a method based on the Fermi-gas model
has been employed. If σt ∼ 6–8 MeV, equilibration in parities
is expected around E ∼ 8–10 MeV, and this is clearly seen
in the examples in [25]. It is also seen from Fig. 8 that the
equilibration is quite poor for very small values of τ and,
therefore, by comparing with the results in [25], it can be
argued that very small values of τ are ruled out for nuclei.
Hence, it is plausible to conclude that generic results for parity
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FIG. 6. (Color online) Positive and negative parity state densities for various (τ, α) values for (N+, N−, m) = (8, 8, 6), (6, 10, 6), and
(10, 6, 6) systems. Smoothed curves (solid red lines) are obtained using fixed-(m1,m2) partial densities. See text for details.

ratios can be derived using EGOE(1 + 2) -π with reasonably
large (τ, α) values. Let us add that the interpretations in [25]
are based on the occupancies of the sp orbits, while in this
paper, they are in terms of τ and α parameters.

By using the smoothed I±(E), constructed as discussed in
Sec. IV A, smoothed forms for parity ratios are calculated as
follows. Starting with the absolute ground-state energy Egs and
using a bin size of �E = 0.2, +ve and −ve parity densities in
a given energy bin are obtained and their ratio is the parity ratio
at a given E. We have chosen the examples where I+ and I− are
close to Gaussians. It is seen from Fig. 10 that the agreement

with exact results is good for E � 0.5. However, for smaller E,
to obtain a good agreement, one should have a better prescrip-
tion for determining the tail part of the ρm1,m2 (E) distributions.
Developing the theory for this is beyond the scope of this
paper as this requires more complete analytical treatment of the
ensemble.

C. Probability for +ve parity ground states

Papenbrock and Weidenmüller used the τ → ∞, α = τ

limit of EGOE(1 + 2) -π for several (N+, N−,m) systems
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FIG. 7. (Color online) Parity ratios for various (τ, α) values for
(N+, N−, m) = (8, 8, 4) and (10, 6, 4) systems. See text for details.

to study the probability (R+) for +ve parity ground states
over the ensemble [29]. As stated before, this exercise was
motivated by shell-model results with random interaction
giving preponderance of +ve parity ground states [28]. The
numerical calculations in [29] showed considerable variation
(18%−84%) in R+. In addition, they gave a plausible proof
that, in the dilute limit [m � (N+, N−)], R+ will approach
50%. Combining these, they argued that the observed pre-
ponderance of +ve parity ground states could be a finite size
(finite N+, N−, m) effect. For the extended EGOE(1 + 2) -π
considered in this paper, where the τ → ∞ and α = τ

restriction is relaxed, as we will discuss now, R+ can reach
100%.

For EGOE(1 + 2) -π with τ ∼ 0, clearly one will get R+ =
100% (for even m and m � N+, N−) and, therefore, it is of
interest to study R+ variation with (τ, α). We have carried out
calculations using a 200-member ensemble for (N+, N−,m) =
(6, 6, 6) and 100-member ensembles for (8, 8, 5), (6, 6, 6),
(6, 10, 4), and (6, 10, 5) systems. In these calculations, we use
α = τ and 1.5τ . The results are shown in Fig. 11. For α = τ ,
the results are as follows. For τ � 0.04, we have R+ ∼ 100%
and then R+ starts decreasing with some fluctuations between
τ = 0.1 and 0.2. The origin of these fluctuations is not clear. As
τ > 1 is not realistic, we have restricted the R+ calculations to
τ � 1. We see from the figure that EGOE(1 + 2) -π generates
R+ � 50% for τ � 0.3 independent of (N+, N−,m). Also, R+

decreases much faster with τ and reaches ∼30% for τ = 0.5
for (N+, N−,m) = (6, 6, 6). For m < (N+, N−), the decrease
in R+ is slower. If we increase α, from the structure of the
two-particle H matrix in Fig. 1, we can easily infer that the
width of the lowest +ve parity (m1,m2) unitary configuration
becomes much larger compared to the lowest −ve parity
unitary configuration (see Table II for examples). Therefore,
with increasing α, we expect R+ to increase and this is clearly
seen in Fig. 11. Thus, α � τ is required for R+ to be large.
A quantitative description of R+ requires the construction of
+ve and −ve parity state densities more accurately in the tail
region and the theory for this is not yet available.

V. CONCLUSIONS AND FUTURE OUTLOOK

In this paper, we have introduced a generalized EGOE(1 +
2) -π ensemble for identical fermions and its construction
follows from EGOE(1 + 2) for spinless fermion systems.
Using this generalized EE, we have not only studied R+, as
it was done by Papenbrock and Weidenmüller [29] using a
simpler two-body ensemble with parity, but also studied the
form of fixed-π state densities and parity ratios, which are
important nuclear structure quantities. Numerical examples
(see Figs. 2–4 and 6), with the range of the various parameters
in the model fixed using realistic nuclear effective interactions,
are used to show that the fixed-π state densities in finite-
dimensional spaces are of Gaussian form for sufficiently large
values of the mixing parameters (τ, α). The random matrix
model also captures the essential features of parity ratios
as seen in the method based on noninteracting Fermi-gas
model reported in [25]. We also found preponderance of +ve

parity ground states for τ � 0.5 and α ∼ 1.5τ . In addition,
for constructing fixed-π Gaussian densities, we have derived
an easy to understand propagation formula [see Eq. (10)] for
the spectral variances of the partial densities ρm1,m2 (E) that
generate I+ and I−. Similarly, for calculating the corrections
to the Gaussian forms, formulas for skewness γ1 and excess γ2

of the partial densities ρm1,m2 (E) are derived using the binary
correlation approximation (see Appendix B for the formulas).
The smoothed densities constructed using Edgeworth cor-
rected Gaussians are shown to describe the numerical results
for I±(E) [for (τ, α) values in the range defined by nuclear
sdfp and fpg9/2 interactions (see beginning of Sec. IV)]
and also the parity ratios at energies away from the ground
state. Numerical results presented for parity ratios at lower
energies show that a better theory for the tails of the partial
densities is needed (see Figs. 7–10). Thus, the results in
this paper represent considerable progress in analyzing the
EGOE(1 + 2) -π ensemble, going much beyond the analysis
presented in [29].

The results in this paper are largely numerical and they
clearly show that developing a complete analytical theory,
going beyond the results presented in Sec. III and Appendix B,
for EGOE(1 + 2) -π is important. In the future, it is important
to investigate EGOE(1 + 2) -π for proton-neutron systems and
then we will have four unitary orbits (two for protons and two
for neutrons). In addition, by including nondegenerate +ve and
−ve parity sp states, the model could be applied to nuclei for
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FIG. 8. (Color online) Parity ratios for various (τ, α) values for (N+, N−,m) = (6, 10, 4) and (6, 10, 5) systems. See text for details.

predicting parity ratios. This extended EGOE(1 + 2) -π model
with protons and neutrons occupying different sp states will be
generated by a 10×10 block matrix for V (2) in two-particle
spaces. Therefore, parametrization of this ensemble is more
complex. Analysis of this extended EGOE(1 + 2) -π is for the
future.
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APPENDIX A

Let us consider a system of m fermions in N sp states with
a (1 + 2)-body Hamiltonian H = h(1) + V (2), where h(1) =∑

i εi n̂i and V (2) is defined by the two-body matrix elements
Vijkl = 〈kl|V (2)|ij 〉. With respect to the U (N ) group, the two-
body interaction V (2) can be separated into scalar (ν = 0),
effective one-body (ν = 1), and irreducible two-body (ν = 2)
parts [14,15,30,36]:

V ν=0 = n̂(n̂ − 1)

2
V , V =

(
N

2

)−1 ∑
i<j

Vijij ,

V ν=1 = n̂ − 1

N − 2

∑
i,j

ζi,j a
†
i aj ,

ζi,j =
[∑

k

Vkikj

]
−

[
(N )−1

∑
r,s

Vrsrs

]
δi,j ,

V ν=2 = V − V ν=0 − V ν=1 ⇐⇒ V ν=2
ijkl ,

V ν=2
ij ij = Vijij − V − (N − 2)−1(ζi,i + ζj,j ),

V ν=2
ij ik = Vijik − (N − 2)−1ζj,k for j �= k,

V ν=2
ijkl = Vijkl for all other cases. (A1)

Similar to Eq. (A1), the h(1) operator will have ν = 0, 1
parts,

hν=0 = εn̂, ε = (N )−1
∑

i

εi ,

hν=1 =
∑

i

ε1
i n̂i , ε1

i = εi − ε.
(A2)

Then, the propagation equations for the m-particle centroids
and variances are [14,15,30,36]

Ec(m) = 〈H 〉m = m ε +
(

m

2

)
V ,

σ 2(m) = 〈H 2〉m − [Ec(m)]2

= m(N − m)

N (N − 1)

∑
i,j

{
ε1
i δi,j + m − 1

N − 2
ζi,j

}2

+ m(m − 1)(N − m)(N − m − 1)

N (N − 1)(N − 2)(N − 3)
〈〈(V ν=2)2〉〉2.

(A3)

APPENDIX B

For the EGOE(1 + 2) -π Hamiltonian defined in Eq. (1), we
have H = h(1) + V (2) = h(1) + X(2) + D(2) with X(2) =
A ⊕ B ⊕ C is the direct sum of the spreading matrices A, B,
and C, and D(2) = D + D̃ is the off-diagonal mixing matrix
as shown in Fig. 1. Here, D̃ is the transpose of the matrix D.
With the sp energies defining the mean field h(1) as given in
Eq. (1), the first moment M1 of ρm1,m2 (E) is, trivially,

M1(m1,m2) = 〈(h + V )〉m1,m2 = m2, (B1)

as 〈hr〉m1,m2 = (m2)r and 〈V 〉m1,m2 = 0. By extending the
binary correlation method to traces over two-orbit configu-
rations, we have derived formulas for the second-, third-, and
fourth-order traces giving Mr (m1,m2), r = 2–4. It is important
to mention that the presence of the mixing matrix D makes
the derivations lengthy. Therefore, we give only the final
formulas in this paper and discuss elsewhere the details of
the derivations [44]. The second moment M2 is

M2(m1,m2) = 〈(h + V )2〉m1,m2 = 〈h2〉m1,m2 + 〈V 2〉m1,m2

= (m2)2 + X (m1,m2) + D(m1,m2)

+ D̃(m1,m2),

X (m1,m2) = 〈X2〉m1,m2 = τ 2
∑

i+j=2

(
m̃1 + i

i

)(
m1

i

)

×
(

m̃2 + j

j

)(
m2

j

)
, (B2)

D(m1,m2) = 〈DD̃〉m1,m2 = α2

(
m1

2

)(
m̃2

2

)
,

D̃(m1,m2) = 〈D̃D〉m1,m2 = α2

(
m̃1

2

)(
m2

2

)
.

Here, for brevity, we have defined X (m1,m2) = 〈X2〉m1,m2 ,

D(m1,m2) = 〈DD̃〉m1,m2 , and D̃(m1,m2) = 〈D̃D〉m1,m2 . Note
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FIG. 10. (Color online) Parity ratios for various (τ, α) values and for various (N+, N−,m) systems. Histograms are the ensemble results.
Filled squares (brown) are obtained using fixed-(m1, m2) ED corrected Gaussian partial densities, i.e., the I±(E) are obtained using Eq. (16)
with ρ

m1,m2
ED (E). The γ1(m1, m2) and γ2(m1, m2) parameters defining ρ

m1,m2
ED (E) are calculated using Eqs. (B2)–(B7). See text for further details.

that Eq. (B2) gives the binary correlation formula for σ 2(m1,m2) and it reduces to Eq. (12) as expected. Similarly,
the third moment M3 is

M3(m1,m2) = 〈(h + V )3〉m1,m2 = 〈h3〉m1,m2 + 2〈h〉m1,m2〈V 2〉m1,m2 + 〈XhX〉m1,m2 + 〈DhD̃〉m1,m2 + 〈D̃hD〉m1,m2

= (m2)3 + 3(m2)X (m1,m2) + (3m2 + 2)D(m1,m2) + (3m2 − 2)D̃(m1,m2). (B3)

The formula for the fourth moment M4 is

M4(m1,m2) = 〈(h + V )4〉m1,m2 = 〈h4〉m1,m2 + 3〈h2〉m1,m2〈V 2〉m1,m2 + 〈h2〉m1,m2〈X2〉m1,m2 + 〈Dh2D̃〉m1,m2

+〈D̃h2D〉m1,m2 + 2〈hXhX〉m1,m2 + 2〈hDhD̃〉m1,m2 + 2〈hD̃hD〉m1,m2 + 〈V 4〉m1,m2

= (m2)4 + 6(m2)2X (m1,m2) + [6(m2)2 + 8(m2) + 4]D(m1,m2) + [6(m2)2 − 8(m2) + 4]D̃(m1,m2) + 〈V 4〉m1,m2 .

(B4)
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TABLE III. Exact results for skewness and excess parameters for fixed-π eigenvalue densities I±(E) compared with the binary correlation
results (in the table, called Approx.). For exact results, we have used the eigenvalues obtained from EGOE(1 + 2) -π ensembles with 100
members. The binary correlation results are obtained using Eqs. (B1)–(B8) and extension of Eq. (11). See text for details.

(N+, N−, m) (τ, α/τ ) γ1(m, π ) γ2(m, π )

Exact Approx. Exact Approx.

π = + π = − π = + π = − π = + π = − π = + π = −
(8, 8, 5) (0.05, 0.5) 0.15 −0.15 0.15 −0.15 −0.52 −0.52 −0.52 −0.52

(0.05, 1.0) 0.16 −0.16 0.16 −0.16 −0.50 −0.50 −0.50 −0.50
(0.05, 1.5) 0.18 −0.17 0.18 −0.18 −0.46 −0.46 −0.46 −0.46
(0.2, 0.5) −0.03 0.03 −0.03 0.03 −0.71 −0.71 −0.71 −0.71
(0.2, 1.0) −0.01 0.01 −0.01 0.01 −0.73 −0.73 −0.74 −0.74
(0.2, 1.5) 0.02 −0.02 0.02 −0.02 −0.72 −0.72 −0.73 −0.73

(10, 6, 5) (0.05, 0.5) −0.06 0.09 −0.07 0.09 −0.26 −0.76 −0.26 −0.75
(0.05, 1.5) −0.04 0.15 −0.05 0.15 −0.01 −0.86 −0.01 −0.86
(0.2, 0.5) 0.01 −0.04 0.01 −0.04 −0.73 −0.69 −0.73 −0.69
(0.2, 1.5) 0.01 0.02 0.01 0.02 −0.69 −0.75 −0.70 −0.75

(6, 10, 5) (0.05, 0.5) −0.09 0.07 −0.09 0.07 −0.76 −0.26 −0.75 −0.26
(0.05, 1.5) −0.15 0.05 −0.15 0.05 −0.86 −0.01 −0.86 −0.01
(0.2, 0.5) 0.04 −0.01 0.04 −0.01 −0.68 −0.73 −0.69 −0.73
(0.2, 1.5) −0.02 −0.01 −0.02 −0.01 −0.75 −0.69 −0.75 −0.70

The only unknown in Eq. (B4) is 〈V 4〉m1,m2 and the expression for this is complicated:

〈V 4〉m1,m2 = 〈X4〉m1,m2 + 3〈X2〉m1,m2{〈DD̃〉m1,m2 + 〈D̃D〉m1,m2} + 〈DX2D̃〉m1,m2

+〈D̃X2D〉m1,m2 + 2〈XDXD̃〉m1,m2 + 2〈XD̃XD〉m1,m2 + 〈(D + D̃)4〉m1,m2

= 2[X (m1,m2)]2 + 3[X (m1,m2)][D(m1,m2) + D̃(m1,m2)] + T1(m1,m2)

+ T2(m1,m2) + 2T3(m1,m2) + T4(m1,m2), (B5)

where

T1(m1,m2) = τ 4
∑

i+j=2,t+u=2

F (m1, N1, i, t)F (m2, N2, j, u),

F (m,N, k1, k2) =
k2∑

s=0

(
m − s

k2 − s

)2(
N − m + k1 − s

k1

)(
m − s

k1

)(
N − m

s

)(
m

s

)(
N + 1

s

)
N − 2s + 1

N − s + 1

(
N − s

k2

)−1(
k2

s

)−1

,

T2(m1,m2) = D(m1,m2)X (m1 − 2,m2 + 2) + D̃(m1,m2)X (m1 + 2,m2 − 2), (B6)

T3(m1,m2) = τ 2α2
∑

i+j=2

[(
m1 − i

2

)(
m̃2 − j

2

)
+

(
m̃1 − i

2

)(
m2 − j

2

)] (
m̃1 + i

i

)(
m1

i

)(
m̃2 + j

j

)(
m2

j

)
,

T4(m1,m2) = [D(m1,m2)]2 + [D̃(m1,m2)]2 + D(m1,m2)[2D(m1 − 2,m2 + 2) + D̃(m1 − 2,m2 + 2)]

+ D̃(m1,m2)[2D̃(m1 + 2,m2 − 2) + D(m1 + 2,m2 − 2)] + 4D(m1,m2)D̃(m1,m2).

Given the moments Mr (m1,m2) = 〈Hr〉m1,m2 , r = 1 − 4, the
skewness and excess parameters γ1 and γ2 are as follows [50]:

γ1(m1,m2) = k3(m1,m2)

[k2(m1,m2)]3/2
,

(B7)

γ2(m1,m2) = k4(m1,m2)

[k2(m1,m2)]2
,

where
k2(m1,m2) = M2(m1,m2) − M2

1 (m1,m2),

k3(m1,m2) = M3(m1,m2) − 3 M2(m1,m2)M1(m1,m2)

+ 2 M3
1 (m1,m2), (B8)

k4(m1,m2) = M4(m1,m2) − 4 M3(m1,m2)M1(m1,m2)

− 3 M2
2 (m1,m2) + 12 M2(m1,m2)M2

1 (m1,m2)

− 6 M4
1 (m1,m2).
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FIG. 11. (Color online) Probability (R+) for +ve parity ground
states for various (τ, α) values and for various (N+, N−, m) systems.
See text for details.

After carrying out the simplifications using Eqs. (B1)–(B8), it
is easily seen that

γ1(m1,m2) = 2[D(m1,m2) − D̃(m1,m2)]

{D(m1,m2) + D̃(m1,m2) + X (m1,m2)}3/2
.

(B9)

The expression for γ2 is more complex:

γ2(m1,m2) = {D̃(m1,m2) + D(m1,m2) + X (m1,m2)}−2

× [T1(m1,m2) + T2(m1,m2) + 2 T3(m1,m2)

+ T4(m1,m2) + [D̃(m1,m2) + D(m1,m2)]

× [4 − X (m1,m2)] − 2[D̃(m1,m2)

+D(m1,m2)]2] − 1. (B10)

With T1 ∼ [X (m1,m2)]2 + C1(m1,m2), T2 = T3 ∼ X (m1,

m2)[D̃(m1,m2) + D(m1,m2)], and T4 ∼ 3[D̃(m1,m2) +
D(m1,m2)]2 + C2(m1,m2), which are good in the dilute limit
(|C1/T1| and |C2/T4| will be close to zero), we have

γ2(m1,m2)

= C1(m1,m2) + C2(m1,m2) + 4[D̃(m1,m2) +D(m1,m2)]

{D̃(m1,m2) + D(m1,m2) + X (m1,m2)}2
.

(B11)

Note that C1 and X depend only on τ . Similarly, C2 and
(D̃,D) depend only on α. The (D̃ + D) term in the numerator
will contribute to γ2(m1,m2) when τ = 0 and α is very
small. The approximation T2 = T3 ∼ X (D̃ + D) is crucial in
obtaining the numerator in Eq. (B11) with no cross terms
involving the α and τ parameters. With this, we have k4 to
be the sum of k4’s coming from X(2) and D(2) matrices
[note that, as mentioned before, X(2) = A ⊕ B ⊕ C and
D(2) = D + D̃].

To test the accuracy of the formulas for Mr given by
Eqs. (B1)–(B6), the binary correlation results for γ1(m,±)
and γ2(m,±) are compared with exact results obtained
using the eigenvalues from EGOE(1 + 2) -π ensembles with
100 members for several values of (N+, N−,m) and (τ, α)
parameters in Table III. Extension of Eq. (11) along with the
results derived for Mr (m1,m2) will give the binary correlation
results for γ1(m,±) and γ2(m,±). It is clearly seen from the
results in the table that, in all the examples considered, the
binary correlation results are quite close to the exact results.
Similar agreements are also seen in many other examples
which are not shown in thetable.
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