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Impulse approximation in nuclear pion production reactions: Absence of a one-body operator
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The impulse approximation of pion production reactions is studied by developing a relativistic formalism,
consistent with that used to define the nucleon-nucleon potential. For plane wave initial states we find that the
usual one-body (1B) expressionO1B is replaced byO2B = −iK(mπ/2)O1B/mπ , where K(mπ/2) is the sum of all
irreducible contributions to nucleon-nucleon scattering with energy transfer of mπ/2. We show that O2B ≈ O1B

for plane wave initial states. For distorted waves, we find that the usual operator is replaced with a sum of
two-body operators that are well approximated by the operator O2B. Our new formalism solves the (previously
ignored) problem of energy transfer forbidding a one-body impulse operator. Using a purely one pion exchange
deuteron, the net result is that the impulse amplitude for np → dπ0 at threshold is enhanced by a factor of
approximately two. This amplitude is added to the larger “rescattering” amplitude and, although experimental
data remain in disagreement, the theoretical prediction of the threshold cross section is brought closer to (and in
agreement with) the data.
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I. INTRODUCTION

It has been known for several decades that the chiral
symmetry of the strong nuclear force in the mq → 0 limit
can be exploited to formulate an effective field theory using
hadrons as fundamental degrees of freedom rather than
quarks and gluons [1–3]. This theory, generically called chiral
perturbation theory (ChPT), is widely used in both the mesonic
and the A = 1 sectors. Much effort is being put into the
application of ChPT to the A = 2 sector, with success at
low energies [4–6]. The frontier of this program is the pion
production threshold, where the relative momentum between
colliding nucleons is p = √

mπmN . Pion production is also
interesting in its own right as it provides a window into three
nucleon forces [7] and can be used to extract information about
charge symmetry breaking [8,9].

Being an effective theory, ChPT contains an infinite number
of interactions organized in terms of importance according
to a power counting scheme with an expansion parameter of
mπ/�χ where �χ ≈ mN is the scale at which the theory ceases
to become valid. For the problem of pion production one finds
an additional parameter χ ≡ p/mN = mπ/p ≈ 0.4. The fact
that this parameter is large provides a significant challenge and
a reorganized counting scheme was proposed in Ref. [10].

For a nice review of the history of meson production see
Ref. [11]. The present study considers the specific reaction
NN → dπ (the two reactions pp → dπ+ and np → dπ0

are related by isospin symmetry), with the pion in an s

wave. Furthermore, we are focusing on the contribution of a
specific diagram, the impulse approximation (IA), also known
as “direct” production, in which the produced pion does not
interact at all with the spectator nucleon. We would like to
be clear that pion rescattering, not the IA, is known to be
the largest contribution to the total cross section [12]. The
�(1232) resonance is also known to contribute significantly
to this observable. Our motivation for the present study is to
obtain increased precision in the total cross section calculation
and to prepare for future application to other observables to
which the IA contributes, such as p-wave pion production.

An additional challenge in the calculation of pion produc-
tion is the presence of strongly interacting initial/final states.
Because NN potentials are only now becoming reliable at
such high energies, one typically employs a hybrid calculation
in which a kernel is calculated perturbatively from ChPT
and then convolved with wave functions calculated from
phenomenological potentials. Recently this method has come
under question for the IA [13,14]. Ideally, one would like
to derive the correct method from a relativistic formalism
that cleanly separates effects in wave functions from those
appearing in the kernel.

Consider the IA contribution to NN → dπ in the plane
wave (PW) approximation where initial state interactions
are neglected (see Fig. 1). The amplitude for such a pro-
cess has been estimated to go like MIA ∼ mπ

mN
σ · p1φ(p) ∼

mπ

mN

√
mNmπφ(p), where φ(p) is the bound state wave function,

evaluated in momentum space. The suppression by m
3/2
π was

noted in Ref. [10], which also included an analysis that a more
detailed treatment of the power counting based on including
initial and final state interactions introduces a power of 1/mπ

via an energy denominator such that the amplitude varies as√
mπ . Nevertheless, we see directly an explicit m

3/2
π times

φ(
√

m mπ ).
In the physical region where mπ = 140 MeV, the wave

function falls as a power of momentum greater than unity.
For small values of relative momentum, the deuteron wave
function also falls more rapidly than an inverse power of its
argument. If one takes mπ to be small, the deuteron remains
weakly bound [15,16] and therefore its momentum wave
function will also fall rapidly in the chiral limit. Thus the
power counting can only be considered a very rough estimate.
If we follow [10], the impulse term is a leading order term, but
the deuteron wave function is quite small for physical values
of p and there is also a substantial cancellation between the
deuteron s and d states. Thus this term’s contribution to the
cross section [12] is small and there is a contradiction between
power counting expectations and realistic calculations.
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FIG. 1. Impulse approximation without initial state interactions.
Solid lines represent nucleons, dashed lines represent pions, and
double solid lines represent a deuteron.

This contradiction was also discussed at length in Ref. [13]
where the authors introduced “wave function corrections” as a
possible solution. This proposal included one-pion exchange
(OPE) with an energy transfer of mπ/2 in the impulse kernel,
but then subtracted off a similar diagram with static OPE in
order to prevent double counting. The result depended strongly
on the treatment of the intermediate off-shell nucleon propa-
gator and no definitive conclusion was reached. This present
work is intended to settle the debate regarding the inclusion
of OPE in the impulse approximation. We demonstrate by
starting from a consistent relativistic formalism that nonstatic
OPE is to be included with no subtraction necessary; the
impulse amplitude that should be used is given in Eq. (29).
Furthermore, we show that the traditional approach of using a
one-body kernel is correct only in the absence of initial state
interactions.

In Sec. II we review aspects of the Bethe-Salpeter (BS)
formalism for the two-nucleon problem. Section III presents
the N → Nπ operator and Sec. IV shows that for plane wave
NN → dπ , the traditional impulse approximation is approx-
imately valid. Next, Sec. V considers the full distorted-wave

amplitude by calculating the corresponding loop diagram,
including the effects of the nonzero time components of the
momenta of the exchanged mesons. In this section we are able
to interpret the distorted-wave amplitude as a sum of two-body
operators. We demonstrate the new formalism by explicitly
evaluating s-wave NN → dπ amplitudes at threshold. To aid
the flow of the arguments, approximations made in this section
are verified to be subleading in Appendices D–F. A comparison
with experimental cross section data is made in Sec. VI,
where we also discuss implications and future directions.

II. BETHE-SALPETER BASICS

Recall the definition of the nucleon-nucleon potential from
the Bethe-Salpeter formalism. We follow the approach of
Partovi and Lomon [17] and also consider the relationship
between the Bethe-Salpeter wave function and the usual equal
time wave function as recently discussed in Ref. [18].

Partovi and Lomon write the Bethe-Salpeter equation for
the nucleon-nucleon scattering amplitude M as

M = K + KGM, (1)

where K is the sum of all irreducible diagrams. The quantities
M and K depend on the total four-momentum Ptot and
the relative four-momentum k. The two individual momenta
are p1,2 = Ptot/2 ± k and G is the product of two Feynman
propagators:

G =
(

i

/p1 − mN + iε

)
1

(
i

/p2 − mN + iε

)
2

= G1G2,

(2)

where mN is the nucleon mass. The quantities M and K

differ from those of [17] by a factor of −i/(2π ). Partovi and
Lomon replace the relativistic G by the Lippmann-Schwinger
propagator g for two particles. For scalar particles, g is
obtained from G by integrating over the zeroth (energy)
component of one of the two particles [18]. For fermions, one
must also project onto the positive energy subspace of both
particles. This is accomplished in the center of mass frame by
taking [17]

g(k|Ptot) = 2πi
[γ 0E(k) − γ · k + mN ]1[γ 0E(k) + γ · k + mN ]2

E(k)
(
P 2

tot − 4m2
N − 4k2 + iε

) δ(k0), (3)

where E(k) ≡
√

k2 + m2
N . Note that g contains the important

two-nucleon unitary cut. The nonrelativistic potential U is
defined so as to reproduce the correct on-shell NN scattering
amplitude M using the Lippmann-Schwinger (LS) equation

M = U + UgM. (4)

The quantity U is obtained by equating the M of Eq. (1) with
that of Eq. (4) to find [17]

U = K + K(G − g)U. (5)

In solving Eq. (4) for the on-energy shell scattering amplitude,
U never changes the value of the relative energy k0 away from
0. Equations (4) and (5) are consistent with Weinberg power
counting in which one calculates the potential using chiral per-
turbation theory and then solves the LS equation to all orders.
The term G − g may be thought of a purely relativistic effect
arising from off-shell (short-lived) intermediate nucleons, and
in the present context a perturbative effect.

Consider the deuteron wave function in the final state of a
pion production reaction. For P 2 near the pole position, the
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FIG. 2. Bethe-Salpeter equation near the deuteron pole.

second term of Eq. (1) dominates and we replace the scattering
amplitude with the vertex function 	: M → 	, and

	 = KG	. (6)

This equation is shown pictorially in Fig. 2. The Bethe-Salpeter
wave function 
 is defined as G	 so that


 = G	 = GK
. (7)

The wave functions of the scattering state and the deuteron
are shown in Fig. 3. If one uses Eq. (4), the bound-state wave
function φ is obtained by solving the equation

φ = gUφ = gUgUφ. (8)

The second equation shows that U also is evaluated at
vanishing values of time components of the relative momenta.
We will treat the amplitudes 
,φ and the state vectors |
〉, |φ〉
(either bras or kets) as interchangeable.

The next step is to relate 
 with φ, which can be thought of
as the usual bound-state wave function. This is most easily
accomplished by using the projection operator P on the
product space of two positive-energy on-mass-shell nucleons.
We then have

PG = GP ≡ GP = g, (9)

with the last step resulting from the explicit appearance of
two positive-energy projection operators for on-mass-shell
nucleons in Eq. (3). We define Q = I − P and use the
notation 
P ≡ P
,
Q ≡ Q
 and PKP ≡ KPP , PKQ ≡
KPQ, etc. The Q space includes all terms with one or both
nucleons off the mass shell. The amplitude 
P contains
the ordinary nucleonic degrees of freedom so one expects
that it corresponds to φ. This is now shown explicitly. Use
I = P + Q in Eq. (7) and multiply by P and then also by Q

to obtain the coupled-channel version of the relativistic bound

= +Ψ

K

Ψ

(a) NN scattering

=Ψ

(b) Deuteron

FIG. 3. Bethe-Salpeter wave functions.

state equation:


P = GP KPP 
P + GP KPQ
Q, (10)


Q = GQKQP 
P + GQKQQ
Q. (11)

Solving Eq. (11) for 
Q and using the result in Eq. (10) gives


Q = [1 − GQKQQ]−1GQKQP 
P , (12)


P = GP

(
KPP + KPQ

[
G−1

Q − KQQ]big]−1KQP

)

P , (13)

but one can multiply Eq. (5) by P · · ·P , etc. to obtain the result

UPP = KPP + KPQ

[
G−1

Q − KQQ

]−1
KQP , (14)

thus Eq. (13) can be re-expressed as


P = GP UPP 
P = gU
P . (15)

This last equation is identical to Eq. (7). Thus we have the
result that


P = φ. (16)


P is not the complete wave function, but we expect that 
Q

is a perturbative correction because the deuteron is basically a
nonrelativistic system.

III. THE N → Nπ AMPLITUDE

We now turn to the application of the Bethe-Salpeter
formalism to the problem of threshold pion production. First,
we remind the reader of the one-body pion production operator
in baryon chiral perturbation theory (BChPT) [19]. For a
modern review, see Ref. [20]. In this theory, the nucleon field
is split into its heavy (Hv) and light (Nv) components,


(x) = e−imN v·x [Nv(x) + Hv(x)] ,

Nv(x) = eimN v·xP+
(x), (17)

Hv(x) = eimN v·xP−
(x),

where P± = (1 ± /v)/2 and v is the velocity vector satisfying
v2 = 1 and chosen in this work to be v = (1, 0). The heavy
component is integrated out of the path integral and the
resulting free equation of motion for the light component has
a solution,

N (x) =
√

E + mN

(
χ

0

)
e−i(E−mN )t+ip·x, (18)

where E =
√

p 2 + m2
N and χ is a two-component Pauli spinor.

In Appendix B we show that the leading order (LO) Feynman
rule for the s-wave N → Nπ amplitude vanishes at threshold
and that the next-to-leading order (NLO) rule is

Oπ = −i
mπ

2mN

gA

2fπ

γ 5γiγ
0(

−→∇ − ←−∇ )iτa, (19)

where the derivatives act on the nucleon wave functions.

IV. THE N N → dπ REACTION: PLANE WAVE
INITIAL STATES

Traditionally the impulse approximation to pion production
is calculated by using the operator of Eq. (19) as the irreducible
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kernel to be evaluated between nonrelativistic nucleon-nucleon
wave functions for the initial and final states. Between two-
component nucleon spinors γ 5γiγ

0 → σi , so

MPW
1B = 〈φ|

[
−i

mπ

2mN

gA

2fπ

σ · (
−→∇ − ←−∇ )τa

]
|p1, p2〉, (20)

where the superscript on M indicates that we have neglected
initial state interactions. Next, we show that Eq. (20) is only an
approximation to the full impulse amplitude derived from the
relativistic Bethe-Salpeter formalism. We will see that this
approximation is only valid in the absence of initial state
interactions.

For the case of plane waves in both the initial and final
states, a one-body operator is forbidden by energy-momentum
conservation,

〈p3, p4|Oπ |p1, p2〉 = 0, (21)

with all the pi on mass shell. The correct formalism must
be able to explain the required energy transfer. Our primary
thesis is that the diagram of Fig. 1 must be obtained from the
Feynman rules as

MPW
2B = 〈	|G1Oπ |p1, p2〉 = 〈
|K(mπ/2) G1Oπ |p1, p2〉,

(22)

where G1 is the Feynman propagator of the intermediate
off-shell nucleon and K(mπ/2) is the sum of all irreducible
diagrams with energy transfer of mπ/2. The second equality
of Eq. (22) results from the relation between 	 and 
 in
Eq. (7). This manipulation is necessary because 〈φ| will be
used for evaluation instead of 〈
|, meaning that the relative
energy must remain zero in the final state. Thus the full kernel
for pion production via the impulse approximation is KG1Oπ

rather than just Oπ . Because KG1Oπ is a two-body operator,
the momentum mismatch which suppresses the IA in the
traditional treatment is removed.

There are two points to emphasize here. First, this treatment
is not equivalent to the heavy meson exchange operators
of Refs. [21,22] which are intended to account for the
relativistic initial and final state interactions not present in
phenomenological potentials. Second, although the assertion
of Eq. (22) greatly changes the way impulse pion production
is calculated, one should not perform the same manipulations
for the similar impulse approximation to photodisintegration.
The reason for this is simply that near threshold the nucleon
remains essentially on-shell and the diagram is therefore
clearly reducible.

Next, we use 
 = 
P + 
Q = φ + 
Q and focus on the
φ term; the other term contains nonnucleonic physics and may
be treated as a correction. Thus the impulse approximation is

K
= = ≈

Ψ Ψ

K

FIG. 4. Bethe-Salpeter formalism applied to pion production for
plane wave initial states.

given by

MPW
2B ≈ 〈φ|K(mπ/2) G1Oπ |p1p2〉. (23)

Consider the space time structure of the product G1Oπ . The
relativistic propagator G1 is decomposed into three terms: 1,
γ 0, and γ i . Between two-component nucleon spinors

γ 5γiγ
0 → σi,

γ 0γ 5γiγ
0 → σi, (24)

γ iγ 5γjγ
0 → 0,

and so we can make the replacement

G1Oπ = i
/p1 − /q + mN

(p1 − q)2 − m2
N + iε

Oπ

→ i
E(p1) − mπ + mN

−2E(p1)mπ + m2
π + iε

Oπ

= i

−mπ

(
1 − mπ

4mN

)
Oπ , (25)

where in the second line we have used that E(p1) = mN +
mπ/2 at threshold. Note that this propagator agrees with that
obtained from the Feynman rules for BChPT at LO.

In order to make connection with the traditional Eq. (19),
we use the approximations K ≈ U [corrections areO(g − G)]
and G1 ≈ −i/mπ [corrections are O(mπ/mN )]. Putting these
substitutions into Eq. (23),

MPW
2B ≈ 〈φ|

[
− iU

(
mπ

2

)
mπ

Oπ

]
|p1p2〉. (26)

The quantity U is related to the potential energy by U = −iV .
Ignoring the fact that U should be evaluated for nonzero energy
transfer, we use the equal-time Schrödinger equation to replace
V → −Ed − p2/mN and then neglect the binding energy to
find MPW

2B ≈ MPW
1B . This means that for a PW initial state, the

traditional impulse approximation should be roughly adequate.
This is borne out in the actual calculation of the reduced matrix

=
K

Ψ

FIG. 5. Use of the Bethe-Salpeter equation in the rescattering
amplitude.
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elements for Eqs. (20) and (26),

APW
1B = −24.0, (27)

APW
2B = −25.6, (28)

where we have used Ref. [8]’s definition of the reduced matrix
element (we suppress the subscript on Ref. [8]’s A0 for clarity)
and used the same static phenomenological potential for V

(here, Argonne v18 [23]) that is used to calculate the wave
functions. See Fig. 4 for a pictorial description of this section.

It is important to note that the Bethe-Salpeter equation can
also be used for the pion rescattering diagram as shown in
Fig. 5. In fact, the diagram on the right in Fig. 5 has played
an important role in the development of pion production.
The authors of Ref. [24] showed that this diagram (with K

approximated by OPE) becomes irreducible when the energy
dependence of the NNππ vertex is used to cancel one of the
intermediate nucleon propagators. This discovery resolved a
problem arising from calculation of NLO loops.

In the next section we will show that for distorted wave
initial states Eq. (26) is replaced by

MDW
2B ≈ f 〈φ|

[
− iU

(
mπ

2

)
mπ

Oπ + Oπ

iU
(

mπ

2

)
mπ

]
|φ〉i , (29)

where the first term contributes at leading order in the theory
and the second term at next-to-leading order.

V. THE N N → dπ REACTION: DISTORTED WAVE
INITIAL STATES

A. Definition of distorted wave operator

There is no reason to expect the result MPW
2B ≈ MPW

1B
to carry over for a distorted wave (DW) initial state where
p2 = mπmN no longer holds. Indeed, we will show that the
traditional expression for the impulse approximation does not
hold for DW amplitudes.

The fully relativistic initial-state wave function is denoted
|
〉i

|
〉i = |p1, p2〉 + GK|
〉i , (30)

where the first term is exactly the initial state used in the
definition of MPW of Eqs. (20) and (22). The complete DW

impulse operator is defined as

MDW = MPW + MISI. (31)

The second term includes the production operator KG1Oπ

from Eq. (22) along with initial state interactions,

MISI
2B = f 〈
|KG1OπGK|
〉i (32)

≈ f 〈φ|KG1OπGK|φ〉i , (33)

where in the second line we have once again used 
 = φ + 
Q

and neglected the Q space.
As noted by Ref. [25], the kernel of Eq. (33) is a loop

integral which is shown in Fig. 6 with K being approximated
by OPE. Note that four momenta are conserved at every
vertex. One pion exchange is the first contribution to K

in ChPT besides a short range operator which is irrelevant
for the s-wave NN → dπ amplitude (see Appendix A).
Nevertheless, one must exercise caution due to the large
expansion parameter of pion production. To this end, we
employ the deuteron of Ref. [26] which is calculated from a
purely OPE potential with suitable form factors. As discussed
in Appendix C, this deuteron wave function is quite accurate
and increases the rescattering amplitude by only 3% over
a phenomenological deuteron. Having then employed this
deuteron wave function in the calculation of the traditional
DW impulse approximation, we will be able to avoid any
complications from higher order parts of the potential in our
subsequent investigation of the two-body operator of Eq. (33).
In other words, although the full potential must be present in
an exact calculation, we expect to gain insight into the correct
formalism by using an OPE-only deuteron. We continue to
use the phenomenological potentials for the initial state. To
verify that the use of K = OPE in the initial state does not
spoil our results too much, Appendix F examines heavy meson
exchange in the initial state. As will be discussed, this effect
is parametrically suppressed.

Note that the relative momenta of the nucleons before and
after the loop (p and k) are external momenta to the loop
integral over l = (l0, l), but are eventually integrated over in a
momentum-space evaluation. Let us focus solely on the energy
part of the loop integral and ignore the vertex factors and
overall constants. We define the integral I ,

I = i5
∫

dl0

2π

1

l0 − E + iε

1

l0 − mπ − E + iε

1

−l0 + mπ − γ − E + iε

1

l0 − mπ/2 − γ /2 + ωi − iε

× 1

l0 − mπ/2 − γ /2 − ωi + iε

1

l0 − mπ + γ /2 + ωf − iε

1

l0 − mπ + γ /2 − ωf + iε
, (34)

where ω2
i = (l − p)2 + m2

π is the on-shell energy of the initial-
state pion, ω2

f = (l − k)2 + m2
π is the on-shell energy of the

final state pion, and E = l2/2mN is the kinetic energy of a
single intermediate nucleon. Note that p2

i ≈ mπmN − γmN

and k2
f ≈ −γmN .

It is straightforward to show that if the energy components
of the exchanged pions in the above loop are set to zero
(violating conservation of four momentum), one obtains the
traditional impulse approximation. In this case, the pion energy
denominators are pulled out of the integral which is then
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(l0, l)

(mπ
2 − γ

2 ,p)

(l0 −mπ, l)

(−γ
2 ,k)(mπ, 0)

(l0 − mπ
2 + γ

2 , l − p)

(l0 −mπ + γ
2 , l − k)

(mπ
2 − γ

2 ,pi)

(−γ
2 ,kf )

Ψ

Ψ

(mπ
2 − γ

2 ,−p)

(−γ
2 ,−k)

(−l0 + mπ − γ,−l)

(mπ
2 − γ

2 ,−pi)

(−γ
2 ,−kf )

FIG. 6. Impulse approximation using distorted waves. Solid lines
represent nucleons, dashed lines represent pions, and ovals represent
wave functions.

evaluated by closing the contour in the lower half plane,

I1B =
(

1

−ω2
f

1

−γ − l2/mN

)(
1

mπ − γ − l2/mN

1

−ω2
i

)
.

(35)

The quantity in the first set of parentheses can be recognized
as the product of OPE with the final state wave function while
the second set is the product of the initial state wave function
with OPE. This is precisely the operator that the traditional
evaluation includes.

B. Reduction to time ordered perturbation theory (TOPT)

Our goal is to evaluate the integral in Eq. (34), showing that
it is a sum of TOPT terms which can be combined to obtain
Eq. (29). To begin, we rewrite the first two factors as a sum,

1

l0 − E + iε

1

l0 − mπ − E + iε

= 1

−mπ

(
1

l0 − E + iε
− 1

l0 − mπ − E + iε

)
. (36)

This is the key to our method because after making this split
we see two terms which each have the propagator structure
of a rescattering box loop. Consider the first term in Eq. (36);
this loop integral looks like a two-body operator multiplied
by 1

−mπ
and augmented with an initial-state interaction. The

second term looks like the same with final-state interaction.
We define these two integrals to be I a

2B and I b
2B, respectively,

I2B = I a
2B + I b

2B. (37)

Figure 7 illustrates the splitting described in Eq. (37).
Next, we perform partial fraction decomposition on each

of the pion propagators, splitting each of the two terms into
four terms. Then we continue the decomposition process until
each term can be expressed as a single residue. For I a

2B we
will isolate the poles containing ωf and then close the contour
around them (for I b

2B, the ωi poles are isolated). By isolating the
poles in this way, the resulting expression is easily recognized
as the sum of six TOPT terms. For clarity, we show these terms
pictorially for I a

2B in Fig. 8 where we have left the overall 1
−mπ

implicit.

= 1
−mπ

× + 1
mπ

×

Ia2B term Ib2B term

FIG. 7. Definition of the two terms in Eq. (37). Crosses represent
the propagators which are absent due to the partial fractions
decomposition.

We assume for now that the stretched box diagrams are
small, as they were in the rescattering toy model investigation
[27] and denote the sum of the four remaining terms with a I̊ .

Finally, motivated by the interpretation which is presented
in the next section, we algebraically re-combine these four
terms to find

I̊ a
2B = 1

(mπ/2)2 − [ωf + δa(l)]2

[
1 + δa(l)

ωf

]
1

−mπ

×
[

1 − δa(l)
ωi + δa(l)

]
1

mπ − 2E − γ

1

−ω2
i

, (38)

I̊ b
2B = 1

−ω2
f

1

−2E − γ

[
1 − δb(l)

ωf + δb(l)

]
1

mπ

×
[

1 + δb(l)
ωi

]
1

(mπ/2)2 − [ωi + δb(l)]2
, (39)

where we have separated out terms involving δa and δb,

δa(l) = l2

2mN

− mπ

2
+ γ

2
, (40)

δb(l) = l2

2mN

+ γ

2
, (41)

because (as will be shown in the next section) they are
subleading and we will neglect them in the main body of
this work. The only approximation made in the evaluation of
the loop integral to obtain Eqs. (38) and (39) is to neglect
the stretched boxes. Let us pause to summarize what we
have done so far: (1) the DW amplitude was written down
as a loop integral, (2) partial fractions was used to split the
product of the two nucleon propagators into a sum I a

2B + I b
2B,

(3) the loop integrals were evaluated and the result expressed
in terms of TOPT diagrams, and (4) the TOPT diagrams were
algebraically combined into a form useful for the following
interpretation.

C. Interpretation

Although not obvious at first sight, convolution of the
operator corresponding to Eq. (38) with wave functions
as defined in Eqs. (31) and (33) results in an amplitude
approximately equivalent to that which one obtains by using
the operator shown in Fig. 9(a). The same is true of Eq. (39)
with Fig. 9(b), and together they replace the traditional (one-
body) impulse approximation with Eq. (29). Furthermore, the
operator that results from Eq. (39) is expected to be small by
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+ += +++

FIG. 8. TOPT terms resulting from the I a
2B integral.

power counting arguments. The task of this subsection is to
verify these statements in detail.

In Eq. (38) the factor (mπ − 2E − γ )−1(−ω2
i )−1 is inter-

preted as the product of the two-nucleon initial-state wave
function with static OPE. This is the statement that

1

mπ − 2E − γ

1

−ω2
i

= gUOPE. (42)

This factor can be absorbed (after adding in the PW term)
using the zero-relative-energy Lippmann-Schwinger equation
that is employed by the phenomenological potentials we are
using. We will continue to refer to the initial wave function as
a function of p and pi , so absorbing this factor means that we
set l = p.

Likewise, in Eq. (39) the factor (−ω2
f )−1(−2E − γ )−1 is

interpreted as the product of static OPE with the two-nucleon
final-state wave function: UOPEg. Absorbing this factor into
the wave function, we set l = k. The remaining factors of I̊ a

2B

and I̊ b
2B become the two-body impulse production operators,

Oa
2B = σ 1 · (p − k)σ 2 · (k − p)

(mπ/2)2 − [ωf + δa(p)]2

[
1 + δa(p)

ωf

]
1

−mπ

×
[

1 − δa(p)

ωi + δa(p)

]
S · p, (43)

Ob
2B = S · k

[
1 − δb(k)

ωf + δb(k)

]
1

mπ

×
[

1 + δb(k)

ωi

]
σ 1 · (p − k)σ 2 · (k − p)

(mπ/2)2 − [ωi + δb(k)]2
, (44)

where we have now made explicit the momentum dependences
of the vertices and used S = (σ 1 + σ 2)/2. It is also important
to include form factors in the OPE which match those of
the wave functions. These form factors are present in our
calculation even though we leave them out of this expression
for the sake of generality.

(a) Oa
2B of Eq. (45) (b) Ob

2B of Eq. (46)

FIG. 9. Two-body impulse production operators (pion exchange
is nonstatic).

Next, note that in the evaluation of the matrix element using
Eq. (43), the initial state wave function is peaked about its plane
wave value p ≈ pi , and thus E ≈ mπ/2 − γ /2 and δa(p) ≈ 0.
On the other hand, in Eq. (44), we have k ≈ ki and E ≈ −γ /2
and δb(k) ≈ 0. If we were to neglect all the δ, we would have

Oa
2B ≈ σ 1 · (p − k)σ 2 · (k − p)

(mπ/2)2 − [
(p − k)2 + m2

π

] 1

−mπ

S · p, (45)

Ob
2B ≈ S · k

1

mπ

σ 1 · (p − k)σ 2 · (k − p)

(mπ/2)2 − [
(p − k)2 + m2

π

] , (46)

which suggests that these operators can be approximately
interpreted as the diagrams in Fig. 9. Thus we have finally
obtained our central result [Eq. (29)] which states that the
correct impulse approximation is a two-body operator. The
contribution to pion production given in Eq. (29) is not
replacing the rescattering diagram (which is also two body),
but rather replacing the traditional contribution which has been
referred to as the impulse approximation (or direct production).
Note that if we assign standard pion production power counting
to these diagrams, Fig. 9(a) is O(

√
mπ
mN

) while Fig. 9(b) is
O( mπ

mN
). In the next section the approximate expressions given

in Eqs. (45) and (46) are numerically evaluated. Nevertheless,
we acknowledge the importance of verifying that the δ terms
are indeed small and relegate that discussion to Appendices
D and E.

D. Evaluation of two-body operators

Next, we calculate the threshold s-wave np → dπ0 am-
plitudes corresponding to Eqs. (45) and (46). We do not
present the details here as most are given in Ref. [13]. Again,
we remind the reader that for the sake of consistency we
use a deuteron wave function calculated from a purely OPE
potential (with form factors as described in Appendix C).
For the initial-state distorted waves, we use three different
phenomenological potentials (Av18 [23], Nijmegen II [28],
and Reid ‘93 [28]). In Table I we display the results in terms
of the reduced matrix elements of Ref. [8].

The first row of Table I gives the traditional (one-body)
impulse approximation, which is slightly bigger than Ref. [13]
due to the use of the OPE deuteron. The next row shows that the
new two-body operator (at leading order) is roughly twice as
large as the traditional calculation it is replacing. We mention
here that the significant cancellation between deuteron s and
d states remains, keeping the impulse amplitude smaller than
rescattering; however, the cancellation is less complete when
using our new two-body operator. The final row verifies that
the Ob

2B diagram is smaller than the Oa
2B diagram, as dictated
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TABLE I. Threshold reduced matrix elements calculated with an
OPE deuteron and various phenomenological initial states. The first
row shows the traditional impulse approximation (one-body) while
the second and third show our replacement (two-body).

Av18 Reid’93 Nijm II

ADW
1B 8.3 7.1 5.4

A
DW,a
2B 17.4 13.5 7.8

A
DW,b
2B −1.5 −2.2 −6.9

by the power counting. The Nijmegen II potential provides a
bit of deviation from these results, and it will be interesting
to investigate other potentials to determine the true model
dependence of this calculation. In finding these results, it is
important that the pion propagators of Eqs. (45) and (46) be
implemented in a manner consistent with the potential used for
the wave function of Fig. 6. Namely the cutoff procedure of
the convolution integral with form factors needs to match that
by which the potential was constructed. Appendix C contains
the details of this procedure.

Our conclusion is that the traditional impulse approxi-
mation is an underestimate. While it is true that several
approximations were made in order to permit final expressions
as simple as Eqs. (45) and (46), we believe this conclusion
to be sound. The δ terms do not defy their classification as
subleading (see Appendices D and E), and Appendix F shows
that using K = OPE in the initial state is at least reasonable.
In summary, we simply claim that Eq. (45) is the new impulse
approximation at leading order in the effective field theory.
The corrections in the aforementioned appendices, in addition
to Eq. (46) contribute to the next-to-leading order calculation,
which needs to be systematically considered in a later work.

Finally, it is important to note that although the OPE
deuteron reproduces the phenomenological results for the
rescattering diagram quite well, the numbers in this section are
greatly changed if a phenomenological deuteron is used. Using
Av18 we find ADW

1B = 4.9, and by using the cutoff procedure
of Av18 for the two-body operators, we find A

DW,a
2B = 33.5,

A
DW,b
2B = −2.8. Thus the ratio of our new two-body operator

to the traditional impulse operator is ∼7 instead of the ∼2
presented above. At this time one is faced with a choice
of either: (1) using a “correct” phenomenological deuteron
and leaving out parts of the potential when calculating the
two-body kernel or (2) using an inexact OPE deuteron with
a completely self-consistent kernel. For the time being we
believe the latter to be more trustworthy, if not ideal.

VI. DISCUSSION

Experimental data for pion production near threshold are
reported in terms of two parameters, α and β, defined for
np → dπ0,

σ (η) = 1
2

(
αη + βη3

)
, (47)

where η is the pion momentum in units of its mass. Table VI
of Ref. [13] shows the results obtained by the four most recent

TABLE II. Threshold reduced matrix elements extracted from
experiment.

Experiment Aexpt

np → dπ 0 [29] 80.1 ± 1.1
	pp → dπ+ (Coulomb corrected) [30] 85.2 ± 1.0
pp → dπ+ (Coulomb corrected) [31] 84.6 ± 1.9
Pionic deuterium decay [32] 93.8+0.9

−2.0

experiments. Since the present calculation is performed at
threshold (η = 0), we compute only the value of α,

α = mπ

128π2sp
|A|2 , (48)

where s = (md + mπ )2 is the square of the invariant energy.
For ease of comparison, we invert Eq. (48), plug in the results
of the mentioned experiments, and propagate the errors to find
Table II.

The full theoretical amplitude includes not only the impulse
diagram but also the rescattering diagram, which is given
in Table III along with the total amplitude using either the
traditional one-body or the leading-order two-body impulse
diagram. The uncertainty in an effective field theory calcu-
lation is estimated by the power counting scheme. In this
work, we have included both the rescattering and the impulse
diagrams up to O(

√
mπ/mN ). Therefore one might assign an

uncertainty of mπ/mN = 14% to the calculation but stress that
such an estimate based solely on power counting is rough at
best. Taking this uncertainty, we see that the theory update
presented here changes the situation from underprediction of
the most recent pionic deuterium experiment by ∼1.3 σ , to
underprediction by ∼0.7 σ .

In summary, we have developed a consistent formalism
that allows one to separate effects of the kernel from those
of the wave functions, finding a new impulse approximation
kernel. This two-body operator, given in Eq. (29), replaces
the traditional one-body impulse approximation and is the
central result of the present work. We numerically investigated
the simplest example (s-wave NN → dπ ) and found the
impulse amplitude to be increased by a factor of roughly
2 over the traditional amplitude. This calculation was per-
formed with a regulated OPE deuteron which has advantages
and disadvantages as described in the body of this work.
Rescattering remains the dominant contribution to the cross
section. We find that the updated total cross section is ∼10%
larger than before and is in agreement with experiment
at leading order. We verified that corrections to the new

TABLE III. Rescattering (RS) and total reduced matrix elements
for a variety of potentials. The second line shows the traditional cal-
culation (with a one-body IA) while the third shows our replacement
(with a two-body IA).

Av18 Reid ’93 Nijm II

RS 69.8 72.1 74.0
RS + IA (1B) 78.1 79.2 79.4
RS + IA (2B) 87.2 85.6 81.8
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impulse approximation (which together with other loops and
counterterms will contribute at next-to-leading order) do not
destroy these results.

These findings suggest several directions for future re-
search. First, one needs to develop a power counting scheme
for the “Q space” discussed in Sec. II. Second, the significant
model dependence of the new formulation of the impulse
approximation needs to be investigated in a renormalization
group invariant way. Third, it will be very interesting to
see the impact of this increased impulse amplitude on the
pp → ppπ0 cross section which is suppressed due to the
absence of rescattering. Finally, one could look at the energy
dependence (p-wave pions) of NN → NNπ , for which there
is an abundance of experimental data.
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APPENDIX A: LAGRANGE DENSITIES

We define the index of a Lagrange density to be

ν = d + f

2
− 2, (A1)

where d is the sum of the number of derivatives and powers
of mπ , and f is the number of fermion fields. This represents
the standard power counting for nuclear physics. The ν = 0
Lagrangian (with spatial vectors in bold font) is [10]

L(0) = 1
2 (∂πa)2 − 1

2m2
ππ2

a + N †i∂0N

+ gA

2fπ

N †(τaσ · ∇πa)N + · · · , (A2)

where τa and σ are the Pauli matrices acting on the isospin
and spin of a single nucleon. The “+ · · ·” indicates that only
the terms used in this calculation are shown.

The ν = 1 Lagrangian includes recoil corrections and other
terms invariant under SU(2)L × SU(2)R ,

L(1) = 1

2mN

N †∇2N − 1

2mN

×
(

gA

2fπ

iN †τaπ̇aσ · ∇N + H.c.

)
+ · · · , (A3)

where we use the values given in Table IV. Note that the terms
with the ci low energy constants which appear at this order do
not get promoted in MCS for these kinematics and are thus
not used. Also, the terms with the di low energy constants do
not contribute to s-wave pion production. Finally, the NNNN

contact terms CS,T do not contribute because we are using a
potential with a repulsive core [Ri(r)Rf (r) → 0 as r → 0 for
li = 1, lf = 0].

TABLE IV. Parameters used.

mπ = 134.98 MeV gA = 1.32 MeV
mN = 938.92 MeV fπ = 92.4 MeV

APPENDIX B: N → Nπ FROM BCHPT

The LO NNπ interaction reads

L(0) ⊂ N
gA

2
/u⊥γ 5N, (B1)

where u⊥,µ = uµ − v · u vµ, uµ = i(u†∂µu − u∂µu†) and
u2 = eiτaπa/fπ . We find

uµ = i

[
iτa∂µ

πa

2fπ

− (−i)τa∂µ

πa

2fπ

]
= − τa

fπ

∂µπa,

u⊥ = γ0(u0 − u0 · 1) − γi

(
− τa

fπ

∂iπa

)
, i = 1, 2, 3,

= τa

fπ

γi∂iπa, (B2)

and thus the Feynman rule for an outgoing pion with
momentum q and isospin a is

O(0)
π = −i

(
gA

2fπ

γiγ
5

)
(iqi)τa. (B3)

At threshold, the pion four momentum is q = (mπ, 0, 0, 0)
making O(0)

π = 0. This reflects the fact (well-known from
current algebra) that threshold pion production proceeds via
the off-diagonal, and therefore 1/mN suppressed, interaction
gπγ 5γ 0q0τ . In the effective theory, this recoil correction
shows up in the NLO Lagrangian

L(1) ⊂ −i
gA

2mN

N{vµuµ, Sµ∂µ}N, (B4)

where the spin vector is Sµ = − 1
2γ 5(γ µ/v − vµ). Thus the

Feynman rule is

O(1)
π = −i

(
−i

gA

2mN

) [
− τa

fπ

(−imπ )

]

×
[

1

2
γ 5γiγ

0(
−→∇ − ←−∇ )i

]

= −i
mπ

2mN

gA

2fπ

γ 5γiγ
0(

−→∇ − ←−∇ )iτa, (B5)

where the derivatives act on the nucleon wave functions.

APPENDIX C: ONE PION EXCHANGE DEUTERON

In this Appendix we present the method by which the
deuteron wave function is calculated for use in Sec. V. This
method is taken directly from the work of Friar, Gibson, and
Payne [26]. The OPE potential is defined to have central (Y)
and tensor (T) parts,

Vπ (r) = f 2mπ

τ1,aτ2,a

3
[σ 1 · σ 2Y (r) + S12T (r)], (C1)

where f 2 = 0.079 (to be distinguished from fπ ) measures the
strength of the pion-nucleon coupling and S12 is the standard
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FIG. 10. (Color online) Deuteron s- and d-state wave functions
(the s state is larger). The potentials used to calculate the wave
functions are Av18 (black) and the cutoff OPE described in this
section (red).

tensor operator. The deuteron has isospin zero and spin one,
so we have

Vπ (r) = −f 2mπ [Y (r) + S12T (r)] . (C2)

The Y and T functions are expressed as derivatives of the
Fourier transform of the pion propagator,

Y (r) = h′′
0(x) − h′

0(x)/x,

T (r) = h′′
0(x) + 2h′

0(x)/x,

h0(x) = 4π

(2π )3mπ

∫
d3q

e−iq·r

q2 + m2
π

F 2
πNN (q2), (C3)

where x = mπr and FπNN is the form factor for which we use

FπNN (q2) =
(

�2 − m2
π

q2 + �2

)n

. (C4)

In Ref. [26] it is shown that

Y (r) = e−x

x
− β3e−βx

2n−1∑
i=0

ξ i

i!
[δi(βx) − 2iδi−1(βx)], (C5)

T (r) = e−x

x

(
1 + 3

x
+ 3

x2

)

−β3e−βx

2n−1∑
i=0

ξ i

i!
[δi(βx) − (2i − 3)δi−1(βx)], (C6)

where β = �/mπ and ξ = (β2 − 1)/2β2 and the δi are defined
by

δi+1(βx) = (2i − 1)δi(βx) + (βx)2δi−1(βx) (C7)

along with δ0 = 1/βx and δ1 = 1. One of the results of
Ref. [26] is that larger values of n lead to better fits to exper-
imental data. We use n = 5 and β/

√
10 = 5.687805 in order

to precisely reproduce the binding energy EB = 2.2246 MeV.
The wave functions are calculated by integrating in from
rmax = 100 fm and adding together two linearly independent
solutions such that the sum vanishes at rmin = 0.01 fm. As
shown in Fig. 10, the results are close to the “correct” Av18
deuteron.

In Table V we display the quadrupole moment and mean
square charge radius of Av18, this OPE potential, and
experiment (as quoted in [26]). It is clear that the form

TABLE V. Deuteron properties.

Potential Q (fm2) 〈r2〉1/2 (fm)

Av18 0.270 1.968
OPE (n = 5) 0.282 1.939
Experiment 0.2859(3) 1.955(5)

factors in the OPE potential make it difficult to distinguish this
construction as less accurate than Av18. Finally, in Table VI we
display the reduced matrix elements for the rescattering pion
production diagram evaluated with both the phenomenological
potentials and the deuteron of this section. Since this diagram
makes the largest contribution to the cross section we need to
verify that neglecting non-OPE parts of the potential does not
dramatically change this amplitude.

Indeed, we observe what should be expected: since the
rescattering diagram is not as sensitive to the core of the
deuteron, using the OPE wave function in place of the standard
one has only a small effect.

APPENDIX D: EFFECT OF THE δ TERMS: Oa
2B DIAGRAM

In this section we calculate the correction terms to the first
two-body DW amplitude [Eq. (43)] which is shown in Fig. 9(a).
Assuming that the δ truly are small compared to Eq. (45),
we will only worry about calculating them one at a time,
numbering the contribution of the δ from right to left as 1, 2,
and 3. Note that we will display the results as calculated using
the OPE deuteron and the Av18 initial state.

1. First Oa
2B correction term: �O1

Consider the rightmost δ in Eq. (43),

�O1 = −σ 1 · (p − k)σ 2 · (k − p)

−(p − k)2 − µ2
F 2

πNN [(p − k)2]
1

−mπ

×
p2

2mN
− mπ

2 + γ

2√
(p − pi)2 + m2

π + p2

2mN
− mπ

2 + γ

2

S · p, (D1)

where µ2 = 3m2
π/4 and FπNN is the form factor described in

Appendix C. The easiest way to evaluate the matrix element of
this operator is to let the OPE act to the left on the deuteron in
position space. The resulting expression is then transformed to
momentum space. We can expand the fraction in the integrand
of Eq. (D1) into spherical harmonics (taking p̂i = ẑ),

p2

2mN
− mπ

2 + γ

2√
(p − pi)2 + m2

π + p2

2mN
− mπ

2 + γ

2

=
∑

l

Al(p)Yl,0(p̂),

(D2)

TABLE VI. Effect of using OPE deuteron on rescattering diagram.

Deuteron Av18 Reid ’93 Nijm II

Phenomenological 67.8 69.7 71.1
OPE (n = 5) 69.8 72.1 74.0
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FIG. 11. (Color online) Coefficients of the expansion in Eq. (D2).
The red curve shows l = 0 and the blue shows l = 2.

and note that only the l = 0, 2 terms will contribute to s-wave
production. The expansion coefficients are shown in Fig. 11.
Clearly the l = 2 term is small and we neglect it here to avoid
the extra algebra involved with a J = 2 operator (resulting in
the A2 reduced matrix elements in the notation of Ref. [8]).
We find

�M1

M = −34%. (D3)

2. Second Oa
2B correction term: �O2

Next consider the term

�O2 = σ 1 · (p − k)σ 2 · (k − p)

−(p − k)2 − µ2
F 2

πNN [(p − k)2]

× 1√
(p − k)2 + m2

π

1

−mπ

×
(

p2

2mN

− mπ

2
+ γ

2

)
S · p. (D4)

This term has a modified OPE,∫
d3q

(2π )3
e−iq·r σ 1 · q σ 2 · (−q)

q2 + µ2
F 2

πNN (q2)
1√

q2 + m2
π

(D5)

≡ σ 1 · ∇σ 2 · ∇ ζ (r)

4π
(D6)

= µ2

12π
[S12Tζ (r) + σ 1 · σ 2Yζ (r)]. (D7)

In Fig. 12 we compare the functions Tζ (r) and Yζ (r) to
traditional OPE which has µ in place of the square root in
Eq. (D5). We use the Schrödinger equation to replace the
p2/2mN with V (r) and evaluate the matrix element in position
space to find

�M2

M = +50%. (D8)

3. Third Oa
2B correction term: �O3

Calculating the effects of the δ in the denominator of the
OPE is difficult to do exactly due to the combination of
momenta that appear,

�O3 = σ 1 · (p − k)σ 2 · (k − p)

−[√
(p − k)2 + m2

π + δ(p)
]2 + m2

π/4

×F 2
πNN [(p − k)2]

1

−mπ

S · p (D9)

[recall that δ(p) = p2/2mN − mπ/2 + γ /2]. Instead we will
evaluate it for fixed values of δ which represent the deviation
of p away from pi ,

δ+ = δ(pi + mπ ) = 2pimπ + m2
π

2mN

= 0.45 mπ, (D10)

δ− = δ(pi − mπ ) = −2pimπ + m2
π

2mN

= −0.32 mπ. (D11)

The modified tensor and central functions Tξ and Yξ are shown
in Fig 13.

We define the correction as

�M3(δ) = M(δ) − M(0). (D12)

We find

�M3(δ+)

M = +16%, (D13)

�M3(δ−)

M = −32%. (D14)
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FIG. 12. (Color online) Effect of the square root on the OPE (a) tensor and (b) central radial functions.

064003-11



DANIEL R. BOLTON AND GERALD A. MILLER PHYSICAL REVIEW C 83, 064003 (2011)

0.5 1.0 1.5 2.0
r fm

2

4

6

8

10

12

14
a

T

Tξ δmax

Tξ min

0.5 1.0 1.5 2.0
r fm

60

50

40

30

20

10

b

Y

Yξ δmax

Yξ δmin

δ

FIG. 13. (Color online) Effect of the δ on the OPE (a) tensor and (b) central radial functions.

4. Summary of Oa
2B corrections

For the purposes of estimating the net result we take the
average of the estimates in Appendix D3 and find

�Mtot

M ≈ −34% + 50% − 8% = +8%. (D15)

We have successfully shown that the corrections to the first
two-body DW amplitude are small, and actually increase the
amplitude which is already twice as large as the traditional
impulse approximation.

APPENDIX E: EFFECT OF THE δ TERMS: Ob
2B DIAGRAM

The second two-body DW amplitude’s corrections are
evaluated exactly as in the previous sub-sections and we just
display the results here,

�M1

M = −35%, (E1)

�M2

M = −39%, (E2)

�M3(δ+)

M = �M3(δ−)

M = +3%, (E3)

with the net result

�Mtot

M ≈ −35% − 39% + 3% = −71%. (E4)

We see that the corrections to the approximation in Eq. (46)
are fairly large, but this has a negligible effect because the
amplitude is already small compared to the first two-body DW
amplitude.

APPENDIX F: HEAVY MESON EXCHANGE

Consider the loop on the left-hand side of Fig. 14 which
is obtained by using OPE for the left K in Eq. (33) and σ

exchange (the dominant intermediate-range mechanism) for
the right K . Note that this loop only differs from Fig. 6 in
two ways: the meson-nucleon vertex (here we consider only
scalar isoscalar) and the meson mass. We use a typical set of
parameters [33], g2

σ /4π = 7.1 and mσ = 550 MeV.
The result of integrating over energy will proceed exactly as

it did with the pion resulting in the two diagrams shown on the

RHS of Fig. 14. To interpret the I
σ,a
2B term (again, neglecting

stretched box diagrams), we absorb the sigma exchange into
the initial state and no new term is added. However, in the I

σ,b
2B

term, after absorbing the pion exchange into the final state, we
are left with a new operator. The amplitude for this operator can
be obtained from that of Fig. 9(b) with the following change:(

gA

2fπ

)2
µ3

3

[
2

(
1 + 3

µr
+ 3

(µr)2

)
+ 1

]
e−µr

µr

→ g2
σµσ

e−µσ r

µσ r
, (F1)

where µ2 = 3m2
π/4 and µ2

σ = m2
σ − (mπ/2)2. We find

A
σ,b
2B = −7.24, (F2)

which is larger in magnitude than the pionic A
DW,b
2B (with the

same sign) but smaller than A
DW,a
2B (with the opposite sign).

Since mσ is relatively large, we can safely ignore the two
δ corrections that are competing with ωi and only need to
evaluate

�M1

M = −27%. (F3)

One natural question is whether the static σ exchange already
present in the initial-state wave function is a sufficient
approximation for the contribution considered in this section.
To answer this question, we can evaluate the traditional
impulse approximation with

|
〉σi = |p1, p2〉 + GVσ |
〉i , (F4)

= 1
−mπ

× + 1
mπ

×

I
σ,a
2B term I

σ,b
2B term

FIG. 14. Impulse approximation with distorted waves: initial state
heavy meson exchange. Solid lines represent nucleons, dashed lines
pions, and the double solid line a σ meson. Crosses represent propa-
gators which are absent due to the partial fractions decomposition.
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where here we employ a static σ exchange that is present (at
least effectively) in the wave function. Using this initial-state
wave function, we calculate

Mσ
1B = f 〈φ|Oπ |
〉σi , (F5)

and find the reduced matrix element,

Aσ
1B = −3.3. (F6)

Thus we see that the σ exchange in the traditional impulse
approximation is an underestimate (in magnitude) of the true
nonstatic exchange dictated by the loop integral.

Of course there is no σ in traditional BχPT, so this section
is simply telling us that to achieve high accuracy it is indeed
important to use more than just simple pion exchange when
forming the original box diagram. Such a calculation is beyond
the scope of this work.
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