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Spin polarization in γ d → �n p at low energies with a pionless effective field theory

S.-I. Ando,1 Y.-H. Song,2 C. H. Hyun,1 and K. Kubodera2

1Department of Physics Education, Daegu University, Gyeongsan 712-714, Republic of Korea
2Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA

(Received 18 March 2011; published 14 June 2011)

With the use of pionless effective field theory including dibaryon fields, we study the γ d → �np reaction for
the laboratory photon energy Elab

γ ranging from threshold to 30 MeV. Our main goal is to calculate the neutron
polarization Py′ defined as Py′ = (σ+ − σ−)/(σ+ + σ−), where σ+ and σ− are the differential cross sections for
the spin-up and spin-down neutrons, respectively, along the axis perpendicular to the reaction plane. We also
calculate the total cross section as well as the differential cross section σ (θ ), where θ is the colatitude angle.
Although the results for the total and differential cross sections are found to agree reasonably well with the data,
the results for Py′ show significant discrepancy with the experiment. We comment on this discrepancy.
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I. INTRODUCTION

The induced neutron-spin polarization Py ′ in the γ d → �np

reaction is defined as Py ′ = (σ+ − σ−)/(σ+ + σ−), where σ+
and σ− are the differential cross sections for the spin-up and
spin-down neutrons, respectively, along the axis perpendicular
to the reaction plane. Conspicuous discrepancy between the
experimental and theoretical values of Py ′ is a long-standing
puzzle in low-energy nuclear physics [1,2]. Schiavilla [1]
carried out an elaborate calculation of Py ′ based on the
so-called standard nuclear physics approach (SNPA). In SNPA,
the nuclear wave functions are generated with the use of
high-precision phenomenological nucleon-nucleon potentials
that accurately reproduce thousands of neutron-proton and
proton-proton scattering data (for laboratory energies below
350 MeV) along with the deuteron properties. The electromag-
netic current operators in SNPA are constructed from meson-
exchange diagrams in such a manner that gauge invariance
and the low-energy theorems are satisfied. SNPA has been
used to calculate a great many electromagnetic observables
involving the lightest nuclei, and its general quantitative
success is well known [3,4]. As for the γ d → �np reaction,
the differential cross sections calculated by Schiavilla [1] for
the laboratory-system photon energy Elab

γ up to 30 MeV agree
very well with the data. For the spin polarization Py ′ , however,
there is a large discrepancy between the state-of-the-art SNPA
calculation [1] and the data. This discrepancy gives a further
indication of the seriousness of the “Py ′ puzzle,” and one is led
to ask whether the problem lies with theory or experiment.

In order to shed more light on this issue, we study here
the γ d → �np reaction in the framework of effective field
theory (EFT). The application of EFT to nuclear electroweak
processes, pioneered in Refs. [5–7], has made great progress
since its introduction, with various specific approaches and
techniques developed along the way. It is to be emphasized
that, insofar as all the relevant low-energy constants (LECs)
are known, EFT can give model-independent results and that
the accuracy of these results can be systematically assessed
by virtue of the well-defined EFT expansion scheme. In
the present work we study the γ d → �np reaction in the
framework of pionless EFT with dibaryon fields [8–10],

which has shown good convergence behavior in perturbative
expansion for a number of low-energy processes in the
two-nucleon systems [11–13]. We compare the results of our
EFT calculation with the experimental data and also with the
theoretical results obtained in SNPA [1]. It is hoped that the
present study will provide useful information regarding the Py ′

puzzle.
This paper is organized as follows. We describe in Sec. II

the basic elements such as Lagrangians, the definitions of
observables, and the electromagnetic operators. In Sec. III
we enumerate Feynman diagrams that appear up to the
order under consideration and evaluate their amplitudes.
Section IV explains the relation between the amplitudes
and observables. In Sec. V we show the numerical results
and compare them with data as well as with the results of
the previous theoretical work. Section VI is dedicated to
conclusions.

II. FORMALISM

As stated, we work in the framework of pionless EFT
with dibaryons (dEFT for short). Since we follow the same
formalism as in Ref. [10], we only give a brief summary here,
relegating details to Ref. [10]. We consider two dibaryons, one
in the 1S0 channel and the other in the 3S1 channel, and denote
them by ds and dt , respectively. A dEFT Lagrangian for a case
involving an external vector field is given by

LdEFT = LN + Ls + Lt + Lst , (1)

where LN is the standard heavy-nucleon Lagrangian for the
one-nucleon sector; Ls (Lt ) is a Lagrangian for ds (dt ), while
Lst describes ds-dt transition due to an external vector field
(a photon field). We employ the standard counting rules and
calculate the amplitude up to next-to-leading order (NLO).
The LN relevant to our NLO calculation reads

LN = N †
{
iv · D + 1

2mN

[(v · D)2 − D2]

−i[Sµ, Sν]
(
µV f +

µν + µSv
S
µν

)}
N , (2)
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where vµ is a velocity vector satisfying v2 = 1 and Sµ

is the nucleon spin operator. Here we choose vµ = (1, �0)
and, correspondingly, 2Sµ = (0, �σ ). Dµ = ∂µ − i

2 �τ · �Vµ −
i
2VS

µ = ∂µ − iQV ext
µ is the covariant derivative involving the

isoscalar-vector and isovector-vector fields, Q is an electric
charge of a nucleon, and f +

µν and vS
µν are the isovector

and isoscalar field strength tensors, respectively. mN is the
nucleon mass, while µV = 4.706 and µS = 0.880 are the
isovector and isoscalar magnetic moments of the nucleon,
respectively.

The dibaryon Lagrangians, Ls and Lt , and the transition
Lagrangian, Lst , are given by

Ls = −s
†
i

{
iv · D + 1

4mN

[(v · D)2 − D2] + �s

}
si

−ys

[
s
†
i

(
NT P

(1S0)
i N

) + H.c.
]
, (3)

Lt = −t
†
i

{
iv · D + 1

4mN

[(v · D)2 − D2] + �t

}
ti

−yt

[
t
†
i

(
NT P

(3S1)
i N

) + H.c.
] − 2L2

mNρd

iεijkt
†
i tjBk, (4)

Lst = L1

mN

√
r0ρd

[
t
†
i s3Bi + H.c.

]
. (5)

Dµ = ∂µ − iCV ext
µ is the covariant derivative coupled with

the external vector field, where C is the electric charge of the
dibaryon field in units of the proton charge; C = 2, 1, and 0 for
the pp-, np- and nn-channel dibaryons, respectively. �s (�t )
is the difference between the mass of ds (dt ) and 2mN . ys (yt )
specifies the strength of ds-N -N (dt -N -N ) coupling. P (1S0)

a and

P
(3S1)
i are projectors onto the 1S0 and 3S1 two-nucleon states,

respectively:

P (1S0)
a = 1√

8
τ2τaσ2 , P

(3S1)
i = 1√

8
τ2σ2σi , (6)

where τa and σi are the isospin and spin operators. �B in
Eqs. (4) and (5) is the magnetic field, �B = �∇ × �V ext, where
�V ext is the external vector field. L1 is a LEC representing
the strength of a �V ext-ds-dt vertex; L2 is a second LEC
parameterizing the strength of a �V ext-dt -dt vertex. ρd and r0

are the effective range parameters of the NN interaction for
the deuteron and spin-singlet channel, respectively.

The parameters �s,t and ys,t in Eqs. (3) and (4) can be
fixed from the scattering length and effective range for the 1S0

and 3S1 channels. Meanwhile, L1 and L2 can be determined
from the low-energy np → dγ cross section and the deuteron
magnetic moment, respectively. Hence there are no unknown
parameters in the Lagrangian LdEFT in Eq. (1); see Ref. [10]
for further details.

III. TRANSITION AMPLITUDES

The Feynman diagrams contributing to our NLO calcula-
tion are depicted in Fig. 1. The transition amplitude A, in the
center-of-mass (c.m.) frame, corresponding Figs. 1(a), 1(b),

(a) (b) (c)

FIG. 1. Diagrams for dγ → np reaction: a double line with a
filled circle stands for a dressed dibaryon field, a single line stands
for a nucleon, and a wavy line stands for a photon field. The photon-
nucleon-nucleon vertex with a cross is of NLO, and the photon-
dibaryon-dibaryon vertex with a cross is proportional to the LEC, L1

or L2.

and 1(c), may be written as

A= χ
†
1 �σσ2τ2χ

T †
2 · {[�ε(d) × (k̂ × �ε(γ ))]XMS + �ε(d)�ε(γ ) · p̂ YES}

+χ
†
1σ2τ3τ2χ

T †
2 i�ε(d) · (k̂ × �ε(γ )) XMV

+χ
†
1 �σσ2τ3τ2χ

T †
2 · {�ε(d)�ε(γ ) · p̂ XEV

+ [�ε(d) × (k̂ × �ε(γ ))] YMV }
+χ

†
1σ2τ2χ

T †
2 i�ε(d) · (k̂ × �ε(γ )) YMS , (7)

where �ε(d) and �ε(γ ) are spin polarization vectors for the
incoming deuterons and photons, respectively, while χ

†
1 and

χ
†
2 are the spinors of the outgoing nucleons. �k is the momentum

of an incoming photon (which is taken to be in the z direction),
and �p is the relative three-momentum of the two nucleons in the
final state, and we have introduced k̂ ≡ �k/|�k| and p̂ ≡ �p/| �p|.
The coefficients of the terms in Eq. (7) are given as

XMV = −
√

πγ

1 − γρd

1
1
a0

+ ip − 1
2 r0p2

1

2mN

×
{

µV

⎡
⎣arccos

⎛
⎝ mN√(

mN + 1
2ω

)2 − p2

⎞
⎠

+ i ln

⎛
⎝ mN + 1

2ω + p√(
mN + 1

2ω
)2 − p2

⎞
⎠

⎤
⎦

− µV

mN

(
1

a0
+ ip − 1

2
r0p

2

)
F+ + ωL1

}
, (8)

XMS = −
√

πγ

1 − γρd

1

γ + ip − 1
2ρd (γ 2 + p2)

1

2mN

×
{

µS

⎡
⎣arccos

⎛
⎝ mN√(

mN + 1
2ω

)2 − p2

⎞
⎠

+ i ln

⎛
⎝ mN + 1

2ω + p√(
mN + 1

2ω
)2 − p2

⎞
⎠

⎤
⎦

− µS

mN

[
γ + ip − 1

2
ρd (γ 2 + p2)

]
F+ + 2ωL2

}
,

(9)
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XEV =
√

πγ

1 − γρd

1

m2
N

p

ω
F+, YES =

√
πγ

1 − γρd

1

m2
N

p

ω
F− ,

(10)

YMV =
√

πγ

1 − γρd

µV

2m2
N

F− , YMS =
√

πγ

1 − γρd

µS

2m2
N

F− ,

(11)

with

2F± = 1

1 + ω
2mN

− �p·k̂
mN

± 1

1 + ω
2mN

+ �p·k̂
mN

, (12)

where p = | �p| and ω is the incoming photon energy in the
c.m. frame.

IV. DIFFERENTIAL CROSS SECTION AND NEUTRON
SPIN POLARIZATION

We calculate the differential cross section and neutron spin
polarization Py ′ in the c.m. frame.1 The differential cross
section is given as

σ (θ ) = dσ

d

= α

24π

pE1

ω

∑
spin

|A|2 , (13)

where

S−1
∑
spin

|A|2 = 16(|XMS |2 + |YMV |2) + 8(|XMV |2 + |YMS |2)

+12[1 − (p̂ · k̂)2](|XEV |2 + |YES |2) . (14)

The symmetry factor S is equal to 2 in the present case. In

Eq. (13), α is the fine-structure constant, E1 =
√

m2
N + p2

is the energy of an outgoing nucleon in the c.m. frame,
and

p = 1

2

√(
ω +

√
m2

d + ω2
)2 − 4m2

N , (15)

where md is the mass of the deuteron. The total cross section
is obtained by integrating Eq. (13) over the direction of �p.

To calculate the neutron spin polarization, we introduce the
spin-isospin projection operator,

P± = 1
2 (1 − τ3) 1

2 (1 ± �σ · n̂) , (16)

where n̂ is the neutron spin polarization axis. We follow the
convention for coordinates in [14], from which we have
k̂=(0, 0, 1), n̂=ŷ ′=(− sin φ, cos φ, 0), and p̂=(sin θ cos φ,

sin θ sin φ, cos θ ), where θ and φ are the colatitude and
azimuthal angles in the c.m. frame. Inserting the projection

1If comparison with the experimental data necessitates it, we
shall convert them into laboratory-frame quantities. Numerically, this
conversion is not important in the present case.

operator in the spin-isospin summation of the squared ampli-
tude, we obtain

S−1
P∑

spin

|A|2 = 4[|XMS |2+ |YMV |2− (X∗
MSYMV + Y ∗

MV XMS)]

+ 2[|XMV |2 + |YMS |2 − (X∗
MV YMS

+Y ∗
MSXMV )] + 3[1 − (k̂ · p̂)2][|XEV |2

+ |YES |2 − (X∗
EV YES + Y ∗

ESXEV )]

± in̂ · (k̂ × p̂)[(X∗
EV XMV − X∗

MV XEV )

+ (Y ∗
ESYMS − Y ∗

MSYES)

− (Y ∗
ESXMV − X∗

MV YES)

− (Y ∗
MV YMS − Y ∗

MSYMV )] . (17)

Noting that, whereas XMV and XMS are complex, XEV , YMV ,
YMS , and YES are real, we arrive at a final form for the
polarization Py ′ as

Py ′ = σ+(θ ) − σ−(θ )

σ+(θ ) + σ−(θ )

= −2 sin θ (XEV − YES) ImXMV /{4(|XMS |2
+ |YMV |2 − 2YMV ReXMS)

+ 2(|XMV |2 + |YMS |2 − 2YMS ReXMV )

+ 3(1 − cos2 θ )(|XEV |2 + |YES |2 − 2XEV YES)} .

(18)

Since x̂ ′ = (cos θ cos φ, cos θ sin φ, − sin θ ) and ẑ′ =
(sin θ cos φ, sin θ sin φ, cos θ ), one can easily verify that Px ′

and Pz′ vanish in the chosen coordinate system.

V. RESULTS AND DISCUSSION

Figure 2 shows the total cross section σ for the γ d → np

reaction from threshold to Elab
γ = 30 MeV. It is seen that, at low

energies, there are a few data points that are off the calculated
σ curve. We remark, however, that the error bars in Fig. 2
only represent statistical errors and that the error bars are
likely to become significantly larger when systematic errors
are included. The data at higher energies, Elab

γ � 15 MeV,
exhibit some scatter, but their overall behavior is consistent
with the calculated cross sections. Thus we conclude that our
dEFT calculation up to NLO, which contains no adjustable
parameters after the two LECs (L1 and L2) have been fixed,
can reproduce the total-cross-section data reasonably well.

In Fig. 3 we plot the differential cross section σ (θ ) at
Elab

γ = 19.8 MeV, where θ is the scattering angle in the c.m.
frame; Fig. 3 also shows the data from [16]. It can be seen that
the calculated differential cross section is consistent with the
measurement.

Figure 4 shows the angular distribution of the polarization
Py ′ calculated for Elab

γ = 2.75 MeV, along with the experimen-
tal data. There are two sets of data available in the literature.
One set (referred to as John61) is from John et al. [17], and
the other set (referred to as Jewell65) is from Jewell et al. [18].
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FIG. 2. Total cross section σ for the γ d → np process as a
function of the laboratory-frame photon energy Elab

γ (MeV). The long-
dashed and short-dashed lines show the M1 and E1 contributions,
respectively; the solid line gives the sum of the E1 and M1
contributions. The points with error bars represent experimental data.
(The experimental data are obtained from the National Nuclear Data
Center (NNDC) Web page [15].)

We note that John61 has significantly larger error bars than
Jewell65. Figure 4 indicates that our results agree with John61
within the large error bars except at cos θ � −0.75. However,
compared with Jewell65, the theoretical curve clearly lies
below the experimental values for the entire angular range. In
fact, this pattern of discrepancy between theory and experiment
was already discussed in Ref. [18], where the authors used
theoretical values of Py ′ that turn out to be close to what
we have obtained here. It should be added that Py ′ for Elab

γ =
2.75 MeV calculated in SNPA [1] agrees with our results. Thus
the data set Jewell65, which has much smaller error bars than
the earlier set John61, disagrees with both the latest SNPA and
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-1 -0.5  0  0.5  1

10
0

σ(
θ)

/σ

cosθ

This work
De Pascale85

FIG. 3. Differential cross section 100 × σ (θ )/σ at Elab
γ =

19.8 MeV, where θ is the scattering angle in the c.m. frame. The
experimental data labeled “De Pascale85” are taken from Ref. [16].
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FIG. 4. Py′ at Elab
γ = 2.75 MeV plotted as a function of cos θ . The

experimental data labeled “John61” are from [17], and those labeled
“Jewell65” are from [18].

dEFT calculations.2 The persistence of the Py ′ puzzle suggests
the desirability of a new measurement of Py ′ .

Figure 5 shows, as a function of Elab
γ , the Py ′ for the

laboratory-frame scattering angle θlab = 45◦ calculated in
dEFT; also shown are the experimental data taken from [19].
Figure 5 includes the results of the previous SNPA calculation
[1] as well; the values labeled “IA” correspond to the impulse
approximation (IA), while those labeled “MEC” include the
meson exchange currents. We can see from Fig. 5 that
the results of our dEFT calculation completely disagree with
the data. Figure 5 also indicates that the present dEFT
calculation gives values of Py ′ significantly different from
those obtained in the SNPA calculation [1] (although, for

2We remark in passing that, if we multiply the calculated values of
Py′ with a factor of about 0.7, the scaled results agree with Jewell65.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  5  10  15  20  25  30

P
y’

E lab
γ (MeV)

θlab = 45o

This work
Nath72

Av18 IA
Av18 MEC

FIG. 5. Py′ at θlab = 45◦ plotted as a function of Elab
γ , where

θlab is the scattering angle in the laboratory frame. The data labeled
“Nath72” are from [19]. Solid triangles and open circles are results
of IA and MEC in SNPA, respectively [1].
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FIG. 6. Py′ at θlab = 90◦ plotted as a function of Elab
γ . The data

labeled “Holt83” and “Drooks” are from [20] and [21], respectively.
Solid triangles and open circles are results of IA and MEC in SNPA,
respectively [1].

Elab
γ � 10 MeV, the dEFT curve happens to be rather close to

the IA values in [1]). Whereas the SNPA values increase almost
linearly as functions of Elab

γ (with the IA curve increasing more
rapidly than the MEC curve), Py ′ obtained in dEFT almost
tapers off around Elab

γ ≈ 10 MeV. This latter feature worsens
the discrepancy between experiment and theory, which was
already conspicuous with the use of the SNPA values of Py ′ .

Figure 6 shows, as a function of Elab
γ , the Py ′ at θlab = 90◦

calculated in dEFT, together with three sets of experimental
data taken from Refs. [19–21]. Comparison between theory
and experiment is hampered by the fact that the data points
show pronounced scatter, exhibiting in some places even
inconsistencies among the data sets from the different sources.
It is also curious that, for Elab

γ � 10 MeV, the data points show
rather conspicuous oscillatory behavior. We may summarize
the current situation with the statement that the average
behavior of the experimental values of Py ′ (θlab = 90◦) agrees
with the results of our dEFT calculation within the very large
experimental uncertainties. Here again it seems desirable to
have new measurements of Py ′ . Figure 6 also gives Py ′ obtained
in a SNPA calculation [1]. It is seen that, within SNPA, the
IA calculation always gives larger values of Py ′ than the MEC
case. The curve corresponding to our dEFT calculation lies
between the IA and MEC values for Elab

γ � 10 MeV, but it
approaches the IA results as Elab

γ increases.
In Fig. 7, we plot the dEFT values of Py ′ at θlab = 135◦ as

a function of Elab
γ . For comparison, we also show the SNPA

values of Py ′ for the IA and MEC cases [1]. It can be seen that,
for Elab

γ � 5 MeV, the dEFT and SNPA results are close to
each other but that a qualitative difference appears for Elab

γ �
8 MeV; the dEFT curve shows slow, monotonic increase,
whereas the SNPA results (both IA and MEC cases) start
decreasing around Elab

γ � 10 MeV. We also remark that, in our
dEFT calculation, the dominant contributions to Py ′ are pro-
portional to sin θ or cos2 θ , which implies Py ′ (θlab = 135◦) ≈
Py ′ (θlab = 45◦). Figure 7, which also includes Py ′ (θlab = 45◦),
indicates that Py ′ (θlab = 135◦) ≈ Py ′ (θlab = 45◦) holds rather

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

 0  5  10  15  20  25  30

P
y’

Elab
γ (MeV)

θlab =135o

θlab=45o

Av18 IA
Av18 MEC

FIG. 7. Py′ plotted as a function of Elab
γ for θlab = 135◦ (solid

line) and θlab = 45◦ (dashed line). Solid triangles and open circles are
results of IA and MEC in SNPA, respectively [1].

well. In contrast, the calculation in [1] does not share this
feature, another qualitative difference between our results
and those in [1]. In regard to comparison with experiment,
because we were unable to retrieve the relevant data from
the literature, we cannot make a direct comparison of the
theoretical Py ′ (θlab = 135◦) with experiment. However, to the
extent that Py ′ (θlab = 135◦) ≈ Py ′ (θlab = 45◦) holds, we can
compare our theoretical curve with the data for Py ′ (θlab = 45◦)
shown in Fig. 5.

VI. CONCLUSIONS

We have applied the pionless EFT-with-dibaryon (dEFT)
formalism to the γ d → �np reaction for the incident photon
energy up to 30 MeV. As far as the total cross section and
the differential cross section are concerned, the results of
our dEFT calculation agree with those of the latest SNPA
calculation by Schiavilla [1]. These theoretical values are in
reasonable agreement with the data, which at present have
appreciable uncertainties. On the other hand, for the neutron
polarization Py ′ , the results of our dEFT calculation are found
to be significantly different from those obtained in SNPA [1],
indicating the sensitivity of polarization observables to the
theoretical frameworks used. It is noteworthy that, even if we
interpret the difference between the EFT and SNPA results
as a rough measure of the existing theoretical uncertainties,
the “Py ′ puzzle,” i.e., the discrepancy between the theoretical
and experimental values of Py ′ , still persists. Our results
indicate that Py ′ obtained in dEFT can exhibit an even larger
discrepancy with the data than the SNPA calculation does for
certain ranges of the scattering angle.

We remark that, at energies larger than Elab
γ ∼ 15 MeV,

the contributions of final-state partial waves higher than those
considered in our present calculation may become significant
and that the SNPA calculation [1] includes these higher partial
waves. This may explain part of the differences between the
dEFT and SNPA results for Py ′ . Higher-order effects within
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dEFT also need to be examined despite the good convergence
property of dEFT found previously for many observables. It
should be noted, however, that Christlmeier and Grießhammer
[22] have carried out an N2LO calculation in dEFT for
the longitudinal and transverse response functions for the
d(e, e′) reaction. According to that work, it is highly unlikely
that the large discrepancy between theory and experiment
found for some of these response functions can be ascribed
to higher-order terms in the dEFT expansion. A similar
conclusion may hold for Py ′ , and a calculation going up to
N2LO for the γ d → �np reaction seems warranted. We also
remark that, even at energies below 10 MeV, the inclusion
of higher-order corrections is desirable in that it will reduce
theoretical uncertainties and help sharpen the issue of the
discrepancy between dEFT and SNPA at low energies.

We make here a brief comment on the treatment of the
internal structure of the deuteron in dEFT. The introduction
of the elementary dibaryons, ds and dt , in dEFT might give
the impression that the deuteron structure has no place in
dEFT. It should be noted, however, that a photon coupled to
the intermediate nucleon [Fig. 1(b)] gives rise to momentum
dependence in the deuteron form factor, and thus the structure
effects subsumed in the form factor can be accommodated
in dEFT. In Ref. [10], the electromagnetic form factors for
the deuteron were calculated in dEFT up to N3LO, and
the differential cross sections for e-d elastic scattering were
computed with the use of these form factors. The functions
A(q) and B(q), which represent the momentum dependence
of the cross section (see Ref. [10] for the definitions of these
functions) were compared with the experimental data and
also with the results of other theories, and good agreement
in the low-momentum transfer region was reported. Given
the generally good convergence properties of dEFT, we may

expect that our present NLO calculation incorporates the bulk
of the deuteron structure effects, even though a possibility
does exist that Py ′ is a “delicate” quantity that is exceptionally
sensitive to higher-order terms. In this context also, an
extension of the present work to higher chiral orders seems
of importance.

It is worth emphasizing that the accurate understanding
of polarization observables is also important in connection
with parity-violating observables in nuclear electromagnetic
processes [23]. In the process γ d → �np, for example, the
neutron polarizations along the x̂ ′ and ẑ′ directions vanish with
the parity-conserving interactions, as mentioned before, but
they can be nonvanishing with the parity-violating interactions.
Theoretical prediction on these parity-violation observables
requires high accuracies in both the strong and electromagnetic
amplitudes. A polarization observable that is sensitive to
the interference between the strong and the electromagnetic
amplitudes can be a good testing ground for the reliability of
parity-violation calculations as well.

To summarize, our study points to the necessity of further
studies, both experimental and theoretical, of the spin observ-
ables in the γ d → np reaction.
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