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Pion and kaon valence-quark parton distribution functions
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A rainbow-ladder truncation of QCD’s Dyson-Schwinger equations, constrained by existing applications to
hadron physics, is employed to compute the valence-quark parton distribution functions of the pion and kaon.
Comparison is made to π -N Drell-Yan data for the pion’s u-quark distribution and to Drell-Yan data for the
ratio uK (x)/uπ (x): the environmental influence of this quantity is a parameter-free prediction, which agrees well
with existing data. Our analysis unifies the computation of distribution functions with that of numerous other
properties of pseudoscalar mesons.
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Experimental information on the quark and gluon parton
distribution functions (PDF) in the pion have primarily been
inferred from the Drell-Yan reaction [1–3] in pion-nucleon
and pion-nucleus collisions. Kaon PDF data exist in the form
of the ratio uK (x)/uπ (x) [1,4]. While the nucleon PDFs are
now fairly well determined, the pion and kaon PDFs remain
poorly known. Reference [5] reviews both the experimental
and theoretical status of nucleon and pion PDFs. Since the
pion is central to hadron physics, and its key characteristics
are dictated by dynamical chiral symmetry breaking, pion
structure is a critical testing ground for our understanding of
nonperturbative QCD. Much more theoretical work has been
devoted to the pion elastic charge form factor (e.g., [6]), ππ

scattering (e.g., [7]), and the pion electromagnetic transition
form factor (e.g., [8]) than has been devoted to the pion PDFs.
Herein we take a material step toward ameliorating that deficit.

Lattice-regularized QCD is restricted to low-order mo-
ments of the PDFs: the pointwise x dependence is not
directly accessible [5,9], and model calculations of PDFs
are challenging. Chiral symmetry has guided studies of pion
PDFs within the Nambu–Jona-Lasinio (NJL) model [10] at
the expense of an unphysical point-particle structure for
the pion Bethe-Salpeter amplitude, and ambiguities from a
dependence upon regularization procedure owing to the lack
of renormalizability. Constituent quark models [11], instanton-
liquid models [12], and semiempirical hadronic Fock state
expansion models [13] have also been used, with the last
reporting results for uK (x)/uπ (x), too. In all these approaches,
it is difficult to have pQCD elements coexisting naturally with
nonperturbative aspects of a bound state while respecting the
quantum field theoretical nature of the underlying dynamics.
The large x behavior of the pion PDFs provides an illustration.
The QCD parton model [14] and pQCD [15] are clear: at a
scale of order-�QCD the behavior is uπ (x) ∝ (1 − x)α with
α = 2 + γ where γ > 0 is a logarithmic correction. However
the above models imply an α ranging from 0 to 1, or at most
1.5 [5].

These issues may in principle be addressed if the PDFs
can be obtained from truncations of QCD’s Dyson-Schwinger
equations (DSEs). The DSEs are a hierarchy of coupled inte-
gral equations for the Schwinger functions (n-point functions)
of a theory. Bound states appear as poles in the appropriate n-
point functions; e.g., the bound-state Bethe-Salpeter equation
(BSE) of field theory appears after taking residues in the
inhomogeneous DSE for the appropriate color singlet vertex.
Numerous reviews, e.g., [16], describe the insight into hadron
physics achieved through the use of the rainbow-ladder (RL)
truncation of the DSEs, which is the leading order in a
systematic, symmetry-preserving scheme [17].

The first DSE study of PDFs was conducted for the
pion [18] in an analysis that employed phenomenological
parametrizations of both the Bethe-Salpeter amplitude and
dressed-quark propagators. The purpose of this present work
is to employ numerical DSE solutions in the computation of
the pion and kaon PDFs, utilizing the same RL model that
successfully predicted electromagnetic form factors [6,19–21];
and to study the ratio uK (x)/uπ (x) in order to elucidate aspects
of the influence of a hadronic environment.

In the Bjorken limit, deep inelastic scattering selects the
most singular behavior of a correlator of quark fields of the
target with light-like and causal distance separation z2 ∼ 0+.
With incident photon momentum along the negative three-axis,
the kinematics selects z+ ∼ z⊥ ∼ 0, leaving z− as the finite
distance conjugate to the quark momentum component xP +,
where x = Q2/2P · q is the Bjorken variable, q2 = −Q2

is the spacelike virtuality of the photon, and P is the
target momentum. To leading order in the operator product
expansion, the target structure functions are proportional to
the charge-weighted sum of PDFs, qf (x), for parton of flavor
f . The PDF is given by the correlator [22,23]

qf (x) = 1

4π

∫
dλ e−ixP ·nλ〈π (P )|ψ̄f (λn) �n ψf (0)|π (P )〉c,

(1)
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expressed here in manifestly Lorentz-invariant form. In the
infinite momentum frame, qf (x) is the probability that a single
f -parton has momentum fraction x = k · n/P · n [23]. In the
above, nµ and (for later use) pµ are light-like vectors satisfying
n2 = p2 = 0 and n · p = 2. They form a convenient basis for
the longitudinal sector of four-vectors. One has k · n = k+
and k · p = k−. The dominant component of q is parallel to n,
i.e., q− dominates. Note that qf (x) = −qf̄ (−x), and that the
valence quark amplitude is qv

f (x) = qf (x) − qf̄ (x). It follows

from Eq. (1) that
∫ 1

0 dx qv
f (x) = 〈π (P )|J+

f (0)|π (P )〉/2P + =
Fπ (0) = 1.

In our DSE framework, dynamical information on the
various nonperturbative elements, such as propagators and
bound-state amplitudes, is available in a Euclidean momentum
representation. (In our Euclidean metric: {γµ, γν} = 2δµν ,
γ †

µ = γµ, γ5 = γ4γ1γ2γ3, a · b = 	4
i=1aibi , �n = γ · n, and Pµ

timelike ⇒ P 2 < 0.) The corresponding formulation of Eq. (1)
is

qf (x) = −1

2

∫
d4k

(2π )4
δ(k · n − xP · n) trcd[i �n G(k, P )], (2)

where trcd denotes a color and Dirac trace, and G(k, P ) repre-
sents the forward q̄-target scattering amplitude. In Euclidean
metric the vectors n, p, P satisfy n2 = 0 = p2, n · p = −2,
P 2 = −m2

π , and P · n = −mπ .
The top part of Fig. 1 illustrates Eq. (2). In rainbow-ladder

truncation, which sums a symmetry-preserving subset of
dressed-quark and -gluon contributions to the bound state,
we have the decomposition illustrated in the bottom part
of Fig. 1. The four-point function S2 is the dressed-qq̄

two-body propagator and 
π is the Bethe-Salpeter bound-state
amplitude, both computed in the RL truncation. The schematic
form

∫
d4k S2 ⊗ i �n δ(k · n − xP · n) =S(�) 
n(�; x) S(�) is

one way to specify the required dressed-quark vector vertex

n(�; x). The RL truncation of Eq. (2) for the valence uπ (x) is
thus

uπ (x) = −1

2

∫
d4�

(2π )4
trcd [
π (�,−P )

× Su(�) 
n(�; x) Su(�) 
π (�, P ) Sd (� − P )
]

, (3)

where the dressed-quark propagator is S(�; ζ ) =
1/[i �� A(�2; ζ ) + B(�2; ζ )], with ζ being the renormalization
mass scale. Note that the

∫
d4k evident in Fig. 1 is contained

FIG. 1. Diagrammatic representation of parton distributions. Top
panel: the exact parton distribution corresponding to Eq. (2). Bottom
panel: Rainbow-ladder truncation of the amplitude G. S2 is the qq̄

propagator.

within the definition of 
n(�; x). This vertex satisfies an
inhomogeneous BSE (here with a RL kernel) specified by the
driving term i �n δ(� · n − xP · n).

This selection of dynamics is an exact parallel to the RL
treatment of the pion charge form factor at Q2 = 0, wherein
the dressed vertex is defined with the inhomogeneous term iγµ.
Chiral symmetry and vector current conservation are preserved
[6,19]. Equation (3) ensures

∫ 1
0 dx qv

f (x) = 1 for f = u, d̄

automatically since
∫

dx 
n(�; x) gives the Ward identity
vertex and the result follows from canonical normalization
of the BS amplitude.

We adopt the representation �µ = 1
2 (αpµ + βnµ) + k

µ

⊥ to
transform to new variables α = −� · n and β = −� · p, thus
converting Eq. (3) to the form

uπ (x) = −JE

2(2π )4

∫ +∞

−∞
dβ d2�⊥ T (n, p; �, P )|α=xP ·n, (4)

where JE = −i/2 is the Jacobian of the variable transforma-
tion; and T is the result of the trace in Eq. (3), using 
n(�; x) ≈
nµ∂S−1(�)/∂�µ δ(� · n − xP · n), which is the correct result
from the Ward identity after

∫
dx.

Since qf (x) is obtained from the hadron tensor Wµν ,
which in turn can be formulated from the discontinuity
T µν(ε) − T µν(−ε) of the forward Compton amplitude T µν ,
we observe that all enclosed singularities from the difference of
contours cancel except for the cut that produced the δ-function
constraint on α.

We employ the RL-DSE model developed in
Refs. [24–26], in which the BSE kernel takes the form
K = −4π αeff(k2) Dfree

µν (k) λi

2 γµ ⊗ λi

2 γν , where k is the
gluon momentum. The parameters used here are exactly
as listed in Ref. [26]; besides the current quark masses,
there is one infrared strength parameter for αeff(k2) and it
reproduces QCD’s one-loop renormalization-group behavior
for k2 >∼ 2 GeV2. A more general method for treating
K has recently become available [27]. The DSE that
produces S(�) is also determined by αeff(k2) [24–26]; and
the combination of the DSE and BSE produces dressed
color-singlet vector and axial-vector vertices satisfying their
respective Ward-Takahashi identities. This ensures that the
chiral limit ground-state pseudoscalar bound states are the
massless Goldstone bosons from dynamical chiral symmetry
breaking [24,25]; and it ensures electromagnetic current
conservation [28]. This kernel is found to be successful
for, among other things, light-quark meson properties [26],
including electromagnetic elastic [6,19] and transition [20,21]
form factors. Selected pion and kaon results are displayed in
Table I.

For 
π (�, P ) we employ the most general form,

i
π (�, P ) = γ5 [iEπ (q; P ) + �PFπ (q; P )

+ �q Gπ (q; P ) + σµνqµPνHπ (q; P )
]
, (5)

where q = � − P/2 is the relative qq̄ momentum appropriate
to Eq. (3). For a charge-conjugation eigenstate (e.g., the pion),
the invariant amplitudes E,F , and H are even in q · P ,
while G is odd. The kaon invariant amplitudes contain both
even and odd components. We expand the q · P dependence
in Chebyshev polynomials [26], keeping terms of order
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TABLE I. Illustrative selection of DSE results [6,19,20,26]
obtained with the RL kernel employed herein compared with
experimental values [29]. (Dimensioned quantities are listed in GeV
or fm2, as appropriate.)

mπ fπ mK fK r2
π r2

K+ gπγγ r2
πγ γ

Expt. 0.138 0.092 0.496 0.113 0.44 0.34 0.5 0.42
Calc. 0.138 0.092 0.497 0.110 0.45 0.38 0.5 0.41

n = 0 − 3. The domain of �2 over which the quark propagators
are needed in this application is larger than what is available
from previous solutions of the quark DSE. We therefore adopt
a constituent mass pole approximation for the denominator
of the spectator quark propagator [18]. Constituent spectator
masses (Mu,Ms) = (0.4, 0.55) GeV permit a minimal adjust-
ment to establish the normalization 〈x0〉. We compared the
approximation 
n(�; x) ≈ nµ∂S−1(�)/∂�µ δ(� · n − xP · n)
with the bare vertex truncation and found that no distribution
moment changed by more than 3%. This approximation
becomes exact in the limit of an infrared dominant RL kernel
[30].

In Fig. 2 we display our DSE result [31] for the valence u-
quark distribution evolved to Q2 = (5.2 GeV)2 in comparison
with πN Drell-Yan data [3] at a scale Q2 ∼ (4.05 GeV)2

obtained via a LO analysis. Our distribution at the model scale
Q0 is evolved using leading-order DGLAP. The model scale
is fixed to Q0 = 0.57 GeV by matching the xn moments for
n = 1, 2, 3 to the experimental analysis given at (2 GeV)2 [34].
Our momentum sum rule result 〈x〉u+d = 0.74 (pion), 〈x〉u+s =
0.76 (kaon) at Q0 shows clearly the implicit inclusion of gluons
as a dynamical entity in a true covariant bound-state approach.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

xu
v(x

)

DSE-BSA, this work  27 GeV
2

E615 πN Drell-Yan 16.4 GeV
2

Expt NLO analysis 27 GeV
2

DSE (Hecht et al.) 27 GeV
2

Aicher et al. 27 GeV
2

FIG. 2. (Color online) Pion valence quark distribution function
evolved to (5.2 GeV)2. Solid curve: full DSE calculation [31];
dot-dashed curve: semi-phenomenological DSE-based calculation in
Ref. [18]; filled circles: experimental data from Ref. [3], at scale
(4.05 GeV)2; dashed curve: NLO reanalysis of the experimental
data [32]; and dot-dot-dashed curve: NLO reanalysis of experimental
data with inclusion of soft-gluon resummation [33].

Only a point-meson BS amplitude can produce a value of 1.0
for the momentum sum rule at Q0 [8].

In Fig. 2 we also show the result from the first DSE study
[18], which employed phenomenological parametrizations of
the nonperturbative elements. Our present calculation lies
marginally closer to the Drell-Yan data in Ref. [3] at high
x. However, this is not significant because both DSE results
agree with pQCD; viz., u(x) ∼ (1 − x)α with α >∼ 2 and
growing with increasing scale, which is not true of the reported
Drell-Yan data.

Motivated by this, a NLO reanalysis of the data was per-
formed [32]; and we also show that result at Q2 = (5.2 GeV)2

in Fig. 2. It does clearly reduce the extracted PDF at high
x but not enough to resolve the data’s apparent discrepancy
with pQCD behavior, which is discussed at length in Ref. [5].
The DSE exponents are 2.4 at model scale Q0 = 0.54 GeV
in Ref. [18], and 2.1 at scale Q0 = 0.57 GeV for the present
study. DSE analyses do not allow much room for a larger
PDF at high x. A resolution of the conflict between data
and well-constrained theory has recently been proposed: a
reanalysis of the original data at NLO with a resummation
of soft gluon processes [33] produces a PDF whose behavior
for x > 0.4 is essentially identical to that of the earlier DSE
calculation [18], as is apparent in Fig. 2.

In Fig. 3 we display the first nine moments of our result for
uπ (x) at scale Q2 = (5.2 GeV)2 in comparison with the earlier
DSE result from Ref. [18] and the NLO reanalysis [32] of the
original E615 data, all plotted as a percent deviation from the
moments of the most recent analysis in Ref. [33]. Considering
that the high moments are small, e.g., 〈x9〉 ∼ 0.003, the two
DSE results are both equally well in accord with the recent
analysis.

The ratio uK/uπ measures the local hadronic environment.
In the kaon, the u quark has a heavier partner than in the pion,
and this should cause u(x) to peak at lower x in the kaon. Our
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FIG. 3. (Color online) Moments of the pion’s valence u(x) at
scale (5.2 GeV)2, shown as a percent deviation from the recent
(ASV) reanalysis [33] (NLO, with soft gluon resummation) of the
1989 E615 πN Drell-Yan data [3]. Filled circles: present full DSE
calculation [31]; filled squares: semi-phenomenological DSE-based
calculation [18]; and filled diamonds: reanalysis (NLO, without soft
gluon resummation) of the same Drell-Yan data [32].
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FIG. 4. (Color online) DSE prediction for the ratio of u-quark
distributions in the kaon and pion [5,31]. The full Bethe-Salpeter
amplitude produces the solid curve; the reduced BS amplitude
produces the dashed curve. The reduced amplitude retains only
the invariants and amplitudes involving pseudoscalar and axial
vector Dirac matrices, and ignores dependence on the variable
q · P . These are part of the reductions that occur in a pointlike
treatment of the pseudoscalar mesons. The experimental data are
from [1,4].

DSE calculation [31] is shown in Fig. 4 along with available
Drell-Yan data [1,4], which does not separate sea and valence
quarks. Our parameter-free result agrees well with the data.
The ratio at x = 0 approaches one under evolution owing
to the increasingly large population of sea quarks produced
thereby [35]. On the other hand, the ratio at x = 1 is a fixed
point under evolution; i.e., it is independent of the scale
Q2, and is therefore a persistent probe of nonperturbative
dynamics [5].

In Fig. 4 we also display a calculation which employs
a reduced BS amplitude: only the leading two invariant
amplitudes E(q; P ) and F (q; P ) are retained, and each
is truncated to the lowest Chebyshev moment in q · P ,
i.e., E(q; P ) → Ẽ(q2). The field theory variable q · P is a
constant in quantum mechanics. (These reductions in the
BSE vertices occur within a NJL model description; but that
model also ignores the q2 dependence of the vertices.) These
simplifications do not change the qualitative behavior of the
ratio, but the detailed quantitative agreement is impaired.

An estimate of the leading large-x behavior
uK (x) ∼ AK (1 − x)α can be made in the limit where
the quark propagators are characterized by constituent masses
Mu,Ms and the vertex is taken to be i �n δ(� · n − xP · n),
preserving the Ward identities. We also truncate 
K to
γ5 EK (q2) = γ5 NK/(q2 + �2

K ) where q = � − P/2. The
quark mass dependence of AK and Aπ will provide an estimate
of uK (1)/uπ (1). For x > 1/2 the pole in the spectator quark
propagator is the only one in the upper half plane and the �−
integral may readily be evaluated to yield

uK (x) = 4Ncπ
2

(2π )4

∫ ∞

µm(x)
dµ

x M2 + µ + M2
u[

µ + M2
u

]2 E2
K (q2). (6)

Here M2 = m2
K − (Ms − Mu)2; we have changed the inte-

gration variable from ��⊥ to µ = −�2, where the latter is
the value at the �− pole; q2 evaluated at the �− pole is
q2 = m2

K/4 + (µ − M2
s )/2; and µm(x) = a/(1 − x) − xm2

K ,
with a = xM2

s . This divergence of the lower limit for large
x guarantees that the result is completely determined by
the ultraviolet behavior of the propagators and bound-state
amplitudes.

The integral can be expressed as

uK (x) = N

∫ ∞

0
dµ̂

a
1−x

+ b + µ̂[
a

1−x
+ c + µ̂

]2

(
a

1 − x
+ d + µ̂

)−n

,

(7)

where bound-state amplitudes determined by one gluon ex-
change correspond to n = 2. The quantities a, b, c, d depend
on the mass-dimensioned scales in the system and are
nonsingular in x: a scales with the square of the spectator quark
mass and other details are immaterial. A change of variable
to µ̄ = (1 − x)µ̂/a shows that uK (x) ∝ [(1 − x)/a]n when
a/(1 − x) is greater than any physical mass scale in the system.
Running of the struck quark mass over a wide domain can
be accommodated. We thus have uK (x) ∝ N2

K (1 − x)2/M4
s

and uπ (x) ∝ N2
π (1 − x)2/M4

u . Note that it is the bound-state
amplitudes that completely determine the exponent α [5]: if
the argument of EK/π did not diverge at large x, the com-
bined scaling effect of the propagators would vanish, giving
α = 0.

The above analysis applied to the ratio suggests

uK (1)/uπ (1) ∼ f 2
π

f 2
K

(Mu/Ms)4 ∼ 0.3, where the ratio of Bethe-
Salpeter amplitude normalization constants is estimated from
our computed fπ/fK . This estimate is in fair accord with
our full calculation in Fig. 4. The NJL model with a
sharp cutoff yields (Mu/Ms)2 [10]. However, in general this
lacks a physical contribution from bound-state amplitudes
and NJL results depend sensitively upon the regularization
scheme.

With this study we have unified the computation of distribu-
tion functions that arise in analyses of deep inelastic scattering
with that of numerous other properties of pseudoscalar
mesons, including meson-meson scattering and the successful
prediction of electromagnetic elastic and transition form
factors. Our results confirm the large-x behavior of distribution
functions predicted by the QCD parton model and provide a
good account of the π -N Drell-Yan data for uπ (x); and our
parameter-free prediction for the ratio uK (x)/uπ (x) agrees
with extant data, showing a strong environment dependence of
the u-quark distribution.
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