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Can one identify the intrinsic structure of the yrast states in 48Cr after the backbending?
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The backbending phenomenon in 48Cr has been investigated using the recently developed projected
configuration interaction (PCI) method, in which the deformed intrinsic states are directly associated with
shell model wave functions. Two previous explanations, (i) K = 0 band crossing and (ii) K = 2 band crossing,
have been reinvestigated using PCI, and it was found that both explanations can successfully reproduce the
experimental backbending. The PCI wave functions in the pictures of K = 0 band crossing and K = 2 band
crossing are highly overlapped. We conclude that there are no unique intrinsic states associated with the yrast
states after backbending in 48Cr.
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The backbending of 48Cr was observed more than 10
years ago [1,2], but its interpretation remains controversial
and challenging for the existing nuclear models. Shell model
(SM) calculations have reproduced very well the yrast states of
48Cr [3–5], but it is difficult to obtain physical insight because
the laboratory frame wave function does not provide direct
information associated with the deformed intrinsic structure.
The cranked Hartree-Fock-Bogoliubov (CHFB) method is a
complementary theory [6] often used to analyze the deformed
intrinsic states. According to one CHFB analysis [4], 48Cr is
an axial rotor up to the backbending, after that the system
changes to a spherical shape. An alternative and more detailed
CHFB analysis [7] shows that the backbending of the 48Cr is
not associated with the single particle level crossing and that
the intrinsic configuration remains unchanged.

The projected shell model (PSM) [8,9] is an alternative
technique that mixes the best intrinsic SM configuration
with other associated particle-hole configurations. The PSM
analysis [10] indicates that the backbending in 48Cr is due to
a band crossing involving an excited four-quasiparticle (4-qp)
band with K = 2, which represents a configuration of broken
neutron and proton pairs. In addition, the same Ref. [10] uses
the generator coordinate method (GCM) that provides the
picture of a spherical band crossing, which in some sense is
similar to the result of CHFB. It is said that the PSM needs 4-qp
states to describe the spherical states with spin I � 10 [10].
However, a calculation of the overlap between the PSM wave
function and the GCM wave function seems to be necessary.

In the present Brief Report, the backbending in 48Cr is
investigated in the framework of the newly developed method
called projected configuration interaction (PCI) [11,12]. The
PCI basis is built from a set of Slater determinants (SDs). Those
SDs may have different shapes, including the spherical shape.
Hence, the nuclear states with different intrinsic shapes can
be mixed by the residual interaction. By using the same SM
Hamiltonian, the PCI results can be directly compared with
those of full SM calculations. Moreover, PCI uses deformed
single-particle bases and, therefore, the physics insight of
the results can be clearly analyzed. Different PCI bases can

be built in such a way that they reflect the nature of the
intrinsics states found in previous studies, such as CHFB (or
GCM) and PSM. PCI wave functions were shown to be good
approximations to those of full SM, and they can be obtained
using different bases. Thereafter, overlaps among PCI wave
functions can be calculated and analyzed to determine the
validity of various explanations. These features suggest that
PCI could shed new light on the interesting phenomenon of the
backbending in 48Cr. Other models using similar techniques
includes the family of VAMPIR [13] and the quantum Monte
Carlo diagonalization (QMCD) method [14].

For completeness we give here a brief introduction of
the PCI method (see Refs. [11,12] for more details). The
deformed single-particle (s.p.) states need to be generated from
a deformed s.p. Hamiltonian that can be written as

Hs.p. = hsph − 2
3ε2h̄ω0ρ

2P2 + ε4h̄ω0ρ
2P4, (1)

where hsph = ∑
i eic

†
i ci is the spherical s.p. Hamiltonian

assumed to have the same eigenfunctions as the spherical
harmonic oscillator and ei energies are properly adjusted such
that the SD with lowest energy is close to the HF vacuum.
For the pf shell we use ef7/2 = 0.0 MeV, ep3/2 = 4.5 MeV,
ef5/2 = 5.0 MeV, and ep1/2 = 6.0 MeV. In Eq. (1) ε2, ε4 are the
quadrupole and hexadecapole deformation parameters, Pl are
Legendre polynomials, ρ = r/b, and we take b = 1.93 fm for
the harmonic oscillator parameter [3,4].

The SDs can be built with deformed s.p. states. Following
our previous papers [11,12], the general structure of the PCI
basis can be written as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0p − 0h, np − nh

|κ1, 0〉, |κ1, j 〉, . . . ,
|κ2, 0〉, |κ2, j 〉, . . . ,

. . . . . .

|κN, 0〉, |κN, j 〉, . . .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (2)

where |κi, 0〉 (i = 1, . . . , N ) is an optimal [12] set of starting
states having different deformations. Assuming that these
|κ, 0〉 are found (in what follows we skip the subscript i to

057303-10556-2813/2011/83(5)/057303(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.83.057303


BRIEF REPORTS PHYSICAL REVIEW C 83, 057303 (2011)

keep notation short), a number of relative np-nh SDs, |κ, j 〉,
on top of each |κ, 0〉 are added to the SD basis selected with
the constraint [11]

�E = 1
2 (E0 − Ej + √

(E0 − Ej )2 + 4|V |2) � Ecut. (3)

Here E0 = 〈κ, 0|H |κ, 0〉, Ej = 〈κ, j |H |κ, j 〉, and V =
〈κ, 0|H |κ, j 〉. The PCI basis is then obtained by projecting
the selected SDs onto good angular momentum. The wave
functions, as well as the energy levels, are obtained by solving
the following generalized eigenvalue equation:

∑
κ ′

(
HI

κκ ′ − EINI
κκ ′

)
f I

κ ′ = 0. (4)

Here HI
κκ ′ and NI

κκ ′ are given by

HI
κκ ′ = 〈κ|HP I

KK ′ |κ ′〉, NI
κκ ′ = 〈κ|P I

KK ′ |κ ′〉, (5)

where P I
KK ′ is the angular momentum projection operator,

and H is the SM Hamiltonian. In this study we take the KB3
interaction [15], which has been used by Caurier et al. in their
SM calculations of 48Cr [4].

Following the method described in Ref. [12], we first
performed a “best” PCI calculation by setting N = 15 and
Ecut = 0.5 keV for all spins. The calculated energies, the E2
transition energies, and the B(E2) values are compared with
the full SM results in Fig. 1. The dimensions and the energy
differences of the PCI and SM for each spin are listed in Table I.
It is clear from Fig. 1 that the PCI results are very close to those
of the full SM. All energy differences are less than 100 keV,
indicating that all important correlations, including the T = 1
and T = 0 pairing, are properly taken into account.

To get a more clear insight into the structure of the states
contributing to the backbending in 48Cr, it is instructive to
choose much smaller PCI basis, which is accurate enough and
can be easily searched for the most important components.
The analysis is also simplified if these smaller PCI bases are
used to calculate all even-spin states from I = 0 to I = 16
using the method described in Ref. [11]. We chose two basic
|κ, 0〉 SDs. The first |κ1, 0〉 is a K = 0 configuration with
all eight valence nucleons occupying the orbits with |�| =
1/2(1f7/2) and |�| = 3/2(1f7/2), as shown in Fig. 2(a). The

FIG. 1. (Color online) Results obtained with “best” PCI and full
SM. (a) Yrast state energies vs spin. (b) E2 transition energy E(I ) −
E(I − 2) vs spin. (c) The BE2 values with the same wave functions
as in (a). The effective charges are taken to be 1.5e for protons and
0.5e for neutrons, which are the same as those used in Refs. [3,4].
Results of the full SM are taken from Ref. [3].

TABLE I. The J -scheme dimensions and the energy differences
of the best PCI and full SM.

Spin Full SM dimension Best PCI dimension EPCI − ESM (keV)

0 41 355 3949 25.75
2 182 421 4390 43.49
4 246 979 4845 58.85
6 226 259 5026 85.36
8 156 262 5168 61.58
10 83 247 5679 42.24
12 33 846 5302 21.22
14 10 095 2635 16.01
16 2038 1536 0.33

deformation of |κ1, 0〉 is given by ε2 = 0.19 and ε4 = −0.05.
This deformation was obtained by determining the minimum
of the energy surface of 〈K = 0|HKB3|K = 0〉 as a function of
ε2 and ε4 [see the dashed line in Fig. 2(b)]. A minimum energy
of 〈κ1, 0|HKB3|κ1, 0〉 = −28.296 MeV was found, which is
close to the HF energy −28.423 MeV. |κ1, 0〉 is believed
to be responsible for the low-spin yrast states before the
backbending, and the corresponding PCI basis that includes
the np-nh states selected by Eq. (3) is denoted as “g.s.” in
Table II.

The second basic SD, |κ2, 0〉, is chosen to describe the high
spin states after the backbending. According to the previous
studies mentioned in the Introduction, there are at least two
candidate configurations for |κ2, 0〉. First, as suggested by
the CHFB calculations, the backbending can be explained
without a band crossing [7], but by a shape change from large
deformation to small deformation [4]. The calculations of the
projected energy curves seem to be in good agreement with
this interpretation. As one can see from Fig. 2(b) (solid lines),
the deformation at minimum decreases as the spin increases.
Guided by this result, one can establish a possible |κ2, 0〉,
which has the same configuration as |κ1, 0〉, but whose shape
is spherical. Such a choice of |κ2, 0〉 SD would be consistent

FIG. 2. (Color online) (a) The K = 0 and K = 2 configurations
used in the present calculations of 48Cr. All four levels are from 1f7/2

subshell. (b) Potential energy curves of the K = 0 configuration in
(a) as functions of ε2. The solid lines show the projected energies and
the dashed line shows unprojected energy. ε4 was chosen to minimize
the potential energy for each ε2. KB3 interaction was used.
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TABLE II. PCI bases used for the backbending study in 48Cr. K = 0 and K = 2 configurations are shown in Fig. 2.

Basis g.s. A B C

K ε2 ε4 K ε2 ε4 K ε2 ε4 K ε2 ε4

|κ, 0〉 0 0.19 −0.05 0 0.00 0.00 2 0.00 0.00 2 0.19 −0.05
Dκ 143 192 366 280

with the GCM interpretation. One should recall that in the
PSM interpretation [10], the backbending in 48Cr is caused by
a K = 2 band crossing. Therefore, PCI seems to be ideally
suited to include and analyze another possible |κ2, 0〉 with
K = 2. Its configuration is also shown in Fig. 2(a), and its
structure can be chosen either spherical (see column B in
Table II) or of the same deformation as that of |κ1, 0〉 favored
by the PSM approach (see column C in Table II). In an attempt
to find the optimal structure of yrast states in 48Cr after the
backbending, we considered all three possibilities of |κ2, 0〉,
labeled with A, B, and C in Table II.

The np-nh |κ, j 〉 SDs built on top of each |κ, 0〉 are selected
by setting Ecut = 0.5 keV in Eq. (3). Consequently, the number
of selected |κ1, j 〉 is 142, and those of |κ2, j 〉 for A, B, and C
are 191, 365, and 279, respectively. Adding the |κ, 0〉 itself,
the total number of the selected SDs, Dκ , for each |κ, 0〉 is
listed in Table II.

The calculated lowest energies with basis g.s., A, B, and
C as functions of spin are shown in Fig. 3(a). The g.s. band
is very smooth, without exhibiting any backbending. For the
bases A, B, and C, all the corresponding energy curves cross
the g.s. band around spin I = 10. At I = 10, the lowest
energy is provided by basis C. This indicates that PSM is
more reasonable in describing the band-crossing region. The
overlaps between corresponding wave functions are shown
in Fig. 4(a). The large overlaps indicate that quite different
intrinsic bases would generate almost the same wave functions
after the angular momentum projection.

The Eγ (I ) = E(I ) − E(I − 2) energies calculated using
combinations of bases g.s. + A, g.s. + B, and g.s. + C are
shown in Fig. 3(b). The backbending phenomenon seems to
be easily reproduced by all these bases. As already discussed,

FIG. 3. (Color online) (a) PCI energies E(I ) as functions of spin
for the bases listed in Table II. (b) E2 transition energies E(I ) −
E(I − 2) vs spin I . Experimental data are taken from Ref. [2].

the g.s. + A basis is qualitatively similar to that used in the
CHFB and GCM analyses, while the g.s. + C basis follows the
scenario proposed by the PSM analysis. More importantly, as
shown in Fig. 4(b), the overlaps |〈�g.s.+A(I )|�g.s.+C(I )〉| are
at least 92%. For the first time, the equivalence of the CHFB
and PSM explanations has been confirmed. One should note,
however, that the backbending described with the g.s. + C
basis is quantitatively not as good as that described with the
g.s. + A basis. The reason could be the large deformation of
C basis. Changing the deformation of C basis to spherical,
one gets the g.s. + B basis, and the result is improved. This
feature supports the idea that the shape of 48Cr reduces after
backbending, as has been pointed out in Refs. [4,7].

Notice that the results with bases g.s. + A and g.s. + B are
almost identical, although the bases A and B have completely
different structures. Our calculations show that there are also
other intrinsic bases with K different than 0 and 2 that can
reproduce the backbending, and whose corresponding wave
functions are almost equivalent to those with the basis g.s. + A
or g.s. + B. In other words, one cannot find a unique intrinsic
state for the yrast states in 48Cr for I = 12−16. One can
get some insight into the apparent irrelevance of the intrinsic
structure at high spins by analyzing the case of I = 16, which
is a band termination state. In the space of π1f 4

7/2ν1f 4
7/2, there

is only one SD that reaches the maximum K = 16, showing
that only one I = 16 state can be constructed. However, many
π1f 4

7/2ν1f 4
7/2 SDs with various K values can be projected onto

good I , and we have many projected states with I = 16, which
are exactly identical and the projected energy is −18.342 MeV
for the KB3 interaction. Therefore, one can use any one
of the π1f 4

7/2ν1f 4
7/2 SDs to represent the state of band

termination.

FIG. 4. (Color online) (a) Overlaps among the PCI wave func-
tions for bases A, B, and C. Here 〈A|B〉 is the abbreviation of
|〈�A(I )|�B (I )〉|, and the same for the others. (b) Overlaps among the
PCI wave functions for basis sets g.s. + A, g.s. + B, and g.s. + C.
(c) Overlaps between the best PCI wave functions and those for basis
sets g.s. + A, g.s. + B, and g.s. + C.
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FIG. 5. (Color online) (a) Yrast state energies vs spin obtained
with PCI (open symbols) and full SM (solid symbols). (b) The BE2
values with the same wave functions as in (a). Results of the full SM
are taken from Ref. [3].

Calculation of the overlap between the PCI and the full SM
wave function is very difficult because the number of the norm
matrix elements, NPCI × NSM, is huge. Here NPCI and NSM

are dimensions of the PCI and the full (M-scheme) SM
spaces. However, Fig. 1 and Table I clearly show that the best
PCI calculations are almost identical to the full SM results.
Therefore, we assume that the best PCI wave functions can
be regarded as replacements of the full SM wave functions.
Overlaps between the best PCI wave functions and those
for basis sets g.s. + A, g.s. + B, and g.s. + C are given in
Fig. 4(c). One can see that the overlaps are generally large.
This fact clearly shows that the most important physics of the
yrast states in 48Cr has been incorporated into the PCI wave

functions with a very small basis. Therefore, the PCI energies
and the B(E2) values should be relatively close to those of the
exact values, and the results are shown in Fig. 5. With only
a small fraction of the best PCI dimension, the PCI energies
obtained with bases g.s. + A, g.s. + B, and g.s. + C are, on
average, only few hundred keV above the exact values. For
the B(E2) calculations, we used the same effective charges as
in Refs. [3,4]. The B(E2) values looks also close to the exact
ones.

In summary, the backbending in 48Cr has been studied with
a recently developed PCI method. PCI uses the same realistic
Hamiltonians and valence spaces as the SM calculations, but
only a set of properly selected SDs with different deformations
and associated np-nh configurations. The backbending in 48Cr
has been reproduced by using various PCI bases, carefully
selected to reflect the physics of the apparently different
intrinsic states found by the CHFB (GCM) and PSM analyses
of this case. Using the PCI capabilities of mixing these bases
we confirm for the first time that the backbending pictures
proposed by the CHFB and PSM methods are qualitatively
equivalent. Our analysis supports the conclusion that there is
no unique intrinsic state for spins larger than 10 in 48Cr.
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