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Reexamination of the astrophysical S factor for the α+d →6Li+γ reaction
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Recently, a new measurement of the 6Li (150 A MeV) dissociation in the field of 208Pb has been reported
[Hammache et al.,Phys. Rev. C 82, 065803 (2010)] to study the radiative capture α + d → 6Li + γ process.
However, the dominance of the nuclear breakup over the Coulomb one prevented the information about the
α + d → 6Li + γ process from being obtained from the breakup data. The astrophysical S24(E) factor has been
calculated within the α − d two-body potential model with potentials determined from the fits to the α − d

elastic scattering phase shifts. However, the scattering phase shift, according to the theorem of the inverse
scattering problem, does not provide a unique α − d bound-state potential, which is the most crucial input when
calculating the S24(E) astrophysical factor at astrophysical energies. In this work, we emphasize the important role
of the asymptotic normalization coefficient (ANC) for 6Li → α + d , which controls the overall normalization of
the peripheral α + d → 6Li + γ process and is determined by the adopted α − d bound-state potential. Since
the potential determined from the elastic scattering data fit is not unique, the same is true for the ANC generated
by the adopted potential. However, a unique ANC can be found directly from the elastic scattering phase
shift, without invoking intermediate potential, by extrapolation the scattering phase shift to the bound-state pole
[Blokhintsev et al.,Phys. Rev. C 48, 2390 (1993)]. We demonstrate that the ANC previously determined from the
α − d elastic scattering s-wave phase shift [Blokhintsev et al.,Phys. Rev. C 48, 2390 (1993)], confirmed by ab
initio calculations, gives S24(E), which at low energies is about 38% less than the other one reported [Hammache
et al.,Phys. Rev. C 82, 065803 (2010)]. We recalculate also the reaction rates, which are lower than those obtained
in that same study [Hammache et al.,Phys. Rev. C 82, 065803 (2010)].
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I. INTRODUCTION

The question of using low-energy scattering data to describe
bound states of composite systems turns out to be quite
important in different areas of contemporary quantum physics:
nuclear astrophysics, halo nuclei, effective field theory, gener-
alized Faddeev equations, condensed matter, ultracold atoms,
and so on. Elastic scattering data are usually accessible for
stable and even exotic nuclei (in inverse kinematics). In a
simplified approach, these data are analyzed within a two-body
potential model. This procedure consists in determination of
the two-body potential, which fits the elastic scattering phase
shift in the specific partial wave. A priori, the two-body
potential found from the fitting the elastic scattering data can
be complex and energy dependent. However, at sufficiently
low energies, where only the elastic channel is open (i.e.,
below all inelastic thresholds), the obtained phenomenological
potential becomes real. Using this potential, one can calculate
the binding energy of the bound state, which generates a
pole of the elastic scattering S-matrix element on the positive
imaginary semiaxis in the momentum plane (negative energy)
and the bound-state wave function of two interacting objects as
though that they are structureless. However, an obstacle in such
an approach is the Gel’fand-Levitan and Marchenko theorems
of the inverse scattering problem [1]: there is infinite number
of the phase-equivalent potentials, which provide different
binding energies and asymptotic normalization coefficients
(ANCs). To find a unique two-body bound-state potential from
elastic scattering data, one has to add these two parameters into
the analysis.

Another way of obtaining the information about the bound
state and two-body potential has been used in Ref. [2]. It is
based on analyticity of the scattering S matrix, which allows
one to extrapolate the experimental scattering phase shift
directly to the bound-state pole without using an intermediate
two-body potential. In this procedure, the elastic scattering
phase shift is analytically approximated in the physical region
with the subsequent analytical continuation to the bound-state
pole. This analytical approximation in the physical region can
be done using different approaches, including the Pade approx-
imation [2] and effective range expansion [3–5]. There is also a
possibility of solving N/D equations, which take into account
the right unitary cut and the left dynamical singularities. Using
these equations, one can fit the experimental scattering phase
shift at a given partial wave and find the bound-state pole
and its residue [6,7]. We note that effective field theory can
also be applied to obtain binding energy (if necessary) and
the ANC [8–10]. In principle, if experimental data are quite
accurate, such an extrapolation can provide the locations of
the bound-state pole (binding energy) and its residue, which is
expressed in terms of the ANC [11–13]. If the binding energy
is known, then it is preferable to include this information into
the extrapolation procedure. In this case, the extrapolation
should provide only one missing parameter, the ANC. This
procedure has been realized in Ref. [2] for the α − d elastic
scattering, and the ANC has been found for the virtual decay
6Li → α + d in the s-wave channel. Once we know both
parameters of the bound state (binding energy and the ANC),
using the experimental data we can find a unique two-body
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potential, according to the inverse scattering theorems. This
potential will provide the bound-state wave function with the
binding energy, which should coincide with the value used in
the extrapolation procedure. Besides, the ANC obtained from
the calculated bound-state wave function and from the residue
of the elastic scattering S-matrix in the bound-state pole must
coincide [14].

However, there is important point to discuss. The binding
energy and the ANC are the on-shell characteristics of the
bound states in the same sense as the scattering phase shifts
are the on-shell characteristics of continuum. These on-shell
characteristics reflect the many-body character of the scattered
nuclei. The invoking of the two-body potential to analyze
the elastic scattering of composite particles definitely is an
approximation, which nevertheless is supposed to reproduce
the on-shell bound-state parameters, the binding energy, and
the ANC. It means that by using the two-body approach to
reproduce the elastic scattering data, one effectively takes into
account many-body effects. However, the off-shell properties
of the bound states are not necessarily correctly reproduced.
Consider, for example, the s-wave elastic scattering of com-
posite nuclei α + d. The ANC for the virtual decay of the 6Li
bound state 6Li → α + d is the amplitude of the tail of the
overlap function

I
6Li
α d (01)(r) = 〈ϕα ϕd |ϕ6Li〉. (1)

Here, ϕi is the bound-state wave function of nucleus i, and
l = 0 and J = 1 are the relative orbital angular momentum of
α and d in the bound state and the total angular momentum.
The integration in Eq. (1) is taken over the internal coordinates
of α and d, so that the overlap function depends on the radius
r connecting their centers of mass. The overlap function is
essentially a many-body object, while the bound-state wave
function calculated using the two-body potential is not. In
particular, the overlap function is not normalized to unity
(square of its norm is the spectroscopic factor). The behavior
of the radial part of the overlap function and the two-body
bound-state wave function, a priori, are different. However,
the tail of both functions has the same radial shape (i.e., they
decay as Whittaker function), but the amplitudes of the tail
(i.e., the ANCs), a priori, are different. The condition that the
two-body potential, which fits the elastic scattering data, must
provide a correct ANC means that the amplitudes of the tails
of the radial overlap function and bound-state wave function
coincide. The ANC of the bound-state wave function is called
the single-particle ANC, although it is more appropriate to
call it the two-body ANC, which we are going to use here. In
the two-body approach, the ANC and the two-body ANC are
related as (applied to the 6Li case)

C
6Li
α d (01) = S

1/2
α d (101) bα d (101). (2)

Here, C
6Li
α d (01) and bα d (101) are the ANC and the two-body ANC

and Sα d (101) is the spectroscopic factor of the configuration
(α d)101 in the ground state of 6Li. Note that the right-hand
side depends on the additional quantum number n = 1, which
is the principal quantum number showing the number of nodes
of the adopted radial α − d bound-state wave function at

r > 0. This dependence appears due to use of the two-body
potential model. The condition bα d (101) = C

6Li
α d (01) requires the

spectroscopic factor Sα d (101) = 1.
The ANC plays a very important role in nuclear as-

trophysics because many astrophysical radiative capture
processes are peripheral and their overall normalization is
governed by the tail of the overlap function, that is, by the
ANC [15–18]. Among the important astrophysical processes,
where the ANC plays a crucial role, is the primordial radiative
capture process α + d → 6Li + γ , which is the only process
that produces 6Li in the big bang model. A special interest
in this reaction has been triggered by an almost three-order
disagreement between the observational ratio 6Li/7Li and the
calculated one [19]. Direct measurements of the α + d →
6Li + γ radiative capture are very difficult at astrophysically
relevant α − d relative kinetic energies E � 300 keV because
of the extremely low cross section. Nevertheless, the first
direct measurements of the α + d → 6Li + γ reaction cross
section at low energies are currently under way at the
LUNA underground accelerator facility at the Gran Sasso
laboratory.

The first indirect information about the astrophysical
factor S24(E) for the α + d → 6Li + γ process has been
obtained in Ref. [20] from the Coulomb breakup process
208Pb(6Li (26A MeV), α d)208Pb. The analysis of the data was
performed under the assumption that the reaction mechanism
is contributed purely by the Coulomb breakup. However, the
extracted data, which can be considered as an upper limit of the
astrophysical factor, at low energies turned out to be constant,
which contradicted all the calculations that showed a signifi-
cant drop [17]. Recently, in Ref. [21], a new attempt has been
made to get the astrophysical factor S24(E) at astrophysically
relevant energies from the 208Pb(6Li (150A MeV), α d)208Pb
breakup reaction. However, analysis has shown significant
dominance of the nuclear breakup over the Coulomb one,
making it impossible to determine the needed information
about S24(E). Nevertheless, in Ref. [21], the S24(E) has been
calculated using the α − d two-body potential model. The
potentials, which are required to make such calculations,
were obtained from the fitting the α − d elastic scattering
phase shift for the s, p, and d waves. The approach used to
calculate the astrophysical factor is not related to the studied
6Li breakup process. The common information in the analysis
of the breakup data and calculation of the astrophysical factor
were the same bound state and scattering α − d potentials
used to generate the corresponding α − d bound and scattering
wave functions. In the potential approach used in Ref. [21],
the bound-state potential is the most crucial part of the input,
which affects the overall normalization of the astrophysical
factor. Only one out of infinite number of the phase equivalent
potentials, namely the Woods-Saxon potential with the stan-
dard geometry, has been used in Ref. [21] to describe the α − d

bound state. However, the dominance of the nuclear breakup
and dependence of the breakup data analysis on the optical
potentials requires a check of the sensitivity of the breakup
calculations to the variation of the bound-state potential along
with the optical potentials. Such a test, which has not been done
in Ref. [21], would allow one to determine the uncertainty
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in the astrophysical factor and reaction rates, because, as
we see later, the adopted bound-state potential is the most
important information required to calculate the astrophysical
factor S24(E) at astrophysical energies.

Taking into account the critical importance of the ANC
in the calculation of the astrophysical factor S24(E) for the
α + d → 6Li + γ radiative capture and the connection among
the potential model, elastic scattering data, and ANC discussed
previously, we critically reexamine the procedure used in
Ref. [21] and what should be done to improve our knowledge
about the astrophysical factor S24(E) within the potential
two-body problem.

II. ASTROPHYSICAL FACTOR FOR THE α + d → 6Li + γ

RADIATIVE CAPTURE IN THE α − d POTENTIAL
MODEL

It has been long recognized that the α + d → 6Li + γ

process at astrophysical energies is an entirely peripheral
reaction in the two-body potential model [17]. Evidently,
the potential model itself is a limitation, and it would be
nice to check peripherality of this reaction with a many-body
ab initio approach similar to what has been done recently for
the 3He + 4He → 7Be + γ reaction in Ref. [22]. However,
an important issue in a many-body approach remaining to be
solved is reproduction of the experimental binding energy,
because the calculated astrophysical factor is sensitive to its
value. Since such ab initio many-body calculations are not
yet available, we have to live with a more simple two-body
potential model. The matrix element for the α + d → 6Li + γ

direct radiative capture in the long-wave approximation is
given by [17]

Mλ
01 liJi

= Aλ

∫ ∞

Rc

dr I
6Li
α d (01)(r) rλ+2 ψli Ji

(r). (3)

Here, I
6Li
α d (01)(r) is the radial overlap function of the bound-

state wave functions of 6Li, α and d, l = 0 and J = 1 are
the relative orbital and total angular momenta of the α − d

configuration in the ground state of 6Li, ψli Ji
(r) is the α − d

scattering wave function in the initial state of the radiative
capture in the partial wave li with the total angular momentum
Ji , λ = 1, 2 is the multipolarity of the transition, and Aλ

is the kinematical factor. The cutoff radius Rc is introduced
to reflect a peripheral character of the process. It has been
shown in Ref. [17] that the matrix element shows a very small
sensitivity for Rc � 4.5 fm (i.e., until distances that exceed the
6Li radius). This makes it possible to approximate the radial
overlap function by using Cαd(01) W−η, 1/2(2 καd r)/r , where
W−η, 1/2(2 καd r) is the Whittaker function, which determines
the radial shape of the overlap function beyond the α − d

nuclear interaction region, η is the Coulomb α − d bound-
state parameter, κα d = √

2 µa d εα d is the α − d bound-state
wave number, and µα d and εα d are the reduced mass and
binding energy of α and d. As we can see, there are two inputs
needed to calculate the matrix element in Eq. (3). One is the
α − d potential describing the continuum in the partial waves

li = 1, 2. This potential has been found in Ref. [21] by fitting
the elastic scattering phase shifts in these partial waves, and
it is a legitimate procedure. Note that at very low energies,
say, around the most effective energy of 70 keV, one can use
a pure Coulomb scattering wave function in the initial state of
the reaction. However, the role of nuclear interaction becomes
very important with energy increase, and it is responsible for
reproduction of the resonance at ER = 0.711 MeV. In the
potential approach used in Refs. [21,23], the overlap function
is replaced by the

I
6Li
α d (01)(r) = S

1/2
α d (101) ϕα d(101)(r). (4)

Here, ϕα d(101)(r) is the radial α − d bound-state wave function
in the field generated by the Woods-Saxon nuclear plus
Coulomb potentials. The spectroscopic factor reflects the
fact that the overlap function is not an eigenfunction of any
Hamiltonian and hence is not normalized to unity, in contrast to
the bound-state wave function. The potential, which is used to
calculate the bound-state wave function, has been determined
in Ref. [21] from the fitting to the α − d elastic scattering
phase shift in the channel l = 0, J = 1. Since the experimental
elastic scattering phase shift includes the many-body effects
of the scattered nuclei, the same is true for the two-body
potential, which fits the elastic scattering data. Hence, the
spectroscopic factor in Eq. (4) should be set to Sα d (101) = 1. It
is exactly what has been done in Ref. [21]. Since the reaction
under consideration is peripheral at astrophysical energies
E � 300 keV, functions in Eq. (4) can be replaced by their
tails, that is,

I
6Li
α d (01)(r)

r>Rc≈ Cαd(01)
W−η, 1/2(2 καd r)

r

= bαd(101)
W−η, 1/2(2 καd r)

r
. (5)

In the two-body potential model, the amplitude of the tail of
the overlap function is the two-body ANC bαd(101) (i.e., the
amplitude of the tail of the radial bound-state wave function).
The value of the single-particle ANC depends on the adopted
bound-state potential. From the parameters of the bound-state
potential given in Ref. [21], we find that bαd(101) = 2.7 fm−1/2.
Thus, from the Woods-Saxon potential given in Ref. [21],
we get the ANC, which is about 17% larger than the ANC
Cαd(101) = 2.3 ± 0.12 fm−1/2 obtained in Ref. [2] and used in
Ref. [17].

An independent confirmation of this ANC follows from
a recently published paper [24], where the first ab initio
calculations of the α − d scattering and 6Li bound and
unbound states are presented. From the calculated α − d

bound-state wave function (see Fig. 5 in Ref. [24]), we find
the ANC Cαd(101) = 2.94 fm−1/2, but this value is obtained
for the α − d binding energy 1.83 MeV. Extrapolating this
value to the experimental binding energy, we obtain the ANC
Cαd(101) = 2.39 fm−1/2, which is in an excellent agreement
with the ANC obtained in Ref. [2].

Since the astrophysical factor at astrophysical energies
is proportional to the square of the ANC, the usage of
C2

αd(01) = 7.29 fm−1 rather than C2
αd(01) = 5.29 fm−1 [2] leads

to the increase of the astrophysical factor compared to the one
obtained in Ref. [17] by almost 38%. This can be seen from
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Fig. 9 in Ref. [21], where both astrophysical factors are shown
in the logarithmic scale.

We now come to the main point of this paper, the ANC,
which is the most crucial input in the calculation of the S24(E).

III. INVERSE SCATTERING PROBLEM, BOUND-STATE
POTENTIAL, AND ANC

In Ref. [21], as in Ref. [23], the s-wave scattering phase shift
has been used to determine the bound-state potential, which
generates the bound-state wave function and, correspondingly,
the ANC. However, it is well known from the inverse scattering
problem [1] (see also the discussion in the introduction) that
there is an infinite number of the phase-equivalent energy-
independent potentials, and to single out a unique potential
one has to add two parameters (if only one bound state is
present in the given partial wave): the binding energy and
the ANC. In Ref. [21], the adopted potential reproduces
experimental α − d binding energy, but the ANC remained
unfixed and its value was determined by the parameters of
the adopted potential, which fits the s-wave α − d elastic
scattering phase shift. Hence, the potential found in Ref. [21]
is one out of an infinite set of the phase equivalent potentials,
and the ANC it generates is not necessarily a correct one.
However, there is another way of using the elastic scattering
data, realized in Ref. [2], which is discussed in the introduction.
In this approach, the statistical Padé approximation was used
to interpolate the elastic scattering S-matrix element in the
physical region and then directly continue it to the unphysical
region in the energy (momentum) plane to find the pole
corresponding to the ground state of 6Li and to determine the
residue in this pole through which the ANC is expressed.
The obtained poles, whose locations depend on the order of
the Pade approximants, were very close to the physical value
of −1.476 MeV. It was found that the ANC values in the
proximity of the experimental binding energy of the α − d

system linearly depend on the binding energy. Using this
linear extrapolation to the experimental binding energy, the
ANC Cαd(01) = 2.28 fm−1/2 was obtained [2], which is lower
than Cαd(01) = 2.7 fm−1/2 following from the potential used in
Ref. [21]. Once the ANC has been determined, according to the
inverse scattering problem theorem [1], a unique bound-state
potential can be found [12] from the elastic scattering data.
Note that if the energy-independent potential satisfies the
condition (assuming, for simplicity, that there is only one
bound state in the given partial wave)

lim
r→∞ V N (r) e2κr → 0, (6)

where κ is the bound-state wave number, then such a potential
is unique and its scattering amplitude can be analytically
continued into the bound-state pole [25]. Thus, the ambiguity
in the two-body potential calls for more thorough selection
of the potential because eventually the adopted potential for
the bound state will determine the overall normalization of
the astrophysical factor for peripheral direct radiative capture
processes.

If we confine ourselves to the astrophysical energies, then
it would be enough to replace in the matrix element (3) the

overlap function by its asymptotic term (5), and, evidently, the
astrophysical factor will be proportional to C2

αd(01). However,
if we want to extend our calculations to higher energies,
including the resonance region and above, we need to carry
out more accurate calculations. To compare our results with
the S24(E) factor presented in Ref. [21], we adopt the same
α − d scattering potential as in Ref. [21]. For the α − d

bound-state potential, it would be logically reasonable to use
the bound-state potential from Refs. [2] and [26]. However,
since it has a quite complicated form, we simply modify the
bound-state potential used in Ref. [21] using the theorem of the
inverse problem in scattering theory [1]. This theorem allows
one to recover a phase equivalent potential to the Woods-Saxon
potential used in Ref. [21] with arbitrary ANC. Assume that we
adopt a nuclear potential V N (r), which together with the added
Coulomb potential V C(r) fits the elastic α − d scattering phase
shift in the l = 0 partial wave and that the bound-state wave
function calculated with this potential has the ANC C. Then
the phase equivalent potential is given by

V N
1 (r) = V N (r) − 2

d2K(r)

dr2
, (7)

K(r) = log

[
1 + (τ − 1)

∫ r

0
dx x2 ϕ2(x)

]
. (8)

The bound-state wave function in the potential V1(r) =
V N

1 (r) + V C(r) can be expressed in terms of the bound-state
wave function ϕ(r) in the potential V (r) = V N (r) + V C(r):

ϕ1(r) = τ 1/2 ϕ(r)

1 + (τ − 1)
∫ r

0 dx x2 ϕ2(x)
. (9)

From Eq. (9) one obtains that at r = 0 ϕ1(0)/ϕ(0) = τ 1/2,
while limr→∞ ϕ1(r)/ϕ(r) = τ−1/2, which is the ratio of the
corresponding ANCs. Let V (r) = V N (r) + VC(r) be the nu-
clear Woods-Saxon plus Coulomb bound-state α − d potential
adopted in Ref. [21], which generates the bound-state wave
function with Cαd(01) = 2.7 fm−1/2. Then for τ = 1.378 we
obtain the wave function in the potential V1(r), which has the
same ANC as obtained in Ref. [2] and used in Ref. [17]. In
Fig. 1, both nuclear potentials are shown. Since the difference
between the potentials is very small, in panels (a) and (b) we

FIG. 1. (Color online) The red solid line is α − d bound-state
nuclear potential V N (r) [21] and the blue dashed line is V N

1 (r).
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(b)(a)

FIG. 2. (Color online) (a) The red solid line is α − d bound-state wave function rϕ(r), generated by the potential V (r) = V N (r) + V C(r),
and the blue dashed line is the bound-state wave function rϕ1(r), generated by V1(r) = V N

1 (r) + V C(r). See the explanation in the text.
(b) The ratio of the bound-wave functions ϕ1(r) and ϕ(r).

show the tails of both potentials in scale so that the difference
can be seen. As one can see in Fig. 2(a), the wave function
ϕ1(r) with the smaller ANC has a smaller tail but is higher
than ϕ(r) in the nuclear interior so that the total norm is
conserved. In Fig. 2(b), we show the ratio ϕ1(r)/ϕ(r). Because
both bound-state wave functions have one node at r > 0, there
is also a forbidden nodeless bound state for each potential with
the binding energy 29.7 MeV.

Note that the existence of the potential V N
1 (r), which

is phase equivalent to the bound-state potential found in
Refs. [2] and [26] with the same ANC, does not contradict
the inverse scattering theorem because the addition −2 d2K(r)

dr2

to the potential V N (r) asymptotically decays as exp(2 κα d r)
violating condition (6). It does not allow one to use the potential
V N

1 (r) for analytical extrapolation of the scattering amplitude
generated by this potential to the bound-state pole, but we
need this potential here only to generate the bound-state wave
function with correct amplitude of the tail (i.e., the ANC).
Note that formally we can obtain the overlap function with
the same ANC as in Ref. [2] by multiplying the bound-
state wave function generated by the potential V (r) on the
square root of the proper spectroscopic factor. However, this
procedure is not legitimate, as discussed previously, because
potential V (r) fits the elastic scattering data; that is, it takes
effectively into account many-body effects, and hence any
additional spectroscopic factor would be superfluous. Incorrect
ANCs should be changed by changing the potential, not by
multiplying the bound-state wave function by the square root
of the spectroscopic factor.

IV. ASTROPHYSICAL S24(E) FACTOR AND REACTION
RATES

In Fig. 3, we present two calculated S24(E) factors for
the α + d → 6Li + γ radiative capture compared with the
experimental data. One is the astrophysical factor from
Ref. [21]. To calculate it, we use the α − d bound-state
wave function generated by the bound-state potential V (r) =

V N (r) + V C(r) and the scattering potential in the partial waves
li = 1, 2 adopted in Ref. [21]. The second astrophysical factor
is ours. To calculate it, we use the bound-state potential
V1(r) = V N

1 (r) + V C(r), keeping the same scattering potential
as in Ref. [21]. Thus, the only difference between our S24(E)
and the one from Ref. [21] is in the α − d bound-state wave
functions. At astrophysically relevant energies, E � 300 keV,
at which the α + d → 6Li + γ radiative capture is totally
peripheral, the S24(E) is proportional to the square of the
ANC C2

αd(01) for the virtual decay 6Li → α + d. Since the
square of the ANC in Ref. [21] is higher than ours by 38%,
correspondingly the astrophysical factor from Ref. [21] at
astrophysical energies exceeds our S24(E) by ∼38%.

There is another important point to discuss. As one can
see, our calculations agree well with the experimental data
[27] at energies larger than the resonance energy, whereas
the calculations from Ref. [21] overestimate the data. We

FIG. 3. (Color online) The astrophysical factors S24(E) for
the radiative capture α + d → 6Li + γ . Black dots are data from
Ref. [20]; black crosses are data from Ref. [23]; and black triangles
are data from Ref. [27]. The red solid line is the S24(E) factor
from Ref. [21]. The blue dotted line is our S24(E1) factor, the blue
dashed line is our S24(E2) factor, and the blue solid line is our total
astrophysical factor S24(E).
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note that usually with energy increase the radiative capture
reactions become less peripheral; that is, the nuclear interior
becomes more important and the overall normalization of the
astrophysical factors is determined not only by the ANC.
However, the α + d → 6Li + γ process has quite specific
features. At energies above the resonance, say E ∼ 1 MeV, the

TABLE I. The rate for α + d → 6Li + γ reaction calculated
using our astrophysical S factor for the temperature range 106 K �
T � 1010 K.

T9 Na〈σv〉 T9 Na〈σv〉
(cm3 mol−1 s−1) (cm3 mol−1 s−1)

0.001 6.467 × 10−30 0.260 6.823 × 10−04

0.002 1.857 × 10−23 0.270 7.876 × 10−04

0.003 2.470 × 10−20 0.280 9.032 × 10−04

0.004 2.286 × 10−18 0.290 1.030 × 10−03

0.005 5.693 × 10−17 0.300 1.167 × 10−03

0.006 6.592 × 10−16 0.310 1.317 × 10−03

0.007 4.651 × 10−15 0.320 1.478 × 10−03

0.008 2.327 × 10−14 0.330 1.652 × 10−03

0.009 9.067 × 10−14 0.340 1.840 × 10−03

0.010 2.923 × 10−13 0.350 2.040 × 10−03

0.011 8.127 × 10−13 0.360 2.254 × 10−03

0.012 2.008 × 10−12 0.370 2.482 × 10−03

0.013 4.508 × 10−12 0.380 2.725 × 10−03

0.014 9.343 × 10−12 0.390 2.983 × 10−03

0.015 1.811 × 10−11 0.400 3.256 × 10−03

0.016 3.318 × 10−11 0.500 6.930 × 10−03

0.017 5.787 × 10−11 0.600 1.271 × 10−02

0.018 9.676 × 10−11 0.700 2.148 × 10−02

0.019 1.559 × 10−10 0.800 3.462 × 10−02

0.020 2.432 × 10−10 0.900 5.385 × 10−02

0.025 1.538 × 10−09 1.000 8.079 × 10−02

0.030 6.277 × 10−09 1.100 1.166 × 10−01

0.035 1.929 × 10−08 1.200 1.618 × 10−01

0.040 4.870 × 10−08 1.300 2.164 × 10−01

0.045 1.066 × 10−07 1.400 2.797 × 10−01

0.050 2.093 × 10−07 1.500 3.508 × 10−01

0.060 6.375 × 10−07 1.600 4.288 × 10−01

0.070 1.554 × 10−06 1.700 5.126 × 10−01

0.080 3.245 × 10−06 1.800 6.002 × 10−01

0.090 6.057 × 10−06 1.900 6.915 × 10−01

0.100 1.038 × 10−05 2.000 7.854 × 10−01

0.110 1.665 × 10−05 2.100 8.808 × 10−01

0.120 2.533 × 10−05 2.200 9.773 × 10−01

0.130 3.690 × 10−05 2.300 1.074 × 10+00

0.140 5.185 × 10−05 2.400 1.171 × 10+00

0.150 7.071 × 10−05 2.500 1.268 × 10+00

0.160 9.398 × 10−05 3.000 1.745 × 10+00

0.170 1.222 × 10−04 3.500 2.210 × 10+00

0.180 1.559 × 10−04 4.000 2.673 × 10+00

0.190 1.954 × 10−04 4.500 3.145 × 10+00

0.200 2.416 × 10−04 5.000 3.631 × 10+00

0.210 2.946 × 10−04 6.000 4.645 × 10+00

0.220 3.552 × 10−04 7.000 5.689 × 10+00

0.230 4.238 × 10−04 8.000 6.725 × 10+00

0.240 5.008 × 10−04 9.000 7.723 × 10+00

0.250 5.868 × 10−04 10.00 8.664 × 10+00

E2 capture dominates over E1. For the former, the transition
is li = 2 → l = 0. The Coulomb plus centrifugal barrier in the
initial state of the reaction is dominated by the centrifugal part
due to the angular momentum li = 2 in the entry channel of
the reaction. For example, at E = 1 MeV and r = 4 fm, the
total barrier is 6.57 MeV with the centrifugal part 5.85 MeV.
Such a high barrier compared to the relative α − d energy
E ∼ 1 MeV explains why the reaction is still peripheral at
such high energies. For comparison, we mention that at the
astrophysically most effective energy E ≈ 70 keV, the E1
capture with li = 1 dominates. For this transition at E =
70 keV and r = 4 fm, the total barrier is 2.67 MeV with the
centrifugal barrier 1.95 MeV. This significant difference in the
barriers at higher and low energies explains why the reaction
under consideration remains peripheral even at energies E ∼
1 MeV. At energy E = 1 MeV, our calculated S24(E) factor
is about 30% lower than the one in Ref. [21] and, as we
have mentioned, at energies E � 1 MeV perfectly reproduces
the higher energy data from Ref. [27], which is compelling
evidence that the ANC in Ref. [21] was overestimated. At
resonance energies, both calculations reproduce the data [23]
very well. Finally, in Table I we present the α + d → 6Li + γ

reaction rates, which are also systematically lower than those
presented in Ref. [21].

V. SUMMARY

In this work, we have demonstrated that a crucial quantity
necessary to pinpoint the S24(E) astrophysical factor at
astrophysical energies is the ANC for the virtual decay
6Li → α + d. Because of the peripheral character of the
α + d → 6Li + γ direct radiative capture, this ANC deter-
mines the overall normalization of the astrophysical factor
at astrophysically relevant energies. From our calculations
and Fig. 3, we can see that at low energies the contribution
from the isospin forbidden E1 transition dominates over the
allowed E2 transition. For example, at E = 70 keV, which
is the most effective energy, the contribution from the E1
transition to the total S24(E) astrophysical factor is about 60%.
Even at E = 100 keV, the E1 transition contributes about
52% to the total astrophysical factor. Meantime, even if the
Coulomb breakup of 6Li would dominate, at E = 70 keV
the E1 transition will be suppressed by a factor of 60
compared to the E2. It can hardly be possible to deter-
mine the total astrophysical factor from the 6Li experiment.
Since the ANC is the only crucial information needed to cal-
culate the S24(E) astrophysical factor at astrophysical energies,
we call for more accurate measurements of the s-wave α − d

elastic scattering phase shift at lower energies. It will help to
extrapolate more accurately the data to the bound-state pole
to get more precise ANC for 6Li → α + d. We note that the
problem of determining the two-body bound-state potential
from the elastic scattering phase shift is quite important in
different applications of nuclear reaction theory, in partic-
ular, in the Faddeev approach for reactions with composite
particles.

Finally, the 40% decrease of the square of the ANC reported
in this paper compared to the one adopted in Ref. [21]
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results in ∼40% decrease of the S24(E) at astrophysical
energies and a corresponding decrease of the reaction rates.
It makes explaining the discrepancy between the observed
6Li/7Li ratio and the big bang nucleosynthesis calculations
invoking the α + d → 6Li + γ reaction [19] even more
difficult.
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