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Warm α-nucleon matter
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The properties of warm dilute α-nucleon matter are studied in a variational approach in the Thomas-Fermi
approximation starting from an effective two-body nucleon-nucleon interaction. The equation of state, symmetry
energy, incompressibility of the said matter, and α fraction are in consonance with those evaluated from the virial
approach, which sets the benchmark for such calculations at low densities.
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I. INTRODUCTION

Cold nuclear matter at subsaturation density as α matter
has been subjected to critical study for some time [1,2]. The
aim is to understand α clustering near the surface of heavy
nuclei or the putative dilute α condensate in light 4n nuclei.
In an astrophysical context, in following the evolution of
core-collapse supernovas, these studies have been extended
to the case of warm nuclear matter [3]. Homogeneous low-
density nuclear matter stabilizes as a mixture of nucleons
and nucleon clusters. It has a lower free energy than that for
nucleonic matter. The cluster composition is temperature and
density dependent; with increasing temperature or decreasing
density, the population of heavier clusters tends to diminish,
leading to a mixture of nucleons and light clusters like d,
t, 3He, and α [4,5]. The properties of the clusterized matter
undergo a major change, for example, the incompressibility
of clusterized nuclear matter is much smaller than that for
homogeneous nucleon matter [6]. This directly influences the
collapse and bounce phase of supernova matter. The symmetry
energies of nuclear matter are also significantly affected when
matter becomes clusterized [7,8]. This has an important role
in a better understanding of neutrino-driven energy transfer in
supernova matter [9]. The symmetry energy also influences
the cluster composition in the crust of neutron stars and is thus
instrumental in shaping the details of their mass, cooling, and
structure [10].

The equation of state (EOS) of warm dilute nuclear matter
with only light clusters up to α has recently been investigated
in the virial approach [7,11]; inclusion of heavier clusters
has also been made in the S-matrix (SM) framework [12].
These methods relate the calculations directly to experimental
observables like the binding energies and phase shifts and,
as such, are model independent. They are usually taken as
benchmark calculations in the domain of low density and
high temperature; they are understood to exhaust all the
dynamical information concerning strong interactions in the
medium. For an interacting quantum gas, the virial expansion,
however, virtually ends at the second order. Formulation
of higher order virial coefficients is very involved even
at the formal level [13], making it difficult to estimate
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the domain of validity of the virial series truncated at the
second order. It may further be noted that the density should
be dilute enough so that the concept of asymptotic wave
functions as being inherent in the virial expansion should be
meaningful.

An alternate avenue could be to bypass the virial expansion
altogether and instead use nucleation in the framework of the
mean-field model with a suitably chosen effective two-nucleon
interaction, which inherently takes an inclusive account of the
scattering effects. Unlike the virial (SM) approach, which has
direct contact with the experimental data, this method has indi-
rect contact but it can be applied to relatively higher densities.
With increasing density, a large number of different fragment
species would, however, be formed, which makes the numeri-
cal calculation very lengthy. Before attempting any full-blown
calculation, it may then be worthwhile, as a first step, to take
only α clustering in the nuclear matter and to examine whether
the model works in the low-density region where the bench-
mark calculations exist. The present work aims toward that
end.

For study of the so-mentioned α-nucleon (αN) matter,
we have chosen the Thomas-Fermi (TF) prescription for
the mean-field model and the finite-range-, momentum-,
and density-dependent modified Seyler-Blanchard (SBM)
effective interaction [14]. The properties we explore in-
clude the EOS of the αN matter and its symmetry en-
ergy, incompressibility, α concentration, etc. In Sec. II,
the theoretical framework for the mean-field and the
SM approach is presented. Section III presents the re-
sults and discussion. Concluding remarks are made in
Sec. IV.

II. THEORETICAL FRAMEWORK

Given an effective two-nucleon interaction, the properties
of αN matter can be evaluated by exploiting the occupation
functions of the n, p, and α’s obtained from minimization
of the thermodynamic potential of the system. In Sec. II A,
some details of the effective interaction used are given.
In Sec. II B, the theoretical formulation for obtaining the
occupation functions from the TF approximation is presented.
In Sec. II C, expressions for various observables explored are
given. In Sec. II D, a brief outline of the SM approach is
made.
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A. The effective interaction

The form of the SBM effective interaction v is

v(r, p, ρ) = Cl,u [v1(r, p) + v2(r, ρ)] ,

v1 = −
(

1 − p2

b2

)
f (r1, r2), (1)

v2 = d2 [ρ(r1) + ρ(r2)]κ f (r1, r2),

with

f (r1, r2) = e−|r1−r2|/a

|r1 − r2|/a . (2)

The subscripts l and u to the interaction strength C refer
to like-pair (nn or pp) and unlike-pair (np) interactions,
respectively. The range of the effective interaction is given
by a, and b is the measure of the strength of the momentum
dependence of the interaction. The relative separation of the
interacting nucleons is r = r1 − r2 and the relative momentum
is p = p1 − p2; d and κ are the two parameters governing the
strength of the density dependence, and ρ(r1) and ρ(r2) are the
nucleon densities at the sites of the two interacting nucleons.
The potential parameters are listed in Table I; the details for the
determination of these parameters are given in Ref. [14]. The
incompressibility K∞ of symmetric nucleon matter is mostly
governed by the parameter κ; for the potential set we have
chosen, the value of K∞ = 238 MeV.

The EOS of symmetric nuclear matter calculated with
the SBM interaction is seen to agree extremely well [15]
with that obtained in a variational approach by Friedman and
Pandharipande [4] with v14 + TNI interaction. This interaction
also reproduces quite well the binding energies, rms charge
radii, charge distributions, and giant monopole resonance
energies for a host of even-even nuclei ranging from 16O to
very heavy systems [14]. Interactions of this type has been
used with great success by Myers and Swiatecki [16] in the
context of nuclear mass formula.

B. Occupation functions

The self-consistent occupation probabilities of nucleons
and α’s in αN matter at temperature T are obtained in the TF
approximation by minimizing the thermodynamic potential of
the system

� = E − T S −
∑

τ

µτNτ − µαNα. (3)

Here τ represents the isospin index (n,p). The quantities
E, S, µτ , µα, Nτ , and Nα are the total internal energy,
entropy, nucleon chemical potentials, α chemical potential,
free nucleon number, and number of α particles, respectively,

TABLE I. Parameters of the effective interaction (in MeV fm)

Cl Cu a b d κ

291.7 910.6 0.6199 928.2 0.879 1/6

O

R

r R

R α

r
2

r
1

AB

P

FIG. 1. Space coordinates shown for the nucleon (located at A)
and α (with center at B) configuration. The origin of the coordinate
system is at O and P is any arbitrary point within α.

in the system. Chemical equilibrium in the system ensures

µα = 2(µn + µp). (4)

The total energy of the αN matter in the TF approximation is

E =
∑

τ

{∫
dr1dp1

p2
1

2mτ

ñτ (p1) + 1

2

∫
dr1dp1dr2dp2

× [v1(|r1 − r2|, |p1 − p2|) + v2(|r1 − r2|, 2ρ)][Clñτ (p2)

+ Cuñ−τ (p2)]ñτ (p1) + 1

2
(Cl + Cu)

∫
dr1dp1dr2dp2

× ñτ (p1)ñα(p2)
∫

Vα

dr
∫

dpα
i ñα

i

(
pα

i

)[
v1

(
R′,

∣∣p1 − (
pα

i

+ p2
)∣∣) + v2

(
R′,

( ∑
τ ′

ρτ ′ + ρα
i

))]}

+
∫

dr1dp1
p2

1

2mα

ñα(p1)

+ (Cl + Cu)
∫

dr1dp1dr2dp2ñα(p1)ñα(p2)

×
∫

Vα

drdr′
∫

dpα
i dpα′

i ñα
i

(
pα

i

)
ñα′

i

(
pα′

i

)
× [

v1
(
R′,

∣∣(p1 + pα
i

) − (
p2 + pα′

i

)∣∣) + v2
(
R′, 2ρα

i

)]
−NαBα. (5)

In Eq. (5), mτ and mα are the nucleon and α masses, the first and
fourth terms correspond to the kinetic energy of the nucleons
and α’s, the second and fifth terms refer to the interaction
energy among nucleons and among α’s, respectively, and the
third term is the interaction energy between nucleons and α’s.
The various space coordinates occurring in the third and fifth
terms are shown in Figs. 1 and 2, respectively.

These terms are evaluated in the single-folding and double-
folding models. The last term is the binding energy contribu-
tion from the α particles. Here ñτ = 2

h3 nτ , ñα = 1
h3 nα where

nτ and nα are the occupation probabilities for nucleons and
α’s, respectively. Similarly, ñα

i (pα
i ) = 2

h3 n
α
i (pα

i ) represents the
occupation probability of the constituent nucleons in the α

particle and pα
i is their intrinsic momentum inside the α. The

space coordinates do not enter in the occupation functions ñτ

and ñα , as the system is infinite. For simplicity, α particles
are taken to be uniform nuclear drops with a sharp surface

055802-2



WARM α-NUCLEON MATTER PHYSICAL REVIEW C 83, 055802 (2011)

r r
R

R

r
2

r
1

R α

O

P P

AA

FIG. 2. Space coordinates shown for the α-α configuration with
O as the origin of the coordinate system. P and P′ are arbitrary points
within the α’s with A and A′ as their centers.

and hence the space coordinates do not also occur in ñα
i .

The notation
∫
Vα

refers to the configuration integral over the
volume of α. The integral over p̃α

i is over the Fermi sphere of
the nucleon momenta inside the α particles. Because α’s are
difficult to excite (the first excited state in α is ∼20 MeV), they
are taken to be in their ground states. All the other integrals
are over the entire configuration or momentum space unless
otherwise specified. It then follows that∫

ñτ (p)dp = Nτ/V = ρτ ,∫
ñα(p)dp = Nα/V = ρα, (6)∫
ñα

i (p)dp = 4/Vα = ρα
i ,

where V is the volume of the αN system and Vα = 4
3πR3

α ,
with Rα as the sharp-surface radius of the α drop, taken to be
2.16 fm obtained from the experimental rms charge radius of α;
ρα

i is the density of the constituent nucleons of the α particles.
The total baryon density ρb is given by ρb = ρ + 4ρα , where
ρ = ∑

τ ρτ is the density of the free nucleons and ρα is the
α-particle density.

The total entropy of the αN system is

S =
∑

τ

Sτ + Sα, (7)

where in the Landau quasiparticle approximation,

Sτ = 2

h3

∫
[nτ (p) ln nτ (p)

+ (1 − nτ (p)) ln(1 − nτ (p))]drdp, (8)

and

Sα = 1

h3

∫
[nα(p) ln nα(p)

− (1 + nα(p)) ln(1 + nα(p))]drdp. (9)

Minimization of � with respect to nτ and nα , remembering
that δnτ (p) and δnα(p) are separately arbitrary over the whole
phase space, at the end yields

p2
1

2mτ

+
∫

dr2dp2{v1(|r1 − r2|, |p1 − p2|)
+ v2(|r1 − r2|, 2ρ)}[Clñτ (p2) + Cuñ−τ (p2)]

+ κd2(2ρ)κ−1
∑
τ ′

∫
dp′

1dr2dp2

× [Clñτ ′(p2) + Cuñ−τ ′(p2)]ñτ ′(p1
′)f (r1, r2)

+ 1

2
(Cl + Cu)

∫
dr2dp2ñα(p2)

×
∫

drdpα
i ñα

i

(
pα

i

){
v1(R′,

∣∣p1 − (
pα

i + p2
)∣∣)

+ v2
(
R′,

(
ρ + ρα

i

))} + 1

4
(Cl + Cu)κd2

(
ρ + ρα

i

)κ−1

×
∑
τ ′

∫
dp′

1dp2ñτ ′(p′
1)ñα(p2)ρα

i

×
∫

dr2

∫
Vα

dr
e−|R′ |/a

|R′|/a
+ T [ln nτ (p1) − ln (1 − nτ (p1))] − µτ = 0 (10)

and

p2
1

2mα

+ 2(Cl + Cu)
∫

dr2dp2ñα(p2)

×
∫

drdpα
i dr′dpα′

i ñα
i

(
pα

i

)
ñα′

i

(
pα′

i

)
×{

v1
(
R′,

∣∣(p1 + pα
i

) − (
p2 + pα′

i

)∣∣) + v2
(
R′, 2ρα

i

)}
+ 1

2
(Cl + Cu)

∑
τ

∫
dp2dpα

i ñτ (p2)ñα
i

(
pα

i

)

×
∫

dr2

∫
Vα

dr
{
v1

(
R′,

∣∣p2 − (
p1 + pα

i

)∣∣)
+ v2

(
R′, ρ + ρα

i

)} + T [ln nα(p1) − ln (1 + nα(p1))]

− (µα + Bα) = 0. (11)

Without any loss of generality, r1 can be set equal to 0 in
Eqs. (10) and (11). The single-particle occupation functions
nτ (p) and nα(p) for nucleons and α’s are determined from
Eqs. (10) and (11), respectively. Equation (10), after some
algebraic manipulations, can be written as

p2
1

2mτ

+ V 0
τ + p2

1V
1
τ + V 2

τ

+ T [ln nτ (p1) − ln(1 − nτ (p1))] − µτ = 0. (12)

The momentum-dependent nucleon single-particle potential
Vτ (p) is given by

Vτ (p) = V 0
τ + p2V 1

τ , (13)

where V 0
τ is the momentum-independent part. Equation (12)

leads to

nτ (p) =
[

1 + exp

{(
p2

2m∗
τ

+ V 0
τ + V 2

τ − µτ

)
/T

}]−1

,

(14)

where m∗
τ is the nucleon effective mass,

m∗
τ =

[
1

mτ

+ 2V 1
τ

]−1

, (15)

and V 2
τ is the rearrangement potential coming from the density

dependence of the interaction. Similarly Eq. (11) can be written
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as

p2
1

2mα

+ V 0
α + p2

1V
1
α + T [ln nα(p1) − ln (1 + nα(p1))]

− (µα + Bα) = 0, (16)

which yields

nα(p) =
[

exp

({
p2

2m∗
α

+ V 0
α − (µα + Bα)

}
/T

)
− 1

]−1

,

(17)

where

m∗
α =

[
1

mα

+ 2V 1
α

]−1

(18)

is the α effective mass. V 0
α is the momentum-independent

part of the α single particle potential Vα(= V 0
α + p2V 1

α ) in the
system. The nucleon and α masses are renormalized owing to
the momentum dependence of the interaction.

The expressions for V 0
τ can be arrived at as

V 0
τ = −4πa3{1 − d2(2ρ)κ}(Clρτ + Cuρ−τ )

+ 16π2a3

b2h3
[Cl(2m∗

τ T )5/2J3/2(ητ ) + Cu(2m∗
−τ T )5/2

× J3/2(η−τ )] + 1

4
I (Cl + Cu)ραρi

α

[ 〈p2
α

〉 + 〈(
pα

i

)2〉
b2

+ d2
(
ρ + ρα

i

)κ − 1

]
. (19)

The first two terms come from the interaction between free
nucleons; the last term originates from the presence of α’s. In
Eq. (19), I is the six-dimensional integral (see Fig. 1)

I =
∫

Vα

dr
∫

dR
e−|r+R|/a

|r + R|/a . (20)

This integral can be evaluated analytically. The quantity 〈p2
α〉 is

the mean squared value of the α momentum in αN matter and
〈(pα

i )2〉 is the mean squared value of the constituent nucleon
momentum inside the α. The value of 〈p2

α〉 is

〈p2
α〉 = (2m∗

αT )B3/2(ηα)/B1/2(ηα)

� 3m∗
αT , (21)

and 〈(
pα

i

)2〉 � 3

5

(
P α

F

)2
, (22)

where P α
F is the value of the zero-temperature nucleon Fermi

momentum inside α, taken to be 220.5 MeV/c, consistent with
the α sharp surface radius. The Jk(η) and Bk(η) are the Fermi
and Bose integrals,

Jk(η) =
∫ ∞

0

xkdx

e(x−η) + 1
(23)

and

Bk(η) =
∫ ∞

0

xkdx

e(x−η) − 1
, (24)

with

ητ = (
µτ − V 0

τ − V 2
τ

)
/T ,

ηα = (
µα + Bα − V 0

α

)
/T . (25)

The expressions for V 1
τ , V 2

τ , V 0
α , and V 1

α are given as

V 1
τ = 4πa3

b2
[Clρτ + Cuρ−τ ] + 1

4
I (Cl + Cu)

ραρi
α

b2
, (26)

V 2
τ = 4πa3κd2(2ρ)κ−1

∑
τ ′

[Clρτ ′ + Cuρ−τ ′ ]ρτ ′

+1

4
I (Cl + Cu)κd2

(
ρ + ρα

i

)κ−1
ρα

i ραρ, (27)

V 0
α = 1

4
(Cl + Cu)ρα

i

{
2ρα

i ραIα

[
d2

(
2ρα

i

)κ − 1

+3m∗
αT + 6

5

(
P α

F

)2

b2

]
+ I

[
ρ
{
d2

(
ρ + ρα

i

)κ − 1

+3

5

(
P α

F

)2

b2

}
+

∑
τ

4π (2m∗
τ T )5/2J3/2(ητ )

h3b2

]}
(28)

and

V 1
α = 1

4 (Cl + Cu)ρα
i

{
2ρα

i ραIα + Iρ
}
/b2. (29)

In both V 1
τ and V 2

τ , the last term stems from the α-N interaction.
The effective nucleon mass in pure nucleonic matter thus gets
modified owing to clusterization. The integral Iα occurring in
Eqs. (28) and (29) is a nine-dimensional integral (see Fig. 2),

Iα =
∫

Vα

dr
∫

Vα

dr′
∫

dR
e−|R+r−r′ |/a

|R + r − r′|/a , (30)

which can be evaluated numerically. If the α’s do not
interpenetrate, the integral over R excludes the α volumes.

C. Expressions for observables in the TF approximation

1. Energy per baryon

The energy per baryon eb of the αN matter can be calculated
from Eq. (5). It can be split into the following form:

eb = eNN + eαN + eαα. (31)

Here eNN comes from the kinetic energy of the free nucleons
and the interactions among them, eαN arises from the inter-
action among the free nucleons and the α’s, and eαα stems
from the kinetic energy of the α’s and the interaction among
themselves. The expressions for them are

eNN = 1

ρb

∑
τ

ρτ

[
T J3/2(ητ )/J1/2(ητ )

{
1 − m∗

τV
1
τ

}+ 1

2
V 0

τ

]
,

(32)

eαN = 1

4ρb

(Cl + Cu)Iραρi
α

[{
3m∗

αT + 3/5
(
P α

F

)2

b2
−1 + d2

(
ρ

+ρα
i

)κ

}
ρ + 1

b2

∑
τ

(
4π

h3
(2m∗

τ T )5/2J3/2(ητ )

)]
(33)
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and

eαα = 1

ρb

[
π

mαh3
(2m∗

αT )5/2B3/2(ηα)

+1

4
(Cl + Cu)Iαρ2

α(ρα
i )2

{
d2(2ρα

i )κ − 1

+ 6m∗
αT

b2
+ 6

5

(P α
F )2

b2

}]
. (34)

In the above equations, as stated earlier, ρb (=ρ + 4ρα)
corresponds to the total baryon density, and ρ and ρα are the
free nucleon and α densities, respectively, in the αN system.

2. Entropy per baryon

The entropy per baryon sb can be evaluated using Eqs. (8)
and (9). It is additive and can be written as

sb = sN + sα, (35)

where sN and sα are the contributions to entropy from free
nucleons and α’s, respectively. Their expressions reduce to

sN = 1

ρb

∑
τ

ρτ

[
5

3
J3/2(ητ )/J1/2(ητ ) − ητ

]
(36)

and

sα = ρα

ρb

[
5

3
B3/2(ηα)/B1/2(ηα) − ηα

]
. (37)

3. Pressure of αN matter

Once the energy and entropy of the composite system are
known, the pressure can be calculated from the Gibbs-Duhem
thermodynamic identity,

P =
∑

τ

ρτµτ + ραµα − fbρb, (38)

where fb is the free energy per baryon, fb = eb − T sb.

4. Incompressibility and symmetry coefficients

The incompressibility K can be computed from the deriva-
tive of pressure

K = 9
dP

dρ
. (39)

The symmetry free energy and symmetry energy coefficients
CF and CE are calculated from

CF = 1

2

(∂2fb

∂X2

)
X=0

, (40)

CE = 1

2

(∂2eb

∂X2

)
X=0

, (41)

where X is the neutron-proton asymmetry of the αN system.
It is given as X = (ρn

b − ρ
p

b )/ρb, where ρn
b and ρ

p

b are the total
neutron and proton density, respectively.

D. The S-matrix approach

The relevant key elements of the SM framework [17] as
applied in the context of dilute nuclear matter [8,12] are
outlined in brief here. The grand partition function of an
interacting infinite system of neutrons and protons can be
written as

Z =
∞∑

Z,N=0

(ζp)Z(ζn)N TrZ,N e−βH , (42)

where ζp = eβµp and ζn = eβµn are the elementary fugacities
with β = 1/T , and µ’s are the nucleonic chemical potentials.
Here H is the total Hamiltonian of the system and the trace
TrZ,N is taken over states of Z protons and N neutrons. The
partition function can be split into two types of terms [17]:

lnZ = lnZ (0)
part + lnZscat. (43)

The first term on the right-hand side corresponds to contribu-
tions from stable single-particle states of clusters of different
sizes including free nucleons formed in the system; the second
term refers to all possible scattering states. The superscript (0)
indicates that the clusters behave as an ideal quantum gas.
In general, lnZ (0)

part contains contributions from the ground
states as well as the particle-stable excited states of all the
clusters. The scattering term lnZscat may be written as a sum of
scattering contributions from a set of channels, each set having
total proton number Zt and neutron number Nt . Because our
interest in the present work is focused on αN matter, in lnZ (0)

part,
we include only the nucleons and the ground state of α;
similarly in lnZscat, only the scattering channels NN, αN ,
and αα are considered, so that

lnZscat = lnZNN + lnZαN + lnZαα. (44)

Each of the terms in Eq. (44) can be expanded in the respective
virial coefficients. Only expansion up to the second-order
coefficients is considered. They are written as energy integrals
of the relevant phase shifts [6,7]. The partition function can
then be written explicitly as

lnZ = V

{
2

λ3
N

[
ζn + ζp + bnn

2
ζ 2
n + bpp

2
ζ 2
p + 1

2
bnpζnζp

+ 8ζα + 8bααζ 2
α + 8bαnζα(ζn + ζp)

]}
, (45)

where λN = h√
2πmT

is the nucleon thermal wavelength, ζα

= eβ(µα+Bα), Bα being the binding energy of α and µα =
2(µn + µp). bnn, bnp, etc., are the temperature-dependent virial
coefficients [7,12]. The value of the virial coefficient bnp has
been adjusted so as to exclude the resonance formation of
deuteron from n-p scattering to be consistent with our choice
of the αN matter.

Knowledge of the partition function allows all the relevant
observables to be calculated. The pressure is given by

P = T lnZ/V . (46)

The number density ρi is calculated from

ρi = ζi

(
∂

∂ζi

lnZ
V

)
V,T

, (47)
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where i stands for n, p, or α. Once the pressure, densities, and
chemical potentials are known, the free energy can be obtained
from the Gibbs-Duhem relation. The entropy per baryon is
calculated from

sb = 1

ρb

(∂P

∂T

)
µ
, (48)

which yields the energy per baryon as eb = fb + T sb. The
explicit expression for the entropy per baryon is

sb = 1

ρb

{
5

2

P

T
−

∑
i

ρi ln ζi + T

λ3
N

[
ζnζpb′

np + (
ζ 2
n + ζ 2

p

)
b′

nn

+ 8ζ 2
αb′

αα + 8ζα(ζn + ζp)b′
αn

]}
. (49)

The prime on the virial coefficients denotes their temperature
derivatives.

III. RESULTS AND DISCUSSION

In the mean-field framework, the momentum- and density-
dependent finite-range SBM force as scripted in Eqs. (1) and
(2) has been chosen as the effective two-nucleon interaction
in our calculations. To start with, we take baryon matter
at a given density ρb at a temperature T with an isospin
asymmetry X. The unknowns are the free nucleon densities ρn,
ρp and the α concentration in the matter. The three constraints
are the conservation of the total baryon number, the total
isospin, and the condition of chemical equilibrium between
the nucleons and the α’s. Starting from a guess value for the α

concentration, the unknowns are determined iteratively using
the Newton-Raphson method. For our calculations, the masses
of neutron and proton are taken to be the same, and for α

binding energy, the experimental value of 28.3 MeV is used.
For evaluation of the αα potential, the α-particles are assumed
to be nuclear droplets with sharp boundaries that do not
interpenetrate.

The calculations are done up to a baryon density ρb = 0.01
fm−3. To show the effect of temperature on different properties
of the dilute matter, results are reported for temperatures
T = 3, 5, and 10 MeV. The baryon fraction in α, Yα = 4ρα/ρb

(hereafter referred to as the α fraction) in αN matter as a
function of density at the three temperatures mentioned are
shown for symmetric (X = 0) and asymmetric (X = 0.2)
nuclear matter in Figs. 3(a) and 3(b), respectively. Black lines
correspond to results obtained in the TF approximation [αN
(TF)]; red lines refer to those in the SM approach [αN (SM)],
with consideration of only n, p, and α as the constituents of
the baryonic matter. At low temperatures and higher densities,
it is seen that α’s are the major constituents of the matter; with
increasing temperature, the free nucleon fraction increases at
the cost of α density. At moderate asymmetry X = 0.2, the α

population is somewhat lower compared to that for symmetric
nuclear matter. In the temperature and density domain that we
explore, the results from both the SM and the TF approach
are found to be quite close. The asymmetry dependence of
α fraction Yα is displayed in Fig. 4 at two representative
densities, ρb = 0.001 and 0.01 fm−3, at the three temperatures.

0.2

0.4

0.6

0.8

1

αN (TF)
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0 0.002 0.004 0.006 0.008 0.01

ρ
b
 (fm

-3
)

0
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0.4

0.6

0.8

Y
α

T=3

T=5

T=10

T=3

T=5

T=10

X=0.0

X=0.2

(a)

(b)

FIG. 3. (Color online) The α fraction Yα = 4ρα/ρb shown as a
function of the baryon density ρb in the TF and SM approaches at T =
3, 5, and 10 MeV for symmetric matter (X = 0.0) and asymmetric
matter (X = 0.2) in (a) and (b), respectively.

With increasing asymmetry, the α concentration decreases; the
decrease is more prominent at lower temperature. At the lower
density [Fig. 4(a)], results for T = 10 MeV are not shown, as
Yα is close to 0.

The free energy per baryon for homogeneous nucleonic
matter [denoted N(TF)] and the αN matter in the TF
approximation are presented in Figs. 5(a), 5(b), and 5(c)
at T = 3, 5, and 10 MeV, respectively. The calculations
presented refer to symmetric nuclear matter. Blue and black
lines represent results for N(TF) and αN(TF). It is clearly
shown that the clusterized matter has a lower free energy
compared to the homogeneous nucleonic matter. This is more
prominent at lower temperatures; higher temperatures tend
to melt away the clusters. For comparison, results from the
SM approach are also presented. They are shown by the
red lines, nearly indistinguishable from those for αN(TF).
Figure 6 displays the pressure of the baryonic matter. At
lower temperatures (T = 3 and 5 MeV), the nucleonic matter

0.2

0.4

0.6

0.8

1

αN (TF)
αN (SM)
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ρ
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T=5

T=3

T=5

T=10

(a)

(b)

FIG. 4. (Color online) The α fraction Yα displayed as a function
of asymmetry X at baryon density ρb = 0.001 (top) and at 0.01 fm−3

(bottom) at T = 3, 5, and 10 MeV in the TF and SM approaches.
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FIG. 5. (Color online) Free energy per baryon F/A shown as a
function of ρb at T = 3, 5, and 10 MeV in the TF framework for
homogeneous nucleonic matter (blue lines) and αN matter (black
lines). Red lines represent results from the SM approach.

shows the rise and fall of the pressure with density leading
to an unphysical region. For αN matter, however, no such
unphysical region is observed in the density region we have
studied. Both the TF and the SM approaches yield nearly
the same value of pressure. At high temperatures the α

concentration becomes very much lower; the pressure in all
three approaches are then nearly the same in this density
region.

In Fig. 7, effective masses of the nucleon and α are
shown as a function of density at the temperatures mentioned.
The nucleon effective mass is calculated for both nucleonic
matter (blue line) and αN matter (solid black line) in the TF
approximation. The nucleon effective mass at a given ρb in
homogeneous nucleonic matter is always lower compared to
that in clusterized matter. It is independent of temperature. In
αN matter it nominally decreases with temperature. At high
temperatures, the nucleon effective masses calculated in the
homogeneous and clusterized matter are nearly degenerate;
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FIG. 6. (Color online) Pressure P as a function of ρb. Notation is
the same as in Fig. 5.
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FIG. 7. (Color online) The nucleon (solid black lines) and α

(dashed black lines) effective masses shown as a function of ρb at
T = 3 , 5, and 10 MeV in the TF framework for αN matter. Blue lines
refer to the corresponding nucleon effective masses for homogeneous
nucleonic matter.

with lowering of temperature, the degeneracy is lifted owing
to the increase in α concentration. The effective α mass is
shown by the dashed black lines. With increasing temperature,
the medium effect on the α mass is strikingly enhanced.
This is because of the interplay of the temperature-dependent
contributions from the αα interactions and αN interactions,
corresponding to the first and the second term within the braces
in Eq. (29).

The incompressibility of the baryonic matter as a function
of density is displayed in Fig. 8 at the three temperatures. At a
very low density and higher temperature, the matter is mostly
nucleonic in all three approaches, so the incompressibility K

is ∼9T ; one sees this at the lower densities considered at T =
10 MeV in Fig. 8(c). Even at this very high temperature, how-
ever, the nucleonic interactions have their role as the density
increases; this results in the reduction of the incompressibility
from the ideal gas value. At the lower temperatures [Figs. 8(a)
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FIG. 8. (Color online) Incompressibility K for baryonic matter
shown as a function of ρb at T = 3, 5, and 10 MeV. Notation is the
same as in Fig. 5.
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FIG. 9. (Color online) Symmetry energy CE (left) and symmetry
free energy coefficients CF (right) shown as a function of ρb

at temperatures T = 3, 5, and 10 MeV. Notation is the same as
in Fig. 5.

and 8(b)], clusterization softens the matter toward compression
compared to homogeneous matter (shown in the lower density
region); increasing density, however, pushes the homogeneous
matter toward the unphysical region, leading to negative
incompressibility.

The symmetry energy coefficients CE and CF of the
baryonic matter as a function of density are displayed in
the left and right panels, respectively, of Fig. 9 at the three
temperatures studied. Blue lines refer to calculations for the
homogeneous matter; black and red lines represent results for
αN(TF) and αN(SM). Clusterized matter displays a marked
increase in the symmetry coefficients, noticed earlier [6,7]. The
two approaches to clusterization lead to the same values of the
symmetry coefficients at lower densities; with an increase in
density the difference widens, more so at lower temperatures.
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FIG. 10. (Color online) (a) Free energy per particle, (b) pressure,
and (c) α fraction shown as a function of ρb at T = 3 MeV for
α drops with no overlap (solid black lines) and with, at best,
5% overlap (dashed-dotted black lines) in the TF approxima-
tion. The same observables are also shown in the SM approach
(red lines).

The results presented so far in the αN(TF) approach have
been calculated with the assumption that the α’s do not
overlap; they are mutually impenetrable spherical drops. This
assumption relies on the fact that the α’s are very tightly bound
and very hard to excite. To explore the effect of overlap in
α’s, we consider the possibility of penetration with, at best,
a 5% overlap in volume [the value of Iα in Eq. (30) then
changes accordingly]. Calculations have been repeated with
this changed condition. The so-calculated free energy per
baryon, pressure, and α fraction Yα in the baryonic matter
are presented in Figs. 10(a), 10(b), and 10(c), respectively, at
T = 3 MeV (the dot-dashed black lines) and compared with
those calculated with the no-overlap condition (solid black
lines) and also those from the αN(SM) approach (red lines).
There is no significant change in the free energy or in the α

fraction, but the pressure changes perceptibly, particularly at
higher densities. The good agreement between the no-overlap
αN(TF) calculations and those from the benchmark αN(SM)
shows the viability of the approximation of the impenetrability
of the α’s.

IV. CONCLUDING REMARKS

Clusterization in warm dilute nuclear matter has been
treated earlier in the virial approach or in the SM framework.
These are model-independent parameter-free calculations.
As explained in Sec. I, these methods may have limita-
tions at relatively high densities and low temperatures. An
alternate avenue for dealing with clusterized matter in a
broadened density and temperature domain is suggested in
the mean-field framework in the present paper. The sug-
gested method may be lengthy at relatively higher densities
where many different fragment species are formed, but it
is straightforward. To explore its applicability in a wider
domain, as a first step, we consider only n, p, and α as the
constituents of the matter at low densities and see how the
results compare with those from the model-independent virial
approach.

We have chosen the SBM interaction, which nicely re-
produces the bulk properties of nuclear matter and of finite
nuclei. We have calculated the α fraction, free energy, pressure,
incompressibility, and symmetry coefficients of this αN matter
in this mean-field framework and find that all these results
compare extremely well with those obtained from the SM
method, particularly in the low-density, high-temperature
regime. This gives one confidence in the applicability of this
mean-field approach in dealing with the EOS of warm dilute
baryonic matter and the possibility of extending this method to
higher densities. The price, however, is the consideration of a
larger number of fragment species and a numerically involved
calculation.
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