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Duality symmetry of the Balitsky-Fadin-Kuraev-Lipatov equation: Reggeized gluons
versus color dipoles
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It is shown that the duality symmetry of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation can be interpreted
as a symmetry under rotation of the BFKL kernel in the transverse space from s channel (color-dipole model) to t

channel (Reggeized gluon formulation). It is argued that the duality symmetry also holds in the nonforward case
due to a very special structure of the nonforward BFKL kernel, which can be written as a sum of three forward
BFKL kernels. The duality symmetry is established by identifying the dual coordinates with the transverse
coordinates of a nondiagonal dipole scattered off the target.

DOI: 10.1103/PhysRevC.83.055206 PACS number(s): 12.40.Nn, 12.38.−t, 24.85.+p

I. INTRODUCTION

The Balitsky-Fadin-Kuraev-Lipatov (BFKL) equa-
tion [1] describes the amplitude of scattering at very high
center-of-mass energy

√
s with |t/s| � 1, where t is the square

of the transferred momentum. The leading-order BFKL is
obtained by summing terms (αs ln s)n, where each power
of the coupling constant αs is accompanied by the corre-
sponding power of the logarithm of energy. This kinematic
regime is called multi-Regge kinematics. In the multi-Regge
kinematics, the transverse degrees of freedom fully decouple
from the longitudinal ones. This allows the formulation of
the BFKL equation as evolution in complex time (rapidity)
with the integral kernel operating in the transverse space. The
BFKL equation was originally formulated using the fact that
t-channel gluons Reggeize and the production vertices of
the s-channel gluons factorize in the Regge kinematics. In
this picture, the BFKL equation describes a compound state
of two Reggeized gluons. An alternative derivation of the
BFKL evolution was proposed by Mueller [2] using s-channel
unitarity for the evolution of colorless dipoles in the limit of
the large number of colors. The BFKL equation was solved [3]
using the conformal invariance of the BFKL kernel. It was
also noticed that the BFKL kernel has another interesting
property called the duality symmetry, found by Lipatov [4].
This symmetry means that the form of the BFKL equation
does not change if the gluon momentum k is replaced by its
conjugate coordinate. It was shown that this symmetry can
explain the integrability of the BFKL equation. However, it
was also suggested that the duality symmetry should hold
only for the case of zero-momentum transfer for a system of
two Reggeized gluons.

The objective of the present study is to show that the duality
symmetry of the BFKL equation also holds in the nonforward
case, though not in an explicit way. The analysis started by
the present author [5] is continued and the duality symmetry
is established as a symmetry between Reggeized gluon
formulation and the dipole picture of the BFKL evolution. In
particular, it is shown that the evolution equation for a dipole
with different sizes to the left and to the right of the unitarity
cut can be written in the form of the BFKL equation in the dual
coordinates. The dual momenta coordinates and the conjugate

coordinates are not a priori related objects. The fact that they
can be identified is to be understood as a sign for the duality
symmetry. However, there seems to be no obvious choice of
the Fourier transform (at least of a single variable) that can take
one picture to another. This is the reason why this symmetry
is referred to as the hidden duality symmetry. The hidden
duality symmetry can also be interpreted as a symmetry under
rotation of the BFKL kernel in the transverse space from the
t channel (Reggeized gluons) to the s channel (color dipoles)
and back.

II. DUALITY SYMMETRY OF THE BFKL EQUATION

This section explains briefly how the duality symmetry
appears in the leading-order BFKL equation and shows
why it is related to the integrability. The duality symmetry
of the system of interacting Reggeons in the limit of a
large number of colors was formulated by Lipatov [4]. The
following briefly outlines the major relevant points of this
study.

The outline starts with a general description of the BFKL
approach and presents its formulation in terms of the holomor-
phic Hamiltonian in the Schrödinger-like equation. The BFKL
equation describes the behavior of the scattering amplitude in
the limit of the center-of-mass energy

√
s being much larger

than the typical transferred momentum |t/s| � 1 (the Regge
kinematics). The leading-order BFKL evolution equation is
obtained by summing the powers of the parameter αs ln s,
where each power of the strong coupling constant αs is
accompanied by the corresponding power of the logarithm
of energy. In this picture, the BFKL Pomeron appears as
a compound state of two Reggeized gluons of transverse
momenta �k and �k − �q as illustrated in Fig. 1. The color singlet
BFKL in the limit of large number of color Nc reads

(
∂

∂y
− ε(−�k2) − ε[−(�k − �q)2]

)
F(�k, �k − �q)

= αsNc

2π2

∫
d2 �χ K(�k, �χ )

�χ2( �χ − �q)2
F( �χ, �χ − �q), (1)
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FIG. 1. The BFKL evolution equation describes high-energy
scattering as a compound state of two t-channel Reggeized gluons,
with real s-channel gluon emissions crossing the dashed line of the
unitarity cut. The effective real production vertices are denoted by
the dark blobs, and the fact that t-channel gluons are Reggeized is
reflected by crosses.

where the gluon Reggeization enters the equation through the
Regge gluon trajectory

ε(−�k2) = αsNc

4π2

∫
d2 �χ −�k2

�χ2( �χ − �k)2
. (2)

The real emission part of the kernel is given by

K(�k, �χ ) = �q2 −
�k2( �χ − �q)2

( �χ − �k)2
− �χ2(�k − �q)2

( �χ − �k)2
. (3)

In the leading-order BFKL, the transverse momenta com-
ponents decouple from the longitudinal ones (rapidity). Due
to this factorization, the BFKL Pomeron can be written as
a state in the two-dimensional transverse space that evolves
with rapidity, which plays the role of an imaginary time. This
fact makes it possible to formulate the color singlet BFKL
dynamics in the form of the Schrödinger equation for the wave
function fm,m̃( �ρ1, �ρ2, . . . , �ρn; �ρ0) for a system of n Reggeized
gluons [6–8]. The BFKL equation is obtained for n = 2. The
vectors �ρk are two-dimensional coordinates of the Reggeized
gluons and m and m̃ are the conformal weights

m = 1

2
+ iν + n

2
, m̃ = 1

2
+ iν − n

2
, (4)

which are expressed in terms of the anomalous dimension
γ = 1 + 2iν and the integer conformal spin n. The anomalous
dimension and the conformal spin in this context were
introduced when solving the BFKL equation in the complex
coordinates

ρk = xk + iyk, ρ∗
k = xk − iyk (5)

using the conformal properties of the BFKL kernel.

The BFKL wave function fm,m̃ satisfies the Schrödinger
equation

Em,m̃fm,m̃ = Hfm,m̃ (6)

with the energy Em,m̃ being proportional to the position of
the singularity in the complex angular momentum j plane. In
the multicolor limit, the Hamiltonian possesses a property of
holomorphic separability

H = 1
2 (h + h∗), (7)

where the holomorphic and the antiholomorphic Hamiltonians

h =
n∑

k=1

hk,k+1, h∗ =
n∑

k=1

h∗
k,k+1 (8)

are expressed through the BFKL operator [9]

hk,k+1 = ln(pk) + ln(pk+1) + 1

pk

ln(ρk+1)pk

+ 1

pk+1
ln(ρk+1)pk+1 + 2γ. (9)

In Eq. (9) one defines ρk,k+1 = ρk − ρk+1, pk = i∂/(∂ρk),
p∗

k = i∂/(∂ρ∗
k ), and γ = −ψ(1) (the Euler constant). The

holomorphic separability of the Hamiltonian means the holo-
morphic factorization of the wave function

fm,m̃( �ρ1, �ρ2, . . . , �ρn; �ρ0) =
∑
r,l

cr,lf
r
m(ρ1, ρ2, . . . , ρn; ρ0)

×f l
m̃(ρ∗

1 , ρ∗
2 , . . . , ρ∗

n ; ρ∗
0 ) (10)

and the Schrödinger equations in the holomorphic and the
antiholomorphic spaces

εmfm = hfm, εm̃fm̃ = h∗fm̃, Em,m̃ = εm + εm̃. (11)

The degenerate solutions are accounted for by the coefficients
cr,l in Eq. (10), which are fixed by the single-valuedness
condition for the wave function in the two-dimensional space.

It is interesting to note that the BFKL wave function can
be normalized in two different ways,

‖ f ‖2
1 =

∫ n∏
r=1

d2ρr

∣∣∣∣∣
n∏

r=1

ρ−1
r,r+1f

∣∣∣∣∣
2

and

× ‖ f ‖ 2
2 =

∫ n∏
r=1

d2ρr

∣∣∣∣∣
n∏

r=1

prf

∣∣∣∣∣
2

. (12)

This is in an agreement with the hermicity properties of
the Hamiltonian, since the transposed Hamiltonian ht can be
obtained by two different similarity transformations [10]

ht =
n∏

r=1

prh

n∏
r=1

p−1
r =

n∏
r=1

ρ−1
r,r+1h

n∏
r=1

ρr,r+1. (13)

The BFKL Hamiltonian is invariant under cyclic permu-
tations corresponding to the Bose symmetry of the Reggeon
wave function i → i + 1 (i = 1, 2, . . . , n) in multicolor limit.
It was noticed by Lipatov [4] that the Hamiltonian is also
invariant under the canonical transformation

ρk−1,k → pk → ρk,k+1 (14)
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accompanied by the change of the operator ordering. This
property becomes obvious if the Hamiltonian Eq. (8) is
rewritten in the form of

h = hp + hρ (15)

with

hp =
n∑

k=1

(
ln(pk) + 1

2

∑
λ=±1

ρk,k+λ ln(pk)ρ−1
k,k+λ + γ

)
(16)

and

hρ =
n∑

k=1

(
ln(ρk,k+1) + 1

2

∑
λ=±1

p−1
k+(1+λ)/2 ln(ρk,k+1)

×pk+(1+λ)/2 + γ

)
. (17)

The invariance of the BFKL Hamiltonian under the change
of the variables in Eq. (14) together with the change of the
operator ordering was called the duality symmetry. The duality
symmetry implies that the BFKL Hamiltonian commutes
[h,A] = 0 with the differential operator

A = ρ12ρ23 . . . ρn1p1p2 . . . pn, (18)

or, more generally, there is a family of mutually commuting
integrals of motion [10]

[qr, qs] = 0, [qr, h] = 0 (19)

and they are given by

qr =
∑

i1<i2<···<ir

ρi1,i2ρi2,i3 . . . ρir ,i1pi1pi2 . . . pir . (20)

The operators qr build a complete set of the invariants of the
transformation. Therefore the Hamiltonian h is their function

h = h(q2, q3, . . . , qn) (21)

and a common eigenfunction of qr is simultaneously a solution
to the Schrödinger equation. This fact explains why the duality
symmetry is related to the integrability of a system of Reggeons
in the limit of the large number of colors Nc. In the the
multicolor limit, only nearest-neighbor interactions are not
suppressed and the BFKL dynamics are similar to that of the
Ising spin-chain model.

The transformation Eq. (14) of the holomorphic BFKL
Hamiltonian is a unitary transformation only for a vanishing
total momentum

�p =
n∑

r=1

�pr (22)

which guarantees the cyclicity of the momenta pr important
for their representation by the difference of coordinates ρr,r+1.
For the compound state of two Reggeized gluons (usual
BFKL case) for n = 2, this can be achieved only for the
zero-transferred momentum �q = 0. Only in this case can one
really identify the dual coordinates �ρr,r+1 of the momenta
�pr with their conjugate coordinates. In a more general case,
these two are not the same object. However, the integrability
of the nonforward BFKL suggests that the duality symmetry

should also be present in the case of �q �= 0, but in an implicit
way. The main objective of the present study is to show that
the dipole formulation of the BFKL evolution can provide
a suitable framework for studying the duality symmetry
of the nonforward BFKL. The evolution equation for the
scattering of a nondiagonal dipole is shown to coincide with the
nonforward BFKL equation in the dual space, provided some
dual condition to the so-called BFKL condition is imposed
on the dipole scattering amplitude. The BFKL condition is a
result of the unitarity and the multi-Regge kinematics used for
deriving the leading-order BFKL as discussed below. In this
formalism, the duality symmetry of the nonforward BFKL
equation appears in an implicit way due to the fact that the set
of coordinates of the scattered dipole can be identified with
a set of dual coordinates of the Reggeized gluons’ momenta.
However, it appears that there is no obvious choice of the
Fourier transform that can relate the dipole coordinates to the
Reggeized gluon momenta individually. This is the reason why
the duality symmetry is established implicitly. The duality
symmetry also holds in the nonforward case because of the
special structure of the nonforward BFKL kernel, which can
be viewed as the sum of the three forward kernels. As it was
already mentioned, the duality symmetry of the forward BFKL
can be shown explicitly, which suggests that the sum of the
three forward kernels should also possess this property.

The main motivation of the present study is to investigate
properties of the BFKL equation in the Reggeized gluon
and color-dipole formulations, and to establish a connection
between them. In particular, the duality between the two for-
mulations considered here naturally explains the mixing of the
real and virtual contributions in the two pictures as discussed
in Sec. IV. The duality symmetry of the multicolor system of
many Reggeized gluons was used by Lipatov to find an analytic
solution for the Odderon wave function. It is the present
author’s belief that the analysis presented in this study can be
generalized to a nonlinear case and will be helpful in finding
analytic solution to the Balitsky-Kovchegov (BK) equation.

Another possible implementation of the analysis presented
here is the use of uncut-cut-uncut (UCU) representation of
the BFKL equation for the calculation of not fully inclusive
processes with different multiplicities of produced particles,
similar to the Abramovsky-Gribov-Kancheli (AGK) cutting
rules in the old fashioned Regge theory.

One remark is in order. A system may possess
another symmetry with a similar name, called the dual
conformal symmetry. The dual conformal symmetry is a usual
conformal symmetry in the dual coordinates (ki = xi − xi+1)
and, generally, is not related to the duality symmetry. The
dual conformal symmetry is now successfully implemented
in calculating multileg planar amplitudes in the N = 4 super-
Yang-Mills (SYM) theory (for an up-to-date discussion, see
Ref. [11] and references therein) and it was also recently
considered in connection with the BFKL equation [12]. This
symmetry is beyond the scope of the present study.

In the next section, the BFKL equation is written in the dual
coordinates and its structure is analyzed. The argument is made
that the nonforward BFKL equation can be represented as a
three-point amplitude, due to the BFKL condition associated
with the lack of the crossing symmetry in the BFKL approach.

055206-3



ALEX PRYGARIN PHYSICAL REVIEW C 83, 055206 (2011)

= + − +

Uncut Cut UncutNonforward
Forward Forward Forward

k k−q

x x

xx x

q q k−q k−q

x x

xx

k k

x x

x

FIG. 2. The uncut-cut-uncut (UCU) structure of the nonforward BFKL. The nonforward BFKL kernel can be written as a linear combination
of three forward kernels, two uncut (for two gluon pairs k and k − q) and one cut (for the gluon pair q). The cut kernel does not possess virtual
contributions, which is reflected by the absence of crosses on gluons q.

III. BFKL EQUATION IN DUAL COORDINATES

This section discusses the structure of the BFKL equation
and writes it in the dual coordinates. It is shown that the
nonforward BFKL kernel q �= 0 can be written as a sum of
three forward kernels, which can be interpreted as two uncut
and one cut kernel (UCU structure). The UCU structure of the
BFKL equation is crucial for establishing the duality symmetry
in the nonforward case as well.

To start, the BFKL equation is recast into a form useful for
this discussion.1 The direct substitution of Eq. (2) and Eq. (3)
in Eq. (1) gives

∂F(k, k − q)

∂y
= +αsNc

2π2

∫
d2χ k2

χ2(χ − k)2
F(χ, χ − q)

−αsNc

4π2

∫
d2χ k2

χ2(χ − k)2
F(k, k − q)

+αsNc

2π2

∫
d2χ (k − q)2

(χ − q)2(χ − k)2
F(χ, χ − q)

−αsNc

4π2

∫
d2χ (k − q)2

(χ − q)2(χ − k)2
F(k, k − q)

−αsNc

2π2

∫
d2χ q2

χ2(χ − q)2
F(χ, χ − q). (23)

For the present purpose, it is convenient to write the second line
of Eq. (23) in a slightly different form, changing the integration
variable χ → χ − q

∂F(k, k − q)

∂y
= +αsNc

2π2

∫
d2χ k2

χ2(χ − k)2
F(χ, χ − q)

−αsNc

4π2

∫
d2χ k2

χ2(χ − k)2
F(k, k − q)

+αsNc

2π2

∫
d2χ (k − q)2

χ2(χ − k + q)2
F(χ + q, χ )

−αsNc

4π2

∫
d2χ (k − q)2

χ2(χ − k + q)2
F(k, k − q)

1From now on, only the two-dimensional transverse momenta is
dealt with and the vector sign is omitted to make the presentation
clear.

−αsNc

2π2

∫
d2χ q2

χ2(χ − q)2
F(χ, χ − q). (24)

One can see that the kernel of the nonforward BFKL
equation can be written as a sum of the three forward kernels,
where two of them are the usual forward BFKL kernels given
by the first and the second lines of Eq. (24), while the third
line has only the real emission part. This interpretation is better
understood from Fig. 2, where the unitarity cut is denoted by
the vertical dashed line. The BFKL kernel that describes the
bound states of two Reggeized gluons k and k − q can be
viewed as the sum of the uncut forward kernels for the gluon
pair k and k and the gluon pair k − q and k − q (the first term
and the third term on the right-hand side in Fig. 2) and the cut
forward kernel for the scattering of the pair of fictitious gluons
q and q (the second term on the right-hand side in Fig. 2). The
last contribution seats exactly on the unitarity cut and thus does
not possess any virtual contribution. This UCU structure of the
nonforward BFKL kernel plays an important role in showing
the duality symmetry of the BFKL equation and in finding the
dual equation in the dipole picture as shown below. To see this,
Eq. (24) is first written in the dual coordinates properly chosen
by making the following observations.

The duality symmetry also holds for a case of the multi-
Reggeon exchange, and is not limited to the system of
two Reggeized gluons, as in the BFKL equation Eq. (24).
Another important point is that only the upper momenta of the
Reggeized gluons are to be taken into account. In particular,
this means that in the case of the BFKL Pomeron, there are
only three momenta for the duality symmetry, because the
Regge kinematics selects the t channel for a propagation of
the BFKL state breaking the crossing symmetry. Together
with the unitarity condition and the strong ordering of the
produced particles (multi-Regge kinematics), this results into
some constraint on the form of the leading-order BFKL
amplitude, which is called the BFKL condition. This condition
is implicitly written in the leading-order BFKL as explained
below.

By inspecting the arguments of the BFKL amplitude in
Eq. (24) of both the real and the virtual parts, one can
deduce that their difference is always equal to the transferred
momentum, namely, for F(ki, kj ), ki − kj = q. This is a
consequence of the use of the t-channel unitarity together with
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FIG. 3. The BFKL condition constrains the representation of the BFKL scattering amplitude as a function of only three dual coordinates
instead of four external points.

a special kinematics in the BFKL approach. This condition is
the BFKL condition. It suggests that the BFKL amplitude
should be treated as a three-point function with external
momenta

k1 = k; k2 = q − k; k3 = −q. (25)

At first sight, the BFKL amplitude is a four-point scattering
amplitude with four external (transverse) momenta k, k − q,
k′, and k′ − q, but the BFKL condition removes the necessity
in the fourth external momentum, leaving three momenta,
which obey the conservation law. This means that the BFKL
amplitude is in fact a function of only two external transverse
momenta (i.e., k and q or k and k − q). In other words, the

duality symmetry deals with only the upper gluon momenta or
only the lower gluon momenta, but never with both of them.
This observation suggests the need to pick up only three dual
coordinates. For our purposes we define the dual coordinates

k = k1 = x1 − x2 = x12;

q − k = k2 = x2 − x3 = x23; (26)

−q = k3 = x3 − x1 = x31

so that the overall momenta conservation k1 + k2 + k3 = 0
is automatically satisfied and the BFKL amplitude can be
represented as a three-point function in the dual space as
illustrated in Fig. 3. Using this definition, the BFKL equation
Eq. (24) can be written as follows:

∂F(x12, x23)

∂y
= +αsNc

2π2

∫
d2z x2

12

z2(z − x12)2

[
F(z, z + x31) − 1

2
F(x12,−x23)

]

+αsNc

2π2

∫
d2z x2

23

z2(z + x23)2

[
F(z − x31, z) − 1

2
F(x12,−x23)

]

−αsNc

2π2

∫
d2z x2

31

z2(z + x31)2
F(z, z + x31). (27)

The dual coordinates defined in Eq. (26) are nothing but
a useful parametrization of the transverse momenta of the
Reggeized gluons. However, if a representation of the BFKL
equation is found in the coordinates, canonically conjugated
to the transferred momenta, which is identical to the BFKL
equation in the dual coordinates of Eq. (27), it would imply
that there exists some symmetry. This situation is similar to
one considered in the previous section, where the Hamiltonian
for a system on n Reggeized gluons can be written in two
alternative ways given by Eq. (16) and Eq. (17), resulting in
a set of the integral of motion leading to the integrability of
the system. It is this author’s claim that this also holds for the
nonforward BFKL, as shown later.

The next section discusses the evolution equation for the
nondiagonal dipole scattering and shows that it can be written
in the form of the BFKL in the dual coordinates of Eq. (27) by
imposing on it the dual condition to the BFKL condition.

IV. SCATTERING OF NONDIAGONAL DIPOLE

In this section it is shown that the evolution equation for
the scattering of the nondiagonal dipole depicted in Fig. 4
can be brought to the form of the BFKL equation in the
dual space Eq. (27). The scattering of the nondiagonal dipole
with different coordinates in the amplitude and the conjugate
amplitude (to the left and to the right of the unitarity cut) was
considered by Levin and the present author [13] as an auxiliary
problem in proving the single inclusive production formula
in the dipole formulation. Such a dipole can be constructed
if one fixes the momentum of the antiquark line and thus
keeps its coordinates different to the left and to the right of
the unitarity cut, whereas the lower quark line momentum
is integrated over, resulting in δ(2)(ρ1 − ρ1′ ). The nonlinear
evolution equation was derived and solved using the notion of
the generalized optical theorem. The function M(12|12′), for
which the equation was derived, is an auxiliary function for
proving the single inclusive production formula for the dipole
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1

2

1

2’

FIG. 4. The schematic representation of a color dipole, which has
different transverse sizes to the left and to the right of the unitarity
cut denoted by the vertical dashed line. For the present purposes, it is
enough to consider only the difference in the coordinates of the upper
(antiquark) line, keeping the the coordinates of the lower (quark) the
same. The broken antiquark line illustrates only the fact that the sizes
are different. There is no discontinuity in the charge, flow, etc.

model. It has a meaning of the nondiagonal dipole total cross
section since for ρ2 = ρ2′ it reduces to M(12|12) = 2N (12)
(the optical theorem in the coordinate space), where N (12)
is the BFKL amplitude in the Möbius representation. This
property was imposed by the definition of M(12|12′), since

for ρ2 = ρ2′ the nondiagonal dipole takes the form of a usual
dipole, which is described by the BFKL equation.

The evolution equation for the nondiagonal dipole is
derived using real-virtual noncancellations (i.e., including the
interactions in the final state). The final-state interactions fully
cancel in the inclusive case, but as far as gluon production
is concerned such cancellation does not happen and this fact
is crucial for obtaining the closed form of the single-gluon
production cross section with evolution effects included. For
more details about the way this was derived, one is referred
to Levin and the present author [13]. Here, the discussion
only involves the linear version of this evolution equation, its
properties, and showing that it can be written as a nonforward
BFKL in the dual space. This result would mean that there
exists a hidden duality symmetry of the nonforward BFKL
that appears implicitly from this analysis due to the fact that
the set of dual coordinates (with dimensions of mass) can
be associated with the set of transverse coordinates of the
dipoles. This extends the duality symmetry shown by Lipatov
for the forward case to a nonzero-momentum transfer, which
can potentially explain the integrability of the BFKL equation.

For the purposes of this paper, only the linear part of the
resulting nonlinear evolution equation for a nondiagonal dipole
scattering is retained. [13] It reads

∂M(12|12′)
∂y

= ᾱs

2π

∫
d2ρ3

{
−1

2

(
ρ13

ρ2
13

− ρ23

ρ2
23

)2

M(12|12′) − 1

2

(
ρ13

ρ2
13

− ρ2′3

ρ2
2′3

)2

M(12|12′)

+
(

ρ13

ρ2
13

− ρ23

ρ2
23

)(
ρ13

ρ2
13

− ρ2′3

ρ2
2′3

)
[2N (13) + M(32|32′)] −

(
ρ13

ρ2
13

− ρ23

ρ2
23

) (
ρ23

ρ2
23

− ρ2′3

ρ2
2′3

)
M(13|12′)

−
(

ρ2′3

ρ2
2′3

− ρ23

ρ2
23

) (
ρ13

ρ2
13

− ρ2′3

ρ2
2′3

)
M(12|13) − 1

2

(
ρ23

ρ2
23

− ρ2′3

ρ2
2′3

)2

M(12|12′)

}
. (28)

As it was already mentioned, the function M(12|12′) is defined
such that M(12|12) = 2N (12).2 This definition follows from
the fact that, in the simple case of equal dipole sizes ρ2 = ρ2′ ,
all necessary real-virtual cancellations take place removing
all final-state interactions and one deals with the scattering
of an usual color dipole described by the BFKL equation in
the coordinate space. Indeed, it is easy to see that Eq. (28)
reduces to the BFKL equation for ρ2 = ρ2′ (see Ref. [13]). This
definition and the properties of the initial condition suggested
the possible form of the solution to the nondiagonal dipole
evolution equation

M(12|12′) = N (12) + N (12′) − N (22′). (29)

It was checked by the explicit substitution that this form of
the solution also keeps in the nonlinear case of the generalized

2Here, indices of the argument stand for the transverse coordinates
of the quark ρ1 and the antiquark ρ2 ( ρ2′ ) lines and not only for the
dipole size ρ12 = ρ1 − ρ2, in contrast to the common notation.

Balitsky-Kovchegov (BK) [14,15] equation considered in
Ref. [13]. The nonlinear equation is a generalization of
the Balitsky-Kovchegov equation and coincides with it for
ρ2 = ρ2′ similar to the linear case. Using this form of solution
in Eq. (28) obtains

∂[N (12) + N (12′) − N (22′)]
∂y

= ᾱs

2π

∫
ρ2

12d
2ρ3

ρ2
13ρ

2
23

[N (13) + N (32) − N (12)]

+ ᾱs

2π

∫
ρ2

12′d
2ρ3

ρ2
13ρ

2
2′3

[N (13) + N (32′) − N (12′)]

− ᾱs

2π

∫
ρ2

22′d
2ρ3

ρ2
23ρ

2
2′3

[N (32) + N (32′) − N (22′)], (30)

which is just a linear combination of three BFKL equations for
initial dipoles with coordinates 12, 12′, and 22′. This recalls
the uncut-cut-uncut (UCU) structure of the BFKL equation in
the momentum space mentioned in the previous section. It is
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worthwhile mentioning that the generalized BK equation also
has the UCU structure, which fully corresponds to the picture
drawn by Ciafaloni, Marchesini, and Veneziano deriving the
cut Reggeon calculus [16,17]. They found that the Pomeron
can be described as a linear combination of three propagating
states, which correspond to one cut and two uncut Pomerons
φ+ + φ− − φc. The Reggeon field φ+ stands for the Pomeron
to the left of the unitarity cut, φ− for the Pomeron to the right
of the unitarity cut, and φc represents the Pomeron living on
the cut. The introduction of the triple Pomeron splitting vertex
(fan diagrams) preserves this structure, while the Pomeron
loops break it explicitly. The same result was also obtained by
Levin and the present author [18] using generating functional
approach to the analysis of the multiparticle states in the dipole
model based on Abramovski-Gribov-Kancheli (AGK) cutting
rules [19].

The present goal is to show that the evolution equation
for the nondiagonal dipole reproduces the nonforward BFKL
equation in the dual coordinates. It is not difficult to see that
with the help of the solution Eq. (29) recast Eq. (30) can be
recast into the form of

∂M(12|12′)
∂y

= ᾱs

2π

∫
ρ2

12d
2ρ3

ρ2
13ρ

2
23

[
M(32|32′) − 1

2
M(12|12′)

+M(32|22′) − 1

2
M(12|22′)

]

+ ᾱs

2π

∫
ρ2

12′d
2ρ3

ρ2
13ρ

2
2′3

[
M(32|32′) − 1

2
M(12|12′)

+M(32′|22′) − 1

2
M(12′|22′)

]

− ᾱs

2π

∫
ρ2

22′d
2ρ3

ρ2
23ρ

2
2′3

M(32|32′). (31)

We immediately notice that Eq. (31) is very similar to Eq. (27)
except for the last two terms in brackets of the first two
lines. This is despite the fact that the functions M(12|12′) are
defined in a very much different way than the BFKL amplitude.
The main difference is that the BFKL amplitude F(k, k − q)
accounts for the requirement of the BFKL condition. In
particular, this means that for F(k, k − q) = F(k1, k2) the
arguments should satisfy

k1 − k2 = q, (32)

which is translated in terms of the dual coordinates Eq. (26),
as the function F(z1, z2) should satisfy z1 − z2 = −x31. It is
now possible to identify the dual coordinates of Eq. (26) with
the transverse dipole coordinates as follows:

ρ12 = x12; ρ12′ = −x23; ρ22′ = x31. (33)

The dual condition of the BFKL in Eq. (32) for M(ij |ik)
reads

ρij − ρik = −ρ22′ . (34)

Imposing the dual condition of the BFKL in Eq. (34) on
the evolution equation for the nondiagonal dipole removes

undesired terms in Eq. (31) and leaves

∂M̃(ρ12|ρ12′)

∂y
= ᾱs

2π

∫
ρ2

12d
2ρ3

ρ2
13ρ

2
23

[
M̃(ρ32|ρ32′ )

−1

2
M̃(ρ12|ρ12′ )

]
+ ᾱs

2π

∫
ρ2

12′d
2ρ3

ρ2
13ρ

2
2′3

×
[
M̃(ρ32|ρ32′ ) − 1

2
M̃(ρ12|ρ12′ )

]

− ᾱs

2π

∫
ρ2

22′d
2ρ3

ρ2
23ρ

2
2′3

M̃(ρ32|ρ32′ ). (35)

Recasting Eq. (35) in a more transparent form gives

∂M̃(ρ12|ρ12′ )

∂y
= ᾱs

2π

∫
ρ2

12d
2ρ32

ρ2
32(ρ32 − ρ12)2

[
M̃(ρ32|ρ32 + ρ22′ )

−1

2
M̃(ρ12|ρ12′ )

]
+ ᾱs

2π

∫
ρ2

12′d
2ρ32′

ρ2
32′ (ρ32′ − ρ12′ )2

×
[
M̃(ρ32′ − ρ22′ |ρ32′ ) − 1

2
M̃(ρ12|ρ12′)

]

− ᾱs

2π

∫
ρ2

22′d
2ρ32

ρ2
32(ρ32 + ρ22′ )2

M̃(ρ32|ρ32 + ρ22′ ),

(36)

which is identical to the nonforward BFKL equation in the dual
space Eq. (27) provided the dipole coordinates and the dual
coordinates are identified, as in Eq. (33). It is not surprising that
the equation for M(12|12′) includes more terms than the BFKL
for F(k, k − q), since M(12|12′) was defined without any
additional constraints except to reproduce the dipole BFKL
for ρ2 = ρ2′ , in contrast to the BFKL amplitude.

By construction of the dipole model, the coordinates ρij are
conjugate to the momenta ki of the Reggeized gluons. The fact
that the dual momenta coordinates of Eq. (26) can be idetified
with the dipole coordinates indicates that the duality symmetry
is also preserved in the nonforward case. However, there seems
to be no obvious way to introduce the Fourier transform that
connects them and thus the duality symmetry is hidden.

In this discussion, the issue of the initial condition and the
impact parameter b12 = (ρ1 + ρ2)/2 dependence is ignored.
These two are related to each other since the impact parameter
defines a reference point that connects the evolution to
the target. Any fixed reference point explicitly breaks the
translational symmetry and, thus, the impact parameter cannot
be related to the set of the dual coordinates in Eq. (26).
For a similar reason, the lower momenta k′ and k′ − q of
the amputated BFKL amplitude, shown in Fig. 3, are not
considered. More accurately, the upper and the lower momenta
are not considered simultaneously. The evolution is assigned
to the upper momenta, while the lower momenta enter through
the initial condition (or vice versa). Any attempt to include the
initial condition to duality picture would contradict the lack of
the impact parameter dependence in the dipole picture, but, as it
has already been pointed out, the b dependence is incompatible
with the requirement of the translational invariance.

The hidden duality symmetry is related only to the pure
evolution, without any reference to the initial condition. As
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2
2’

s−channel

t−channel
K

K

k k−q

FIG. 5. The duality symmetry can be interpreted as a symmetry
under rotation of the BFKL kernel in the transverse space from the
s channel (color dipoles) to the t channel (Reggeized gluons). The
unitarity cut is denoted by a dashed vertical line.

it was anticipated in Ref. [5], the duality symmetry is the
symmetry under rotation of the BFKL kernel in the transverse
space from the s channel to the t channel and back, as
illustrated in Fig. 5. This rotation is, in fact, a rotation between
the Reggeized gluon formulation of the BFKL evolution and
the dipole picture. The connection between the two pictures is
certainly not complete without matching the initial condition.
The proper matching is formulated as follows. At the first
stage, one makes a suitable choice of the dual coordinates,
then the physical picture is changed by rotating the kernel of
the evolution equation in the transverse space and the function
is given the proper interpretation (either Reggeized gluon or
dipole-scattering amplitude). Finally, at the second stage, the
initial conditions are chosen in accordance to the physical
picture. The second stage obviously has nothing to do with
the duality-symmetry property of the BFKL evolution. This
point does not seem to be particularly important in the case
of the linear evolution considered here, but it becomes crucial
for clarifying the meaning of the duality symmetry of the
Balitsky-Kovchegov equation.

V. CONCLUSION

The duality symmetry of the leading-prder BFKL equation
was discussed. The duality symmetry of the BFKL equation

was formulated by Lipatov [4] for a system of n Reggeized
gluons and, in the case of the color singlet BFKL equation
(n = 2), the duality symmetry was shown to hold only in the
forward (q = 0) case. In the present study, it is argued that the
duality symmetry is also valid in the nonforward case, though
in an implicit way. The hidden duality symmetry is established
by identifying the dual coordinates (with dimension of mass)
of the BFKL in the momentum space with the transverse sizes
of a nondiagonal dipole scattered off the target. The evolution
equation for the nondiagonal dipole having different sizes
to the right and to the left of the unitarity cut was derived
by Levin and the present author [13]. Its analytical solution
was also found: a linear combination of three amplitudes of
usual dipoles. This structure is similar to the structure of the
nonforward BFKL, which can also be decomposed in three
pieces, each corresponding to the forward BFKL. Two of the
pieces can be viewed as uncut BFKL, while one piece does
not have virtual contribution and is interpreted as a cut BFKL.
The uncut-cut-uncut structure of the BFKL kernel uncovered
in the present study is consistent with the picture drawn by
Ciafaloni, Marchesini, and Veneziano [16,17] in cut Reggeon
calculus, where the Pomeron is represented by three fields,
which denote one cut and two uncut Pomerons.

It is argued that the duality symmetry can be viewed
as a symmetry under rotation of the BFKL kernel in the
transverse space from the s channel (color dipoles) to the t

channel (Reggeized gluons) and back, as illustrated in Fig. 5.
This provides a natural explanation of the mixing of the
real-virtual contributions in matching between the Reggeized
gluon approach and the color dipole picture.

The present author believes that this analysis can be
extended to the nonlinear case and will be useful in finding
the full analytic solution to the BK equation.
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