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Quark number fluctuations in the Polyakov loop-extended quark-meson model at finite baryon
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The thermodynamics and phase structure of the Polyakov loop-extended two-flavor chiral quark-meson (PQM)
model are explored beyond the mean-field approximation. The analysis of the PQM model is based on the
functional renormalization group (FRG) method. We formulate and solve the renormalization group flow equation
for the scale-dependent thermodynamic potential in the presence of the gluonic background field at finite
temperature and density. We determine the phase diagram of the PQM model in the FRG approach and discuss
its modification compared to the mean-field approximation. We focus on the fluctuations of the net-quark
number density, including higher cumulants, and discuss the influence of nonperturbative effects near the chiral
crossover transition. We find that, with increasing net-quark number density, the higher-order cumulants exhibit a
characteristic structure near the transition. We also consider ratios of different cumulants of the net-quark number
density and discuss their role as probes of the deconfinement and chiral phase transitions.
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I. INTRODUCTION

Thermodynamic properties of strongly interacting matter
at nonzero baryon density and high temperature have been
explored numerically within lattice quantum chromodynamics
(LQCD) [1–3]. The LQCD results show that QCD exhibits
both restoration of chiral symmetry and deconfinement at
finite temperatures and densities. The LQCD equation of state
indicates a clear separation between the confined hadronic
and the deconfined quark-gluon plasma phases. However,
the thermodynamics of strongly interacting matter at large
baryon densities and for small quark masses is presently
not accessible in first-principles LQCD calculations. Here,
phenomenological models and effective theories offer a viable
framework for exploratory studies [4–18].

The properties of low-energy hadrons as well as the
nature of the chiral phase transition at finite temperature and
density have been studied intensively in such effective models.
Recently, the physics of color confinement and the relation
to chiral symmetry breaking also have been addressed in a
similar framework. The idea to extend the chiral Lagrangians,
such as the Nambu-Jona-Lasinio or the quark-meson models,
by introducing a coupling of quarks to a uniform temporal
background of gauge fields (the Polyakov loop) was an
important step forward in these investigations [7,15].

The Polyakov loop-extended Nambu-Jona-Lasinio (PNJL)
[9] and quark-meson (PQM) [15] models reproduce essential
features of the QCD thermodynamics already in the mean-field
approximation. However, to correctly account for the critical
behavior and scaling properties near the chiral phase transition,
it is necessary to go beyond the mean-field approximation and
include fluctuations and nonperturbative dynamics. This can
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be achieved, e.g., by using methods based on the functional
renormalization group (FRG) [19–25].

To account for fluctuations in the thermodynamics of
the PQM model, we solve the suitably truncated FRG flow
equations for fluctuations of the meson fields, while the
Polyakov loop is treated as a background field on the mean-
field level. We extend our previous work [26] to nonzero
chemical potential and locate the phase boundary and the
critical end point (CEP) by exploring the dependence of the
chiral order parameter and the quark number susceptibility on
the thermodynamic variables.

The cumulants of the net-quark number density (cn) are
computed at finite temperature and chemical potential, includ-
ing the effects of mesonic fluctuations. We also discuss the
role of nonperturbative effects on the properties of the first four
cumulants near the chiral crossover transition. In particular, we
show that the cumulants exhibit a characteristic structure and
turn negative in the vicinity of the transition for sufficiently
large values of the chemical potential. Furthermore, the role of
the ratios c3/c1 and c4/c2 as probes of the deconfinement and
chiral phase transitions is discussed. Finally, we summarize
the results for the various susceptibilities near the chiral phase
transition at finite net-quark density in the Landau (mean-field)
and scaling theories.

II. THE POLYAKOV QUARK-MESON MODEL

The quark-meson model is an effective realization of the
low-energy sector of QCD, which incorporates chiral sym-
metry. However, because the local color SU(Nc) invariance
of QCD is replaced by a global symmetry, the model does
not describe confinement. Nevertheless, by introducing a
coupling of the quarks to a uniform temporal color gauge field,
represented by the Polyakov loop, many facets of confinement
can be emulated [7,14,15].
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The Lagrangian of the PQM model reads as [15]

L = q̄[iγ µDµ − g(σ + iγ5 �τ �π )]q + 1
2 (∂µσ )2 + 1

2 (∂µ �π )2

−U (σ, �π ) − U(�, �∗) . (1)

The coupling between the effective gluon field and quarks is
implemented through the covariant derivative

Dµ = ∂µ − iAµ, (2)

where Aµ = g Aa
µ λa/2. The spatial components of the gluon

field are neglected, i.e., Aµ = δµ0A0. Moreover, U(�, �∗) is the
effective potential for the gluon field expressed in terms of the
thermal expectation values of the color trace of the Polyakov
loop and its conjugate

� = 1

Nc

〈TrcL(�x)〉, �∗ = 1

Nc

〈TrcL
†(�x)〉, (3)

with

L(�x) = P exp

[
i

∫ β

0
dτA4(�x, τ )

]
, (4)

where P stands for the path ordering, β = 1/T , and A4 =
i A0. In the O(4) representation, the meson field is introduced
as φ = (σ, �π ) and the corresponding SU(2)L ⊗ SU(2)R chiral
representation is defined by σ + i �τ · �πγ5.

The purely mesonic potential of the model U (σ, �π ) is
defined as

U (σ, �π ) = λ

4
(σ 2 + �π2 − v2)2 − cσ, (5)

while the effective potential of the gluon field is parametrized
in such a way as to preserve the Z(3) invariance:

U(�, �∗)

T 4
= −b2(T )

2
�∗� − b3

6
(�3 + �∗3) + b4

4
(�∗�)2 . (6)

The parameters

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

(7)

with a0 = 6.75, a1 = −1.95, a2 = 2.625, a3 = −7.44, b3 =
0.75, b4 = 7.5, and T0 = 270 MeV were chosen to reproduce
the equation of state of the pure SUc(3) lattice gauge theory.
When the coupling to the quark degrees of freedom is
neglected, the potential (6) yields a first-order deconfinement
phase transition at T0. Several alternative parametrizations of
the effective potential of the gluon field were explored in
Refs. [27–29].

A. The FRG method in the PQM model

To take fluctuations into account in the PQM model, we
employ a scheme based on the functional renormalization
group (FRG). This scheme involves an infrared regularization
of the fluctuations at a sliding momentum scale k, resulting in
a scale-dependent effective action �k , the so-called effective
average action [19–22]. We treat the Polyakov loop as a
background field, which is introduced self-consistently on
the mean-field level, while for the quark and meson fields,
fluctuations are accounted for by solving the FRG flow
equations.

The evolution of �k with the changing momentum scale is
then described by the flow equation

∂k�k[�,ψ] = 1
2 Tr

{
∂kRkB

(
�

(2,0)
k [�,ψ] + RkB

)−1}
− Tr

{
∂kRkF

(
�

(0,2)
k [�,ψ] + RkF

)−1}
, (8)

where �
(2,0)
k and �

(0,2)
k denote the second functional derivative

of �k[�,ψ] with respect to the bosonic (�) and fermionic (ψ)
fields, respectively. These derivatives correspond to the inverse
of the full propagators at the scale k. The trace in Eq. (8)
denotes a momentum integration as well as a summation
over Matsubara frequencies and all internal indices. Following
our previous work [26], we formulate the flow equation
for the scale-dependent grand canonical potential density
�k = T �k/V for the quark and meson subsystems

∂k�k(�, �∗; T ,µ)

= k4

12π2

{
3

Eπ

[1 + 2nB(Eπ ; T )] + 1

Eσ

[1 + 2nB(Eσ ; T )]

− 4NcNf

Eq

[1 − N (�, �∗; T ,µ) − N̄ (�, �∗; T ,µ)]

}
. (9)

Here nB(Eπ,σ ; T ) is the bosonic distribution function

nB(Eπ,σ ; T ) = 1

exp(Eπ,σ /T ) − 1
,

with the pion and sigma energies

Eπ =
√

k2 + �
′
k, Eσ =

√
k2 + �

′
k + 2ρ �

′′
k ,

where the primes denote derivatives with respect to ρ = (σ 2 +
�π2)/2 of � = � + cσ . The fermion distribution functions
N (�, �∗; T ,µ) and N̄ (�, �∗; T ,µ),

N (�, �∗; T ,µ) = 1 + 2�∗ exp[β(Eq − µ)] + � exp[2β(Eq − µ)]

1 + 3� exp[2β(Eq − µ)] + 3�∗ exp[β(Eq − µ)] + exp[3β(Eq − µ)]
, (10)

N̄ (�, �∗; T ,µ) = N (�∗, �; T ,−µ) (11)

are modified because of the coupling to the gluon field. Finally,
the quark energy is given by

Eq =
√

k2 + 2g2ρ. (12)

The minimum of the thermodynamic potential is deter-
mined by the stationarity condition

d�k

dσ

∣∣∣∣
σ=σk

= d�k

dσ

∣∣∣∣
σ=σk

− c = 0. (13)
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The flow Eq. (9) is solved numerically with the initial cutoff
� = 1.2 GeV (see details in Ref. [26]). The initial conditions
for the flow are chosen to reproduce the in-vacuum properties:
the physical pion mass mπ = 138 MeV, the pion decay
constant fπ = 93 MeV, the sigma mass mσ = 600 MeV,
and the constituent quark mass mq = 300 MeV at the scale
k → 0. The symmetry-breaking term c = m2

πfπ corresponds
to an external field and consequently does not flow. In this
paper, we neglect the flow of the Yukawa coupling g, which
is not expected to be significant for these studies (see, e.g.,
Refs. [30,31]).

By solving Eq. (9), one obtains the thermodynamic poten-
tial for the quark and mesonic subsystems �k→0(�, �∗; T ,µ)
as a function of the Polyakov loop variables � and �∗. The full
thermodynamic potential �(�, �∗; T ,µ) in the PQM model,
including quark, meson, and gluon degrees of freedom, is
obtained by adding the effective gluon potential U(�, �∗) to
�k→0(�, �∗; T ,µ):

�(�, �∗; T ,µ) = �k→0(�, �∗; T ,µ) + U(�, �∗). (14)

At a given temperature and chemical potential, the Polyakov
loop variables � and �∗ are then determined by the stationarity
conditions

∂

∂�
�(�, �∗; T ,µ) = 0, (15)

∂

∂�∗ �(�, �∗; T ,µ) = 0. (16)

The thermodynamic potential (14) does not contain con-
tributions of thermal modes with momenta larger than the
cutoff �. To obtain the correct high-temperature behavior
of thermodynamic functions, we need to supplement the
FRG potential with the contribution of the high-momentum
states. A simplified model for implementing such states
was proposed in Ref. [32], where the contributions of the
k > � states to the flow are approximated by those of a
noninteracting gas of quarks and gluons. For the PQM model,
this procedure was generalized in Ref. [26] by including
the flow of quarks interacting with the Polyakov loop for
k > �:

∂k�
�
k (T ,µ)

= −NcNf k3

3π2
[1 − N (�, �∗; T ,µ) − N̄ (�, �∗; T ,µ)].

(17)

Here, the dynamical quark mass is small compared to
the momentum k and consequently neglected. Moreover,
since the effective gluon potentialU(�, �∗) is fitted to reproduce
the gluonic Stefan-Boltzmann limit at high temperatures, the
explicit gluon contribution is, for consistency, not included in
(17).

To obtain the complete thermodynamic potential of the
PQM model, we thus integrate Eq. (17) from k = ∞ to
k = �, where we switch to the PQM flow Eq. (9). The first
term in the high-momentum flow Eq. (17) diverges in the
ultraviolet. However, since it is independent of mesonic as
well as gluonic fields, temperature, and chemical potential,

the divergent contribution can be absorbed in an unobservable
constant shift of the thermodynamic potential.

B. The mean-field approximation

To illustrate the importance of mesonic fluctuations on the
thermodynamics of the PQM model, we compare the FRG
results with those obtained in the mean-field approximation. In
the latter, mesonic fluctuations are neglected and the mesonic
fields are replaced by their classical expectation values.

In the PQM model, the thermodynamical potential in the
mean-field approximation reads as [15]

�MF = U(�, �∗) + U (〈σ 〉, 〈π〉 = 0) + �qq̄ (〈σ 〉, �, �∗).

(18)

Here, the contribution of quarks with the dynamical mass mq =
g〈σ 〉 is given by

�qq̄ (〈σ 〉, �, �∗)

= −2Nf T

∫
d3p

(2π )3

{
NcEq

T
+ ln g(+)(〈σ 〉, �, �∗; T ,µ)

+ ln g(−)(〈σ 〉, �, �∗; T ,µ)

}
, (19)

where

g(+)(〈σ 〉, �, �∗; T ,µ) = 1 + 3� exp[−(Eq − µ)/T ]

+ 3�∗ exp[−2(Eq − µ)/T ]

+ exp[−3(Eq − µ)/T ], (20)

g(−)(〈σ 〉, �, �∗; T ,µ) = g(+)(〈σ 〉, �∗, �; T ,−µ) (21)

and Eq = √
p2 + m2

q is the quark quasiparticle energy. The
first term in Eq. (19) is a divergent vacuum fluctuation
contribution, which has to be properly regularized. Following
Ref. [33], we employ dimensional regularization. The finite
contribution of the vacuum term to Eq. (19) reads as [33]

�vac
qq̄ = −NcNf

8π2
m4

q ln

(
mq

M

)
, (22)

where M is the renormalization scale; the resulting thermo-
dynamic potential �MF is independent of M . The relevance
of the vacuum contribution for the thermodynamics of chiral
models was demonstrated and studied in detail in Refs. [33]
and [34].

The equations of motion for the mean fields are obtained by
requiring that the thermodynamic potential is stationary with
respect to changes of 〈σ 〉, �, and �∗:

∂�MF

∂〈σ 〉 = ∂�MF

∂�
= ∂�MF

∂�∗ = 0. (23)

The model parameters are fixed to reproduce the same vacuum
physics as in the FRG calculation.

III. THERMODYNAMICS OF THE PQM MODEL

We now explore the critical properties of the PQM model
at finite baryon density using the functional renormalization
group and in the mean-field approximation. In the FRG
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approach, the thermodynamic potential (14) at finite tem-
perature and chemical potential is obtained by solving the
flow Eq. (9) numerically, using the Taylor expansion method
[26,35]. This approach has been successfully applied to the
thermodynamics at finite density and temperature [24,26,34] in
the regime where the system exhibits a crossover or a second-
order phase transition. In the regime of a first-order phase
transition, where the thermodynamical potential develops two
degenerate minima, a different numerical method is needed
for solving the FRG flow equations [34,36]. In this paper,
we restrict our considerations to the parameter range where
the PQM model exhibits a crossover or a second-order chiral
phase transition.

A. The phase diagram

The PQM model, which is expected to belong to the
same universality class as QCD, should, for a range of
parameters, exhibit a generic phase diagram with a critical
point at nonvanishing chemical potential. In the chiral limit,
a second-order phase boundary is identified by a singularity
of the chiral susceptibility. For finite quark masses, the chiral
transition at small values of the chemical potential is of the
crossover type. In this case, the pseudocritical temperature and
chemical potential are determined by locating the maximum of
the chiral susceptibility or of the temperature derivative of the
chiral order parameter. Furthermore, the position of the CEP
is revealed by a zero of the sigma-meson mass, or equivalently
by a divergence of the net quark-number susceptibility.

In Fig. 1, we show the phase diagram of the PQM
model obtained in the FRG approach and in the mean-field
approximation. For a physical pion mass and moderate values
of the chemical potential, the PQM model exhibits a smooth
crossover chiral transition. In Fig. 1, the transition region is
shown as a band where the temperature derivative of the order
parameter is above 95% of its maximal value. At larger values
of the chemical potential, the crossover line terminates at the
CEP, where the transition is second order, belonging to the
universality class of the three-dimensional Ising model.

In the following, we focus on observables that are related
to the net-quark number density and consider cumulants of
the quark number fluctuations. We discuss the dependence of

these fluctuations on the quark chemical potential within the
FRG approach in the presence of the gluonic background.

B. Quark number density fluctuations

Fluctuations of conserved charges provide direct infor-
mation on the critical properties related to chiral symmetry
restoration. The fluctuations of the baryon number are of
particular interest. In equilibrium, a divergence of the net-
quark number susceptibility is connected with the existence of
the CEP [37]. Consequently, a nonmonotonic dependence of
these fluctuations on collision energy in heavy-ion collisions
was proposed as a signature for the CEP [37]. A diverging
net-quark number susceptibility also signals the spinodal
decomposition of a nonequlibrium first-order chiral phase
transition [10].

The fluctuations of the net-quark number are characterized
by the generalized susceptibilities

cn(T ) = ∂n[p (T ,µ)/T 4]

∂(µ/T )n
. (24)

The first coefficient c1 = nq/T 3 characterizes the response
of the net-quark number to changes in the quark chemical
potential, while the second coefficient

c2 = χq

T 2
= 1

V T 3
〈(δNq)2〉, (25)

with δNq = Nq − 〈Nq〉, is proportional to the susceptibility of
the net-quark number density χq . The third- and fourth-order
cumulants can be expressed through the fluctuation of the
net-quark number δNq :

c3 = 1

V T 3
〈(δNq)3〉, (26)

c4 = 1

V T 3
[〈(δNq)4〉 − 3〈(δNq)2〉2]. (27)

The coefficients cn(T ) are sensitive probes of the chiral
phase transition. They indicate the position, the order, and, in
case of the second-order phase transition, the universality class
of the corresponding phase transition. The net-quark number
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FIG. 1. (Color online) The phase diagrams for the PQM model in the mean-field approximation (left panel) and in the FRG approach (right
panel). In the shaded regions, the temperature derivative of the chiral order parameter dσ/dT is above 95% of its maximal value. The arrows
are lines of constant µ/T and the dashed curves show isentropes for s/nq = 2, 5, 10, 25, 50, and 200.
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FIG. 2. (Color online) The quark number density normalized by T 3, c1 = nq/T 3, as a function of temperature for different values of µ/T

for the PQM model in the mean-field approximation (left panel) and in the FRG approach (right panel).

density nq is discontinuous at a first-order transition, whereas
the susceptibility c2 and higher cumulants diverge at the CEP
[38–40]. In the chiral limit and at nonzero chemical potential,
all generalized susceptibilities cn(T ) with n > 2 diverge at the
O(4) chiral critical line [41]. Moreover, they also diverge at
the spinodal lines of a first-order chiral phase transition [10].

A particular role is attributed to the so-called kurtosis of
the net-quark number fluctuations [41–43], which is defined
as the ratio

R4,2 = c4

c2
. (28)

This key observable reflects both the chiral and the deconfine-
ment transitions. In the asymptotic regimes of high and low
temperatures, the kurtosis is essentially proportional to the
quark content of the baryon number carrying effective degrees
of freedom [41,43]; in the low-temperature phase, the effective
three-quark states dominate, while at high temperatures, single
quarks prevail. Therefore, at low temperatures, in the confined
phase, R4,2 	 N2

q = 9, while in the high-temperature limit
(µ/T → 0), one recovers an ideal gas of quarks with R4,2 ∼
1.1 On the other hand, close to the chiral phase boundary, the
kurtosis is, for the physical pion masses, strongly affected by
chiral dynamics as shown below.

The properties of cumulants of the net-quark number
fluctuations near the chiral phase transition were studied in
LQCD [44] as well as in various models [24,26,29,33,45,46].
In particular, the significance of the quark susceptibility and the
kurtosis as signatures of the deconfinement and chiral phase
transitions as well as the CEP was indicated [43]. Moreover,
the dependence of these fluctuations on the quark mass was
analyzed in lattice QCD [47,48] and in effective models
[24,26,29,33,45]. Nevertheless, only little is known about
the dependence of the higher cumulants cn on the chemical
potential, in particular, for n > 2. This dependence can be
computed in the PQM model, starting from the thermodynamic
potential introduced in Eqs. (14) and (18). In Figs. 2–5, we
show the first four cumulants obtained in the PQM model in

1More precisely, this number is 6/π 2, due to quantum statistics.

the mean-field approximation and in the FRG approach for
several values of the ratio µ/T . The lines of constant µ/T are
indicated in the phase diagram in Fig. 1.

In Fig. 2, we show the net-quark number density normalized
by T 3, c1 = nq/T 3, for various values of µ/T . Charge
conjugation symmetry implies that the cumulant c1, as well as
all c2n+1, for n = 1, 2, 3, . . ., vanish at zero chemical potential
µ = 0. At finite µ, the net-quark number nq increases rapidly
with µ/T ; in the chirally broken phase, the leading term is
proportional to sinh(3µ/T ). This is a direct consequence of
the statistical confinement in the PQM model. For small values
of Polyakov loop l � 1, the one- and two-quark modes in
the partition function are suppressed, as seen in Eqs. (10) and
(20). At high temperatures and chemical potentials, nq reduces
effectively to a polynomial in µ/T . In the transition region,
where the chiral symmetry is partly restored, there is a change
in the temperature dependence of nq . At the pseudocritical
temperature, the slope of the density is enhanced, in particular,
in the mean-field calculation at larger values of µ/T . In the
FRG approach, the temperature dependence of nq is, at the
corresponding value of µ/T , much smoother.

The crossover chiral transition is also reflected in the
isentropic trajectories. These contours of constant entropy per
quark s/nq are followed, e.g., by a system subject to adiabatic
expansion. In Fig. 1, we show isentropes labeled by s/nq

in the PQM model obtained in the mean-field approximation
and in the FRG aproach. There is a change of slope of the
isentropes at the transition line, indicating a change in the
equation of state. The qualitative behavior of contours of
constant s/nq obtained in the PQM model is similar to that
found in the QM model [34]. In particular, the isentropes
remain smooth when the effect of long-wavelength meson
fluctuations is consistently included, also in the presence of
the gluon background. There is also no indication of focusing
toward the CEP in the PQM model.

The influence of the finite chemical potential on the
cumulant c2 is shown in Fig. 3. At vanishing chemical potential
µ, c2 increases monotonously with temperature, while at finite
chemical potential, it develops a peak structure. The amplitude
of the peak increases with increasing µ and, at the CEP,
c2 diverges. In the limit of high temperature and chemical
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FIG. 3. (Color online) The coefficient c2 as a function of temperature for different values of µ/T for the PQM model in the mean-field
approximation (left panel) and in the FRG approach (right panel).

potential, c2 converges to the Stefan-Boltzmann limit

cSB
2 = NcNf

3

[
1 + 3

π2

(
µ

T

)2]
. (29)

As seen in Fig. 3, the peak structure in c2 is more
pronounced in the mean-field approximation than in the FRG
approach, in spite of the fact that the location of the CEP
in FRG is closer to, say, the µ/T = 1 line (see Fig. 1).
Consequently, the region where the quark number fluctuations
are large extends further away from the CEP in the mean-field
than in the FRG approach. This result is in agreement with
previous studies in the QM model, showing that the critical
region shrinks due to mesonic fluctuations [23].

Thus, the cumulants c1 and c2 are sensitive to changes in the
chemical potential and are influenced by meson fluctuations
and by the gluon background. Both coefficients are, however,
positive for all values of µ and T . This changes for higher-
order cumulants; at vanishing µ, the third- and fourth-order
cumulants are positive or zero, while at finite µ/T , both can
be negative, as shown in Figs. 4 and 5.2 For large µ/T , the
n = 3 and 4 cumulants exhibit a characteristic structure in the

2Cumulants of sixth and higher order are negative also at µ = 0 in
the transition region [49].

transition region; c3 has a minimum, which can reach negative
values. The amplitude of the minimum is, however, strongly
suppressed by meson fluctuations, as shown in Fig. 4.

The fourth-order cumulant is negative near the crossover
transition, for large values of µ/T (see Fig. 5). This implies
a broadening of the net-quark number distribution, compared
to Gaussian fluctuations. On the other hand, a positive c4, as
found in the broken phase, corresponds to a narrowing of the
distribution. The Stefan-Boltzmann limit cSB

4 = 2NcNf /π2,
which is independent of the chemical potential, is reproduced
at temperatures T � Tc.

A comparison of the mean-field and FRG results for c3 and
c4 shows that generalized quark susceptibilities are modified
substantially by mesonic fluctuations. In the transition region,
c3 and c4 are both suppressed in the FRG compared to
the mean-field results. Hence, the critical fluctuations are
important for a quantitative description of the thermodynamics
near the chiral transition.

We have already indicated that both the deconfinement and
chiral phase transitions are reflected in the characteristics of
the kurtosis R4,2; in the PQM model, the kurtosis drops from
R4,2 	 9 to ∼ 1 in the transition region. In Figs. 6 and 7,
we show R4,2 as a function of temperature along paths in
the temperature–chemical potential plane of fixed µ/T and
s/nq , respectively. For µ = 0, the kurtosis exhibits a peak at

100 150 200 250 300
Τ [MeV]

0

3

6

9

12

c 3

µ/T=0.5
µ/T=1

100 150 200 250 300
Τ [MeV]

2

4

6

8

c 3

µ/T=0.5
µ/T=1
µ/T=1.5

FIG. 4. (Color online) The coefficient c3 as a function of temperature for different values of µ/T for the PQM model in the mean-field
approximation (left panel) and in the FRG approach (right panel).
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FIG. 5. (Color online) The coefficient c4 as a function of temperature for different values of µ/T for the PQM model in the mean-field
approximation (left panel) and in the FRG approach (right panel).

the transition temperature in the mean-field approximation.
The height of the peak depends not only on the pion mass
[26,33,43,47], but also on the value of the chemical potential.
The mesonic fluctuations smoothen the peak both at finite and
at vanishing quark density. For nonzero µ, the kurtosis turns
negative, following the trend of the fourth-order cumulant.

Also, the ratio c3/c1 reflects the quark content of the
baryon number carrying effective degrees of freedom, as
shown in Fig. 8. At low temperatures and densities, where
the thermodynamics is dominated by three-quark modes,
c3/c1 = 9. At zero chemical potential, c1 and c3 both vanish
but their ratio is finite. In the transition region, the ratio c3/c1

varies rapidly, much like R4,2. At nonzero µ, a peak, which
grows with increasing µ/T , develops below the transition.
Moreover, for sufficiently large µ/T , a dip appears above
the transition, both in the mean-field and FRG calculations.
However, in the FRG approach, the amplitude of the extrema
are strongly suppressed by meson fluctuations.

C. Scaling properties of generalized susceptibilities at nonzero
chemical potential

The general characteristics of the susceptibilities computed
in the previous section can be understood by considering the
critical scaling at the chiral phase transition. In the mean-field

approximation, the scaling properties can be inferred from the
Landau theory of phase transitions, where the singular part of
the thermodynamic potential density is a polynomial in the
order parameter σ ,

�sing(T ,µ; σ ) = 1
2a(T ,µ)σ 2 + 1

4b(T ,µ)σ 4 + 1
6cσ 6 − hσ.

(30)

For h = 0, there is a second-order phase transition at
a(Tc, µc) = 0 if b(Tc, µc) > 0. The symmetric phase, with
σ = 0, is obtained for a > 0, while the symmetry is spon-
taneously broken for a < 0. For h = 0, the symmetry is
explicitly broken and the transition is of the crossover type,
while for b < 0, the transition can be of first order.

For small values of the chemical potential, µ � T 0
c and

T 	 T 0
c , where T 0

c = Tc(µ = 0) is the critical temperature of
the second-order chiral phase transition at µ = 0, the mass
term a(T ,µ) is parametrized by

a(T ,µ) = A · (
T − T 0

c

) + B2µ
2. (31)

Here, A > 0 and B2 are constants. In general, the effective
quartic coupling b is also T and µ dependent. However, this
dependence is irrelevant near the critical line and far from
the CEP or the tricritical point (TCP), where a(T ,µ) 	 0 and
b > 0. Therefore, in this case, we can treat b as a positive
constant and neglect the sixth-order term in Eq. (30), setting
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FIG. 6. (Color online) The kurtosis R4,2 as a function of temperature for different µ/T calculated in the PQM model under the mean-field
approximation (left panel) and in the FRG approach (right panel).
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FIG. 7. (Color online) The temperature dependence of the kurtosis R4,2 calculated in the PQM model at fixed values of the entropy density
to net-quark density (s/nq ) under the mean-field approximation (left panel) and in the FRG approach (right panel).

c = 0. In the chiral limit h = 0, the singular contribution to
the cumulants c2 and c4 at µ = 0 are then given by

c
sing
2 = AB2

bT 2
(T − Tc)θ (Tc − T ), (32)

c
sing
4 = 6B2

2

b
θ (Tc − T ). (33)

Thus, c2 is not differentiable and c4 is discontinuous at the
critical temperature. Consequently, in the chiral limit, the
kurtosis R4,2, being proportional to c4, is discontinuous at
Tc [33].

For a finite quark mass, i.e., for h = 0, the transition is
of the crossover type and the sharp structures in c2 and c4

are smoothened. Therefore, in the PQM model, the peaked
structure in c4 is directly linked to the value of the current
quark mass and thus reflects the explicit breaking of chiral
symmetry.

In the FRG approach, the critical behavior of the general-
ized susceptibilities, obtained in the mean-field approximation,
is modified by long-wavelength meson fluctuations. Detailed
studies in the QM model show that the FRG method can
correctly account for long-range correlations. The resulting
critical behavior is consistent with O(4) scaling of the ther-
modynamic functions [24]. Since the gluonic background does
not modify the critical dynamics related to the chiral transition,

the PQM model is also expected to belong to the O(4)
universality class. The singular part of the thermodynamic
potential is in that case controlled by the critical exponents of
the three-dimensional O(4)-symmetric spin system. At µ = 0,

�sing ∼ (T − Tc)2−α, (34)

which leads to the following scaling of the generalized
susceptibilities:

c
sing
2n ∼ (T − Tc)2−n−α, (35)

c2n+1 = 0, (36)

where n = 1, 2, 3, . . . .
In the mean-field approach, the critical exponent α = 0,

while in the FRG approach, α is nonzero due to fluctua-
tions. In the O(4) universality class, α 	 −0.21, implying
that fluctuations reduce the strength of the singularity. The
temperature dependence of c2, c3, and c4 is smoothened further
by a nonzero quark mass.

For finite chemical potential, the coefficient a(µ, T ) in the
Landau potential is parametrized by

a(T ,µ) = A · (T − T̄c) + B1 · (µ − µ̄c) + B2 · (µ − µ̄c)2,

(37)
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FIG. 8. (Color online) The ratio of c3 to c1 as a function of temperature for different values of µ/T obtained in the PQM model under the
mean-field approximation (left panel) and in the FRG approach (right panel).
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where T̄c is the critical temperature at the chemical potential
µ̄c > 0. The condition a(T ,µ) = 0 yields the equation Tc(µ)
for the phase boundary in the neighborhood of (T̄c, µ̄c); the
next-to-leading-order term, proportional to B2, accounts for
the curvature of the phase boundary. For a system which is not
at the CEP or TCP, b can still be treated as a positive constant,
and the sixth-order term can be neglected.

In the chiral limit, the resulting mean-field expressions for
the leading singular parts of the susceptibilities at µ = 0 are

c
sing
1 = B1a

2T 3b
θ (−a), (38)

c
sing
2 = B2

1

2bT 2
θ (−a), (39)

c
sing
3 = 3B2B1

bT
θ (−a), (40)

c
sing
4 = 6B2

2

b
θ (−a). (41)

Hence, c2, c3, and c4 and, consequently, also the kurtosis, are
discontinuous at the phase boundary.

In the FRG approach, the mean-field scaling at finite µ is,
due to fluctuations, modified to

�sing ∼ (−a)2−α, (42)

csing
n ∼ (−a)2−n−α, (43)

with the O(4) critical exponent α. Since −1 < α < 0, c1 and
c2 remain finite, while c3, c4, and all higher-order cumulants
diverge at the O(4) critical line. Also, the kurtosis diverges at
Tc(µ), owing to the singularity of c4. By eliminating a in favor
of the correlation length ξ ∼ (−a)−ν , one finds

�sing ∼ ξ (α−2)/ν, (44)

csing
n ∼ ξ (n+α−2)/ν . (45)

The scaling properties for the net-quark number fluctuations
at finite chemical potential are modified when approaching the
TCP in the chiral limit or CEP at finite quark mass. At the
TCP, not only a in Eq. (30) vanishes, but also the coefficient
b. In the parametrization of a and b,

a(T ,µ) = Aa · (T − TTCP) + Ba · (µ − µTCP) (46)

and

b(T ,µ) = Ab · (T − TTCP) + Bb · (µ − µTCP), (47)

it is sufficient to retain only the leading terms. The sixth-order
coupling c > 0, as required by stability. Landau theory then
yields the following expressions for the leading contributions
to the generalized susceptibilities:

c
sing
1 = Ba

2T 3

√−a

c
θ (−a), (48)

csing
n = �

(
n − 3

2

)
2�

(
1
2

) (4c)n−2Bn
a T n−4

(b2 − 4ac)n−3/2
, n > 1. (49)

Hence, c1 remains finite at the TCP, while the higher-order
cumulants (n � 2) diverge. It follows that the kurtosis also
diverges, with R

sing
4,2 ∼ (b2 − 4ac)−2.

Moreover, Eq. (49) implies that along the a(T ,µ) = 0 line,
c

sing
2 is, after a suitable mapping of the coordinates, inversely

proportional to the distance from the TCP. By contrast, when
the TCP is approached from a direction that is not tangential
to the critical line, b2 � a and c

sing
2 is inversely proportional

to the square root of the transverse distance to the TCP
(∼ √−a) [50,51]. This implies that the critical region, defined
by the properties of c2, is elongated along the O(4) critical
line [23,50,51].

The critical behavior near the TCP is, up to logarithmic
corrections, described by mean-field theory, because the upper
critical dimension equals three.

For nonvanishing external field (nonzero quark mass), the
crossover transition ends in a critical endpoint (CEP). A mean-
field analysis (see, also, Ref. [50]) yields the following leading
singular behavior along the line defined by a = 0:

csing
n ∼ |v|2− 3

2 n (50)

and, in any other direction,

csing
n ∼ |u| 4

3 −n. (51)

The variables v and u introduced in Eqs. (50) and (51) are
linear combinations of (T − TCEP) and (µ − µCEP). In the v

direction, the kurtosis diverges scales as R
sing
4,2 ∼ |v|−3, while

in other directions, R
sing
4,2 ∼ |u|−2.

Beyond the mean-field approximation, one expects that,
along the u = 0 line, the following scaling holds:

c
sing
n ∼ |v|−(nβδ−dν) (52)

and, for any other direction,

csing
n ∼ |u|−(n−2+ γ

δβ
)
. (53)

Here, the critical exponents δ, β, and ν are those of the three-
dimensional (d = 3) spin model, which belongs to the Z(2)
universality class.3 The kurtosis also diverges at the CEP, with
a critical exponent that depends on the direction. Along the
u = 0 line,

R
sing
4,2 ∼ |v|−2δβ, (54)

whereas, for any other direction,

R
sing
4,2 ∼ |u|−2. (55)

In terms of the correlation length ξ , which is proportional
to |v|−ν along the u = 0 line and to |u|− ν

βδ along any other
direction, we find (cf. [40])

csing
n ∼ ξ

nβδ

ν
−d , (56)

R
sing
4,2 ∼ ξ 2 βδ

ν . (57)

We conclude that the critical structure and scaling behavior
related to chiral symmetry restoration in the chiral limit are
reflected in the properties of the cumulants of the net-quark
number density obtained in the PQM model at finite chemical
potential and pion mass.

3In the Z(2) universality class the α ≈ 0.125, δ ≈ 5, γ ≈ 1.25, β ≈
0.31 and ν ≈ 0.64.
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IV. SUMMARY AND CONCLUSIONS

We have formulated and explored the thermodynamics
of the Polyakov loop-extended quark-meson model (PQM),
including mesonic fluctuations within the functional renor-
malization group method (FRG). The flow equations for the
scale-dependent thermodynamic potential at finite temperature
and density were solved in the presence of a background
gluonic field.

We have shown that the nonperturbative fluctuations in-
cluded in the FRG approach have an important effect on the
critical properties of the system. In particular, we have focused
on fluctuations of the net-quark number density and computed
the first four cumulants close to the chiral transition for finite
values of the chemical potential. We have indicated how the
cumulants of the net-quark number density and their ratios
can be used to identify the deconfinement and chiral phase
transitions. We have also discussed the predictions of the
Landau and scaling theories for the critical behavior of the
fluctuations of the net-quark number density and the higher
cumulants near the chiral phase transition.

The extension of the FRG method proposed here to account
for the coupling of the quarks to the background gluon fields
within the quark-meson model is of interest for unraveling the
thermodynamics of QCD near the chiral phase transition at
finite baryon density.

In this paper, only fluctuations of the mesonic fields are
taken into account, while the effective gluon field represented
by the Polyakov loops is treated on the mean-field level.
Fluctuations of the Polyakov loop have been explored in model
calculations [52–54]. Owing to the definition of the Polyakov
loop, these studies were, explicitly or implicitly, performed in
the high-temperature limit, i.e., retaining only the lowest mode.
It would be interesting to find a consistent scheme where higher
gluon modes also are effectively accounted for.
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