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Consistent description of hindrance in sub-barrier fusion of 48Ca with 36S, 48Ca, and 96Zr

Şerban Mişicu* and Florin Carstoiu
Department for Theoretical Physics, National Institute for Physics and Nuclear Engineering-Horia Hulubei,

P.O. Box MG6, Bucharest-Magurele, Romania
(Received 8 April 2011; published 31 May 2011)

Recent fusion reaction data for the systems 36S + 48Ca, 48Ca + 48Ca, and 96Zr + 48Ca are analyzed within
the coupled-channel formalism. The heavy-ion entrance channel potential is calculated employing an improved
double-folding prescription. The nonlocal kernel arising from the knock-on exchange component of the effective
N -N interaction is localized within the lowest order of the Perey-Saxon approach, including full recoil. The
single-particle densities entering the folding integrals are prescribed according to the density matrix expansion
method. The investigation is more elaborated because each case is tested with four different types of N -N
effective forces: The two standard parametrizations of the density-independent M3Y force (Reid and Paris) and
two parametrizations of the density-dependent Gogny force (D1S and D1N). A consistent description of all three
reactions is achieved by keeping fixed the nuclear structure input for 48Ca. The inclusion of 2+ and 3− phonon
states in the coupled-channel calculation, within an energy excitation window identical for all three reactions
explains better the hindrance in extreme sub-barrier fusion cross sections. The interactions providing the best fit to
the data are not pointing to a possible maximum in the astrophysical S factor, thereby confirming the conclusion
reached by the Legnaro group for these cases.
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I. INTRODUCTION

Very recently the fusion excitation function of 36S + 48Ca
was experimentally investigated at Legnaro and cross sections
as low as ≈600 nb were attained [1]. Along with this case
the Legnaro group reinvestigated the system 48Ca + 48Ca
down to ≈500 nb [2]. The cross sections reported earlier for
this last case were revised by a 0.8 renormalization factor
[3]. These authors remarked that although the logarithmic
derivative (slope) after a sharp increase below the Coulomb
barrier saturates (level off), these two reactions still bear
hindrance features. This conclusion is in disagreement with
Jiang et al., who analyzed several other projectile-target
combinations [4] displaying hindrance. According to these
authors a signature for the onset of hindrance is the apparent
occurrence of a maximum in the S factor and consequently a
steep increase of the slope well below the Coulomb barrier.
To explain the data, Stefanini et al. [1,2] assumed a large
diffuseness parameter (a = 0.9 fm) in the Akyüz-Winther
(AW) potential that is customarily used in the coupled-channel
(CC) analysis of medium-heavy nuclei fusion data. For the
reaction 96Zr + 48Ca reported earlier by the Legnaro group the
same conclusion was reached, that is, a probable saturation of
the slope and the need for a large diffuseness to explain the
data [5].

In a very recent publication [6] the Legnaro group reported
measurements on a new medium-light system, 36S + 64Ni, and
showed that an even larger diffuseness parameter (a = 1.2 fm)
is necessary to fit the data. The assumption of an abnormally
large diffuseness of the potential was used earlier in Ref. [7] to
explain the large slope at deep sub-barrier energies for the case
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58Ni + 58Ni. Very recently the same authors speculated that the
conjecture of a large surface diffuseness a for fusion below the
barrier and a smaller (but still large) value above the barrier is
consistent with the special nature of octupole phonon states in
nuclei with closed neutron and/or proton shells [8]. However,
the systematic analysis [9] of fusion at energies over the barrier
found diffuseness much larger than the value a = 0.65 needed
to reproduce elastic scattering data, suggesting the inade-
quacy of the Woods-Saxon shapes to describe fusion cross
section.

In a series of papers [10–14] a different explanation of the
hindrance phenomenon occurring in several medium-light and
medium-heavy systems was given. The basic idea consists of
using a heavy-ion potential modified in such a manner that a
strong overlap between the nuclear-matter distribution tails of
the projectile and target is prevented. For such configurations,
especially in the inner part of the barrier, additionally to
the standard direct and exchange components of the ion-ion
potential, a strongly repulsive potential is acting. Its strength
is fixed by requiring that for total overlap of two nuclei the
increase in the nuclear potential is provided by the variation
of the symmetric nuclear matter equation of state from normal
density to twice the normal density, as formerly considered for
the case of giant trinuclear molecules [15].

There is also another proposal put forward in last time
to solve the hindrance puzzle. In a recent work [16] good
fits for only two cases were reported: 64Ni + 64Ni and
16O + 208Pb. Although it was stressed that the approach
is essentially different from the dynamical approach of
Ref. [10], the basic ingredients necessary to reproduce the
data include a Coulomb barrier that, similarly to the one
used in Ref. [10], is much thicker than the traditional Akyüz-
Winther prescription, and the same CC approach was used
for the cross-section calculations. To date there is no other
mechanism capable of describing with a similar accuracy
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the data simultaneously in the low- and high-energy sectors
of systems displaying hindrance in sub-barrier fusion. For
example, Ref. [17], reporting the fusion cross sections at deep
sub-barrier energies for the reaction 16O + 208Pb, presented
also calculations within the standard CC formalism which
failed to reproduce simultaneously the new and the old data.
In that paper it was argued that a new approach, rooted in the
theory of a quantum open system, is needed to describe the
hindrance to fusion. Despite later theoretical developments
in this direction, the quantum decoherence approach was
not applied to systems classified as displaying inhibition
to fusion. The microscopic study of Ref. [18] underscored
the fact that the fusion excitation function of the reaction
16O + 208Pb is extremely sensitive to the energy dependence
of the potential barrier. Therefore, an optimal energy should
be guessed to adequately describe the data. Even so, once
a good description is achieved for the lowest experimental
points, the data are grossly underestimated in the high-energy
sector.

In what follows we focus our analysis on the three fusion
reactions, mentioned in the first paragraph of this section, and
demonstrate that the data can be described by using exactly
the same nuclear structure input for 48Ca. For the other two
nuclei the nuclear structure input used in the present work is
close to the one used by Stefanini et al. for 36S in Ref. [1]
and 96Zr in Ref. [5] (similar also in the theoretical analysis of
Ref. [19]).

The paper is organized as follows: We discuss first the
details allowing the computation of the heavy-ion potential,
such as single-particle densities, nucleon-nucleon (N -N )
effective forces, and the calculation of the exchange part of
this potential. Regarding the last two issues we introduced
modifications and extensions compared to our previous papers.
There the double-folding potential was computed via the
M3Y interaction with Reid soft-core G-matrix elements in
the even channels and Elliott soft-core G-matrix elements in
the odd channels (abbreviated M3Y-Reid), and the exchange
part, which dominates this interaction, was treated in the
most simple approximation: a zero-range pseudopotential
Ĵ0δ(r) with an energy-independent strength. In the present
study we employ a localization procedure on the nonlocal
exchange kernel, calculated in the knock-on approximation.
As for the effective forces we use a broader set of interac-
tions. Apart of the M3Y-Reid parametrization used earlier,
we introduce also the G-matrix interaction based on Paris
N -N potential (abbreviated M3Y-Paris) and the Gogny force
with two of its best parametrizations, D1S and D1N. In
Sec. III we present the results of the CC calculations using
these various types of potentials for all three reactions and
display the quantities relevant for the sub-barrier fusion
analysis such as cross sections in logarithmic and linear
scales, astrophysical S factors, and logarithmic derivatives.
We also attempt to offer an explanation for the similar scaling
between the logarithmic derivatives of the systems 36S + 48Ca
and 48Ca + 48Ca as a function of the cross section. We
conclude the paper in Sec. IV by stressing the similarities
and differences between the three investigated reactions and
the ability of the employed interactions to describe the
data.

II. HEAVY-ION POTENTIAL

We compute the entrance channel heavy-ion potential for
fusion reactions within the double-folding model. This method
has the advantage of incorporating nuclear structure effects
(neutron and proton matter distribution), as well as details of
the nucleon-nucleon effective interactions.

We take for the nuclear-matter density a simple Fermi-Dirac
function,

ρ(r) = ρ0

1 + exp[(r − c)/a]
, (1)

where

a = 0.540 fm, c = 3.40 fm (36S),
(2)

c = 3.75 fm (48Ca), c = 4.83 fm (96Zr).

The parameter ρ0 is determined through normalization:

ρ0 = 3A

4πc3(1 + π2/c2)
.

The values chosen above for the half radius c are consistent
within 2% with the values chosen by Negele [20] to fit the
rms radii of the charge distribution, that is, c = 3.45 fm for
36S, c = 3.83 fm for 48Ca, and c = 4.91 fm for 96Zr. With this
choice the calculated rms radii are 3.311 fm for 36S, 3.531 fm
for 48Ca, and 4.246 fm for 96Zr. These values compare well
with the experimental values from the compilation [21]. The
proton and neutron distributions are assumed to be sufficiently
similar; therefore, we take

ρp(r) = Z

A
ρ(r), ρn(r) = N

A
ρ(r). (3)

In previous articles [10–14] we carried out the analysis of
fusion in medium-light and medium-heavy systems using the
Reid parametrization of the M3Y effective N -N interaction
as described originally by Bertsch et al. [22]. In Ref. [23] we
employed the M3Y-Paris parametrization [24] and the Gogny
force in the D1 parametrization to answer the conjecture
put forward earlier by Jiang et al. [25] on the possible
fingerprints of hindrance in the sub-barrier fusion reactions:
12C + 12C, 12C + 16O, and 16O + 16O. The result was that
there is essentially no difference between the two forces with
respect to the data fit quality although one is appropriate for
nuclear reactions, whereas the other was designed originally
to describe nuclear ground state properties.

Below we extend our analysis to both Reid and Paris
parametrizations of the M3Y interaction and two out of
three parametrizations of the standard Gogny force. The
parametrization D1S was designed to provide a better descrip-
tion of nuclear ground- and excited-state properties and repro-
duce nuclear fission barriers [26]. The D1N parametrization
was very recently proposed to reproduce the neutron-matter
equation of state much better than the D1S parametrization
[27]. For this last force it was also found that the binding
energies drift is diminished for the major part of isotopic
chains. Neglecting the spin-orbit term, because we investigate
reactions with spin-saturated nuclei, the Gogny interaction can
be expressed as a sum of a central, finite-range term and a
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zero-range density-dependent term:

v(r12) =
2∑

i=1

(Wi + BiPσ − HiPτ − MiPσPτ )e
− r2

12
µ2

i

+ t3(1 + Pσ )ρα (R12) δ(r12). (4)

Above

r12 = r1 − r2 R12 = 1
2 (r1 + r2),

and the representation of the interaction is given in terms of
spin, Pσ , and isospin, Pτ , exchange operators. The isoscalar
and isovector direct and exchange components are given by

vd
00 = 1

4

2∑
i=1

(4Wi + 2Bi − 2Hi − Mi)e
−r2

12/µ
2
i

+ 3

2
t3 [ρ (R12)]α δ(r12), (5)

vd
01 = −1

4

2∑
i=1

(2Hi + Mi)e
−r2

12/µ
2
i , (6)

vex
00 = −1

4

2∑
i=1

(Wi + 2Bi − 2Hi − 4Mi)e
−r2

12/µ
2
i

− 3

4
t3ρ

α(R12)δ(r12), (7)

vex
01 = −1

4

2∑
i=1

(Wi + 2Bi)e
−r2

12/µ
2
i − 3

4
t3ρ

α(R12)δ(r12). (8)

The strengths of the interaction, W , B, H , M , t3, and the
exponent α are given in Ref. [26] for the D1S parametrization
and in Ref. [27] for D1N. The overlap density is evaluated
according to the prescription of Campi and Sprung [28],

ρ(R) =
√

ρ1
(

R − 1
2 s

)
ρ2

(
R + 1

2 s
)
, (9)

where s = R + r1 − r2 is the separation distance between the
interacting nucleons.

The antisymmetrization of the matrix element of the
interaction, required by the Pauli principle, is performed by
retaining only the knock-on exchange term. Then the effective
N -N force reads

v(r) = vd(r) + vex(r)P x
12, (10)

where P x
12 exchanges the spatial coordinates of the interacting

nucleons (knock-on exchange operator in coordinate space).
In other words, the one-nucleon exchange knock-on term is
assumed to be dominant with respect to all other exchange
contributions. Because the range of nonlocality is small, the
local equivalent of the nonlocal kernel corresponding to the
finite range component of vex is obtained in the lowest order
of the Perey-Saxon approximation [29]:

UL(R)

= 4π

∫
ρ1(X)ρ2(|R − X|)d X

∫
vex(s)ĵ1

(
k̂1(X)

A1 − 1

A1
s

)

·ĵ1

(
k̂2(|R − X|)A2 − 1

A2
s

)
j0[K(R)s/µ]s2ds. (11)
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FIG. 1. (Color online) Ion-ion potentials for the systems 36S +
48Ca, 48Ca + 48Ca, and 96Zr + 48Ca using the M3Y (Reid and Paris)
and Gogny (D1S and D1N) parametrizations. The dashed line
corresponds to the lowest energy attained in experiment.

Above, the function ĵ1(x) = 3j1(x)/x arises from the Slater
approximation to the mixed density and includes correction
from the nucleon recoil and K(R) is the usual WKB local
momentum for the relative motion,

K2(R) = 2µ

h̄2 [E − UD(R) − UL(R)]. (12)

Note that UD above includes the Coulomb component UC ,
which is calculated by folding the charge densities with
the usual vC(r) = e2/r . In the extended Thomas-Fermi
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TABLE I. Parameters of the heavy-ion potential for 48Ca + 48Ca: radii of the densities (1), radius crep and diffuseness arep of the modified
densities, strength of the repulsive interaction Vrep, minimum of the potential pocket Vmin, and Coulomb barrier height Vbar.

Interaction c (fm) crep (fm) arep (fm) Vrep (MeV) Vmin (MeV) Vbar (MeV)

M3Y-Reid 3.75 3.93 0.472 6283.8 32.76 51.37
M3Y-Paris 3.75 3.93 0.466 6645.8 38.05 51.35
D1S 3.75 3.93 0.468 13263. 42.94 51.32
D1N 3.75 3.93 0.465 13816.7 40.97 51.38

approximation the “local Fermi momentum” is defined by
[30]

k̂2(r) =
[

3

2
π2ρ(r)

]2/3

+ 5Cs[∇ρ(r)]2

3ρ(r)2
+ 5�ρ(r)

36
, (13)

where Cs ≈ 0.25 seems to be the appropriate choice for
the folding model. The calculation of the density-dependent
component of the Gogny interaction is trivial. In the case of the
finite-range components (Yukawa or Gaussian), Eqs. (11) and
(12) are solved by iteration. Some 20 iterations are needed to
obtain convergence within eight significant digits at all radial
distances.

A repulsive contact term is added to the heavy-ion potential
to account for what we called in Ref. [10] “the incompress-
ibility of nuclear matter.” We adopted the following functional
form:

Vcomp(R) = Vrep

∫
d r1d r2ρ̃1(r1)ρ̃2(r2)δ(R + r1 − r2),

(14)

where the normalized density ρ̃(r) has a functional dependence
identical to Eq. (1) but with a less diffusive surface and a
slightly larger radius. The incompressibility required for the
compound nucleus is calculated within the extended Thomas-
Fermi model [31]: K = 223.73 MeV for 96Zr and 144Nd and
K = 226.55 MeV for 84Kr.

There is a weak spurious energy dependence arising from
the exchange part of the potential (11). We checked that the
fusion cross section is little affected by this dependence.

In Fig. 1 the Coulomb + nuclear potential of the 48Ca +
target is displayed at incident energy E = 40 MeV for 36S,
50 MeV for 48Ca, and 90 MeV for 96Zr. We note that the

position and the height of the barrier is almost invariant for the
four types of potentials for each projectile-target combination.

As a strategy to achieve a similar quality fit to the data for
all three reactions, we kept fixed the diffuseness a and half
radii c and crep used in the standard and modified densities
and instead we varied arep. For the matter density entering in
the repulsive potential, we used for the diffuseness arep values
ranging between 0.465 and 0.492 fm. Thus, a single parameter
arep is varied within the nuclear potential to obtain the fit to the
experimental cross section. The parameters of the heavy-ion
potentials are listed in Tables I and II.

III. CROSS-SECTIONS ANALYSIS

We calculate fusion cross section within a CC approach
using a coupling scheme and physical input as described
below. For 48Ca we include a 2+ state at 3.832 MeV from
the quasiground band and a 3− state from the octupole band
at 4.507 MeV [32]. The corresponding Coulomb quadrupole
deformation, β2C = 0.102, is consistent with the deformations
extracted from the experimental values of B(E2) [33], whereas
the Coulomb octupole deformation is taken β3C = 0.203, also
consistent with the recommended value [34]. The nuclear
deformations are taken as β2N = 0.09 and β3N = 0.16.

For 36S we include a 2+ state at 3.291 MeV together
with the 3− state at 4.194 MeV. The corresponding Coulomb
deformations, β2C = 0.163 and β3C = 0.38, are extracted
from the reduced electric quadrupole transition probabilities
given in the compilation [33] and the reduced electric-octupole
transition probabilities from the compilation of Kibédi and
Spear [34]. The corresponding nuclear deformations are
β2N = 0.15 and β3N = 0.3.

TABLE II. Parameters of the heavy (H) and light (L) fragment densities and of the heavy-ion potentials for 36S + 48Ca and 96Zr + 48Ca.

Interaction cH (fm) cL (fm) cH,rep (fm) cL,rep (fm) arep (fm) Vrep (MeV) Vmin (MeV) Vbar (MeV)

36S + 48Ca
M3Y-Reid 3.75 3.40 3.93 3.5 0.479 6045 17.63 42.05
M3Y-Paris 3.75 3.40 3.93 3.5 0.475 6436 24.36 42.06
D1S 3.75 3.40 3.93 3.5 0.477 12903.7 28.86 42.05
D1N 3.75 3.40 3.93 3.5 0.475 13478 26.75 42.16

96Zr + 48Ca

M3Y-Reid 3.75 4.83 3.93 4.55 0.47 6404.4 22.15 95.07
M3Y-Paris 3.75 4.83 3.93 4.55 0.465 6732.3 51.55 95.33
D1S 3.75 4.83 3.93 4.55 0.492 12789.9 38.88 95.24
D1N 3.75 4.83 3.93 4.55 0.487 13187.4 13.70 95.18
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FIG. 2. (Color online) Fusion cross sections for the system 36S +
48Ca compared to the experimental data of Ref. [1] (circles). In (a) and
(c) the cross sections are represented in logarithmic scale, whereas in
(b) and (d) the representation is made in linear scale.

In the case of 96Zr we take a 2+ state at 1.751 MeV with
Coulomb deformations β2C = 0.08 and a 3− state at energy
1.897 MeV with corresponding deformation β3C = 0.28. A
similar input was used in Ref. [5], however, assuming that
βC = βN . Our choice was β2N = 0.1 and β3N = 0.30.

We include only one-phonon excitations in 36S and 48Ca
and two-phonon excitations in 96Zr for the octupole states. As
for the quadrupole states we include two-phonon excitation
for all three nuclei. Mutual excitations are included as well,
according the prescription described in Refs. [35,36].

In Figs. 2–4 we compare the cross sections of the three
fusing systems to the experimental data. In the top panels the
cross sections are given in logarithmic scale, whereas in the
bottom panels we display the cross sections in linear scale.
Also, it proved to be unnecessary to introduce dissipation via
an imaginary potential.

To discriminate between the interactions we plot in Fig. 5
the ratio of experimental to theoretical cross section. For
36S + 48Ca the ratio is close to 1 throughout the entire range
of energies. Though there are apparently no major differences
between the four interactions, a slightly better agreement in the
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FIG. 3. (Color online) Same as in Fig. 2 for the system 48Ca +
48Ca compared to the experimental data of Ref. [2] (circles).
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FIG. 4. (Color online) Same as in Fig. 2 for the system 96Zr +
48Ca compared to the experimental data of Ref. [5] (circles).

low-energy region when using the interaction M3Y-Paris can
be remarked. Above the barrier all four interactions provide
similar values of the ratio. At approximately 1 MeV below
the barrier (≈42 MeV) a weak maximum of σexp/σth is
developing.

For the reaction, 48Ca + 48Ca, the two M3Y parametriza-
tions are obviously providing a better agreement to the data
compared to the two Gogny parametrizations below the
Coulomb barrier. There are clearly two maxima developing
slightly under the barrier. Note that for this reaction, a strong
peak at the same energy (≈50 MeV) was also found in
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FIG. 5. (Color online) Experimental to theoretical cross sections
ratios for 36S + 48Ca [panels (a) and (b)], 48Ca + 48Ca [panels (c) and
(d)], and 96Zr + 48Ca [panels (e) and (f)]. The thin hatched region is
centered around ratio equal to 1.
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FIG. 6. (Color online) Calculated S factors for the systems 36S +
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48Ca [panels (e) and (f)] are compared to the experimental data of
Refs. [1,2], and [5].

Ref. [37]. However, in our description for the lowest data
points we obtain values of the ratio closer to the ideal value 1.

For the third reaction, 96Zr + 48Ca, all four interactions
are producing a very similar description of the data. Near
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FIG. 7. (Color online) Calculated logarithmic derivatives
d ln(σf E)/dE for the three systems 36S + 48Ca, 48Ca + 48Ca, and
96Zr + 48Ca compared to the experimental data of Refs. [1] and [2].
Numerical derivatives are calculated by a five-point formula.

the barrier, we observe oscillations of the ratio, with a more
pronounced maximum at ≈90 MeV.

The calculated astrophysical factor S(E) = σf(E)Ee2πη,
where η(E) = Z1Z2e

2
√

µ/(2h̄2E), is the Sommerfeld param-
eter at c.m. energy E, is displayed and compared to the data
in Fig. 6 for the three systems. For 36S + 48Ca the calculated
S factor deviates from experiment in the low-energy sector for
the interactions M3Y-Reid and Gogny-D1S. For the reaction
48Ca + 48Ca we find that both M3Y interactions are providing
a better description of the data. No maximum in the S factor
develops under the barrier. For the last reaction, 96Zr + 48Ca,
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this conclusion is clearly confirmed for all four interactions
(see Fig. 6, bottom panel).

The logarithmic derivatives calculated with M3Y forces,
L(E) = d ln(Eσf )/dE, are compared with the experiment
in Fig. 7. This representation has the advantage compared
to the S-factor representation that it is more sensitive in
the sub-barrier region. The deviations from the experimental
data mirror the irregularities already encountered in the ratio
σexp/σtheor. Our calculation confirms the conclusion reached
earlier by the Legnaro group; that is, well below the Coulomb
barrier L(E) levels off. In the case of 96Zr + 48Ca, it was
pointed out in Ref. [5] that the data “probably show the
expected low-energy plateau below E ∼ 90 MeV.”

A last point that we would like to discuss is related to the
observation made in Ref. [2] that the experimental logarithmic
slopes of the systems 36S and 48Ca + 48Ca, plotted as a function
of the cross section, are very similar despite the different sign
of the Q value and different reduced masses. In Fig. 8 we plot
this unusual representation of fusion data and compare them
with our calculated cross sections. The theoretical curves are
also scaling in a very similar way. In our view the most probable
physical explanation of this result is the corresponding scaling
of the fusion barriers. In the inset of Fig. 8 we represent the
barriers of these systems for two of the interactions earlier
plotted in Fig. 1, this time as a function of the proximity
distance s = r − R1 − R2 instead of the fragment-fragment
distance r . Both potentials are normalized to the barrier
heights, which we read off from Tables I and II, and the nuclear
radii are taken as R1 (36S) = 3.31 fm and R2 (48Ca) = 3.53 fm.
We remark that the barriers are also nicely scaling together
above energies where the cross sections approach the µb
values. Consequently, we infer the similarity between the two
logarithmic slopes as a result of the proximity property of
the double-folding heavy-ion potentials [38]. The quantum
tunneling governing the fusion for sub-barrier energies, takes

FIG. 8. (Color online) Experimental logarithmic slope versus
cross section for the systems 36S + 48Ca (open triangles from Ref. [1])
and 48Ca + 48Ca (open circles from Ref. [2]) compared to theoretical
calculations using the M3Y-Paris interaction for the first system (black
solid line) and the M3Y-Reid interaction for the second one. In the
inset the corresponding potentials normalized to the barrier heights
for the two systems are represented versus the proximity distance s.
The shaded region corresponds to bombarding energies where the
cross sections are dropping below 10−3 mb.

place across very similar barriers. At such low energies nuclear
structure effects play a minor role.

IV. CONCLUSIONS

In this paper we analyzed three fusion reactions involving
48Ca as projectile-target and displaying hindrance at energies
well below the Coulomb barrier. A common feature of these
systems is that the experimental logarithmic derivative, after
a sharp increase just below the Coulomb barrier, apparently
develops a plateau with decreasing cross section as a function
of the energy. Obviously, this feature is in contrast to other
fusing systems for which it was concluded that the slopes have
a pronounced diverging behavior with decreasing energy, the
most notorious cases being 58Ni + 58Ni and 64Ni + 64Ni [39].

The heavy-ion potential for these fusion reactions is based
on microscopic G-matrix N -N effective interactions, as well
on interactions well tested in HFB calculations. As a result
double-folding potentials including direct knock-on exchange
and a repulsive component, which prevents strong density
overlaps in the compound system, lead to similar barrier
properties (position, height, thickness).

The hindrance at sub-barrier energies is consistently de-
scribed by keeping the same nuclear structure input for the
nucleus 48Ca in all three reactions. Moreover, the parameters of
the nuclear-matter densities for the three nuclei are predicting
rms radii in close agreement with the values recommended
by nuclear data compilations and the Coulomb quadrupole
deformations are extracted from experimental B(Eλ) values.
These features ensure an equally good description of fusion
cross section in both low- and high-energy sectors.

From the analysis of the ratio of the measured to the
calculated cross section we infer the existence of oscillations
of this quantity near the barrier, almost independent of the
interaction used in the model. Although we have for the time
being no explanation, the origin of this phenomenon could be
traced back to the limitations of the reaction model employed
in this paper rather than the imprecise measurement of the
cross section. The measured cross section has a weak tendency
for a resonant behavior under the barrier, similar, though in a
less enhanced manner, to the case of the evaporation cross
section of 12C + 12C [23]. The ratio of the measured to the
calculated cross section allows us to conclude that for the
reaction 48Ca + 48Ca the M3Y-Reid and -Paris interactions
produce a better fit to the data compared to the Gogny-D1S
and D1N. This is quite surprising owing the ambiguity in the
short-range behavior of the odd components (SO, TO) and
the absence of any density dependence in these interactions.
Instead, for the case 36S + 48Ca M3Y-Paris performs better in
the extreme sub-barrier region than M3Y-Reid. For the case
96Zr + 48Ca the four employed interactions describe equally
well the data.

The only case where we obtain a clear maximum for the
astrophysical S factor is 48Ca + 48Ca with D1S interaction,
but the corresponding fit is less good compared to other
interactions. For all other cases the S factor continues to
increase below the last measured cross section. Therefore, we
agree with the conclusion reached by the Legnaro group for
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the reactions 36S, 48Ca + 48Ca (see, for example, Ref. [6]) that
no maximum develops in the S factor at extreme sub-barrier
energies. For 96Zr + 48Ca, though the data do not show clearly
this effect, our calculations suggest that also no maximum
develops in the S factor. Consequently, we do not confirm the
appearance of such a maximum, as predicted in Refs. [19,37],
nor a continuous sharp increase of the logarithmic derivative
with decreasing cross section.

Finally, we would like to reiterate that the paramount role
played by quantum tunneling in sub-barrier fusion is illustrated
also by the nice overlap between the logarithmic derivatives
of the systems 36S and 48Ca + 48Ca versus σf .

Before ending it is worthwhile to comment on the limita-
tions and possible improvements of the reaction model used in
this paper. The local equivalent potential of the nonlocal kernel
arising from antisymmetrization of the matrix elements was
obtained in the lowest order of Perey-Saxon approximation.
In the future we think we should examine higher-order
corrections to this approach. It may be also appropriate to
extend the range of the N -N effective interactions by including

in the calculations other fundamental density dependent G-
matrix interactions to better understand the role of density
dependence. One should also test the influence of an absorptive
component in the optical model potential because nucleon
breakup and neutron transfer may play a role at sub-barrier
energies. For consistency it is necessary to derive the strength
of the repulsive component from an equation of state generated
by the effective interaction itself, at least at the Hartree-Fock
level. Another possible improvement concerns the calculation
of the transition operator in the CC method using the density
fluctuations corresponding to the excitation of phonon states
beyond the Tassie model.
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