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A variety of physical phenomena have at their foundation the quantum tunneling of particles through potential
barriers. Many of these phenomena can be associated with the tunneling of single inert particles. The tunneling of
composite systems is more complex than for single particles due to the coupling of the tunneling coordinate with
the internal degrees of freedom of the tunneling system. Reported here are the results of a study for the tunneling
of a two-component projectile incident on a potential energy system which differs for the two components. A
specific linkage is made to sub-Coulomb nuclear reactions.
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I. INTRODUCTION

A wide range of physical phenomena and many related
applications have at their foundation some aspect of quantum
particle tunneling. The chemical elements of stars, radioactiv-
ity, chemical reactions at low energy, tunnel diodes, Josephson
junctions, scanning tunneling microscopes, and scanning
probe position encoders, to name a few, have an origin based
on quantum tunneling [1,2]. These processes can usually be
well described by the transmission of single or tightly bound
composite particles. For this reason a large body of tunneling
literature relates to one-dimensional tunneling of single inert
units.

In nuclear physics quantum tunneling plays a vital role
in the phenomena of fission, sub-Coulomb reactions, and
radioactivity. Nuclear reaction models, which are used to
parametrize such phenomena, are often based on a single-
coordinate tunneling formalism, with the addition that either or
both of the reacting nuclei can be excited to various states. This
approach has been particularly successful when interpreting
fusion of stable nuclei at or below the Coulomb barrier. More
recently sub-Coulomb nuclear reactions are being studied for
situations in which one of the participant nuclei is short lived,
i.e., radioactive. While studies with radioactive beams are
of interest in their own right, they also have relevance for
the production of very heavy elements and to astrophysical
situations such as supernovae and other explosive scenarios.

Sub-Coulomb fusion reactions involving radioactive nuclei
have been discussed in the literature for a number of years, but
as yet there is no consensus as to the relative importance of the
different physical processes thought to be involved. There are
even different views as to whether a particular physical effect
will enhance or suppress the fusion probability. Part of the
problem is that due to the low intensity of radioactive beams,
measurements of such reactions are very challenging; as a
consequence the database is still quite sparse. Another problem

*Secondary affiliation: Atomic Physics Division, National Institute
of Standards and Technology, Gaithersburg, MD 20899-8420.

is that the theoretical description of such fusion reactions is
very challenging due to the complexity of competing physical
processes.

There have been various experimental fusion studies
with radioactive beams, for example, 6He [3–8], 11Be and
10Be [9–11], and 8Li [12]. Due to the difficulty in using
radioactive beams, various fusion studies have in addition
been undertaken recently using weakly bound stable light-ion
beams, for example, 6Li and 7Li [13–15] and 9Be [16].
The interpretation of the fusion data, and its implication for
quantum tunneling of nuclei, has centered on four main areas
of interest:

(i) the extended neutron radial distribution of neutron-rich
nuclei, and how this could lead to a lowering of the
Coulomb barrier and so enhance the fusion probability;

(ii) the presence of possible soft resonances associated with
the extended neutron tail of neutron-rich nuclei;

(iii) the low neutron binding of neutron-rich nuclei, and
how this can lead to breakup of the projectile into the
continuum; and

(iv) transfer of the weakly bound outer neutrons of neutron-
rich nuclei to deeper binding states in the target.

A brief referenced discussion of these four areas of interest
follows below. Concerning (i), Canto et al. [17] have recently
emphasized that when comparing the fusion of different
neutron-rich isotopes it is important to separate out the static
effects of the extended neutron tail so that possible dynamic
effects can be isolated. The physical situation associated with
(ii) is of an extended neutron tail resonating with the charged
core of a neutron-rich nucleus, producing a low-energy giant
resonance that could be excited in a collision and lead to an
enhanced fusion cross section [18–20].

The picture that is emerging from (iii) is less clear. It
has been argued that the breakup should be treated as any
other channel that couples into the entrance channel, i.e., it
should lead to an enhancement of fusion in the sub-Coulomb
energy region [21–26]. However, other calculations indicate
that breakup can lead to a reduction in the complete fusion
cross section in the sub-Coulomb region, since there is a
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significant chance that only part of the projectile will fuse with
the target if the projectile dissociates before fusing [18–20,27].
This breakup process becomes more important the lower the
binding energy of the projectile, and the higher the Z of the
target, due to the process of Coulomb breakup [13,15,28].

The physical aspect associated with (iv) above has been
reported in a series of papers [29–31]; these articles were
inspired by a comparative study of sub-Coulomb fusion cross
sections for 40Ca+48Ca and 48Ca+48Ca by Trotta et al. [32].
The idea put forward in these articles is that the increased
fusion cross section for 40Ca+48Ca compared to 48Ca+48Ca is
due to the transfer of neutrons from 48Ca to 40Ca, resulting in
a conversion of neutron binding energy to the kinetic energy
of the charged components and so increasing the likelihood of
tunneling through the Coulomb barrier. This type of analysis
was subsequently applied to a comparison of the fusion cross
sections for 6He and 4He projectiles [8]; the hypothesis is that
when two projectiles approach each other with a kinetic energy
lower than the barrier, a positive Q value for neutron transfer
will aid the charged cores to penetrate the barrier. However,
it has also been reported elsewhere that the reverse should
happen [33].

This experimental and theoretical work indicates that
there is still considerable uncertainty concerning the physical
processes and their relative importance to the fusion of
neutron-rich unstable nuclei, especially at energies below the
Coulomb barrier. This is due not only to the complexity
of the tunneling process, but also to the current sparsity of
experimental data, and to theoretical approaches which focus
by necessity on a particular aspect of a reaction, making it
difficult to draw general conclusions. The aim of the present
paper is therefore to examine the tunneling problem using
simple quantum models to investigate whether, even at this
level of detail, general trends can be identified which find their
expression in the full complexity of the tunneling of weakly
bound unstable nuclei.

In his book on quantum tunneling Razavy [34] notes that,
while the general literature on single-particle tunneling is
extensive, there has been much less attention paid to the
tunneling of composite particles. However, there have been
a few studies that describe very interesting effects associated
with the resonant tunneling of simple composite systems. Saito
and Kayanuma [35] were the first to study the tunneling of a
two-component system, for example, a diatomic molecule,
through a one-dimensional barrier. Remarkable resonances
were discovered that were attributed to the trapping of the
molecule by the barrier, illustrating how the transmission of a
projectile can be heavily influenced by its internal structure.
This system was further investigated by Pen’kov [36,37] and
later by Goodvin and Shegelski [38,39]. A related system
was studied by Bonini et al. in the context of high-energy
particle collisions [40]. More recent studies of tunneling have
investigated a basic two-component system and its relation to
the nuclear case [41,42].

Lee and Takigawa [43] investigated the time evolution of
quantum tunneling for multidimensional systems by using
path integral methods. This study in particular illustrates the
intricate effects of the interplay between the tunneling and
internal projectile degrees of freedom.

These studies of simple composite projectile tunneling
are of interest but have limited capability to address the
subject areas (i)–(iv) identified above, since in these theoretical
studies only common external potentials are experienced
by the projectile components, and no account is taken of
projectile breakup. The main objective of this paper is to
remove these limitations in order to establish if general insights
for the nuclear case can be gained by a numerical study
of two-component projectile systems tunneling through a
two-component external potential.

II. THE REACTION MODEL

Previous studies of two-component projectiles tunneling
through a barrier have demonstrated that the transmission
coefficient can exhibit resonances as a function of projectile
incident energy. The resonances are associated with the trap-
ping of composite particles by the barrier; these are metastable
situations in which one component has penetrated the barrier
while still being attached to the other component which has
yet to penetrate [35–38]. These studies express the time-
independent projectile wave function as a functional series
in the eigenfunctions of the unperturbed bound composite
projectile; no account is taken of projectile breakup.

The study reported in this paper examines a two-component
projectile incident on a potential system, using a method that
allows for breakup of the projectile. The physical system
is shown diagrammatically in Fig. 1. The two-component
projectile is bound with a finite binding energy by the
interaction V12. The projectile in its ground state is incident
on a fixed potential system V1(x1)+V2(x2), with projectile
component C1 only interacting with V1(x1) and component
C2 only interacting with V2(x2). To allow for breakup, which
involves a continuous spectrum of states, it was decided to
investigate the collision by solution of the time-dependent
Schrödinger equation rather than by the time-independent
approach.

x=00 E 

V12 

V1 

V2 

C2 

C1 

FIG. 1. Diagrammatic representation of the scattering system.
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The functional forms for the projectile and potential system
were chosen as

V1(x1) = V0(1) exp

[
−

(
x1 − 30

2.4

)2]
,

V2(x2) = V0(2) exp

[
−

(
x2 − 30

2.4

)2]
,

V12(x12) = (−V0(12) + 0.3x2
12

) / [
1 + exp

( |x12| − 2

0.1

)]
,

ψ(x1, x2, t = 0) = exp[iK(x1 + x2)]

× exp

[
−0.002

(
x1 + x2

2
− x0(12)

)2]

× f12(x12, V0(12)).

Here, xi is the position of component Ci , x0(12) is the
center-of-mass position of the projectile when t = 0, and
x12 = x1 − x2. The function f12 is the ground-state wave
function calculated for the potential V12(x12), and ψ is the
projectile wave function at t = 0. The units used throughout
this paper are MeV for energy, 10−15 m = 1 fm for distance,
and 10−21 s = 1 zs for time. The barrier height V0(1) is fixed
at 25 MeV; V0(2) is varied from 0 to −20 MeV. These two

barriers are fixed in position 30 fm from the coordinate origin,
near the center of the spatial grid (see Fig. 2 and Sec. III).
The masses of the projectile components are both 1 amu, so in
these units the momentum K is (0.024E)0.5 fm−1, where E is
the projectile energy.

The parameters were chosen to be broadly characteristic
of light nuclei sub-barrier reactions. The forms of V1 and V2

were chosen as Gaussian to be similar to previous composite
projectile calculations [36–38,40,41]. The parameters of the
initial wave packet were chosen such that it had negligible
overlap with the fixed potential system. Reaction outcomes
were studied for a range of values for V0(2), projectile
binding potential parameter V0(12), and initial projectile kinetic
energy E.

III. NUMERICAL SOLUTION OF THE TIME-DEPENDENT
SCHRÖDINGER EQUATION

The primary objective of the calculation was to determine
the final outcomes of the reactions, so each calculation was run
until the entire wave packet left the interaction region in order
to allow accurate extrapolation to the asymptotic (long-time)
solution. The spatial coordinate ranges were chosen to ensure
that reflections at the boundaries of the numerical grid did
not interact again with the central potential. The accuracy
of the calculation could have been increased by using a
larger spatial grid at the cost of increased computational
overhead; a compromise was chosen to balance accuracy and

FIG. 2. (Color online) Illustration of the collision and the different reaction outcomes. The central red box indicates the region in which
both components are in contact with the scattering potential. The reaction outcomes associated with regions A-E are discussed below.

054621-3



A. C. SHOTTER AND M. D. SHOTTER PHYSICAL REVIEW C 83, 054621 (2011)

computational time. The coordinate space for both x1 and x2

ranged from −100 to 150 fm, with the initial center of mass of
the composite projectile at 80 fm. The spatial grid mesh in the
plane (x1, x2) was refined until the normalization of the wave
function could be maintained within a band of 1±(2×10−8)
for the time span of the calculation. The differential equation
kernel within the Comsol multiphysics software was used to
solve the time-dependent Schrödinger’s equation.

IV. CHARACTERIZATION OF SCATTERING AMPLITUDE

Figures 2(a)–2(c) show contour plots of the probability
amplitude |�(x1, x2)|2 at times 0, 3, and 6 zs for typical
parameters. It can be seen that a particularly valuable feature
of the time-dependent calculation is the insight it provides into
how the continuous evolution of the initial wave packet relates
to the final outcome.

In order to quantify the outcomes, the coordinate plane
(x1,x2) is divided into different regions as indicated in Fig. 2(d).
After the interaction, region A corresponds to elastic scatter-
ing; C corresponds to transmission of the bound composite
system; B corresponds to transmission of C1 with capture of
C2 in the potential well V2; D corresponds to reflection of C1

with capture of C2 in the potential well V2; and E corresponds
to breakup of the composite projectile with both components
moving away from the scattering potential. Breakup flux
into other regions is generally negligible when compared to
region E.

Reaction probabilities are calculated as the integrated
values of the probability for particular reaction outcomes; for
example, the elastic scattering probability is calculated by the
integration

∫
A

|�(x1, x2)|2 dx1 dx2 over region A of Fig. 2(d).
Some uncertainly will be inherent in assigning the integrated
probability in any region to a particular physical process due
to spreading of the wave function from neighboring regions.
Therefore, even though the total probability normalization
is within 1±(2×10−8) over the full coordinate space, the
accuracy of assigning asymptotic probabilities within regions

A–E to particular processes may have relative uncertainties of
several percent.

V. ASYMPTOTIC REACTION PROBABILITIES

A. General comments

First consider the physical outcomes of the system shown in
Fig. 1 under limiting conditions for the binding of the projectile
components. If the coupling constant ω in V12 = ω(x1 − x2)2

is large, then x1 ≈ x2 and the composite particle will interact as
a single unit encountering a common potential V1(x) + V2(x).
At large ω and for a given projectile energy, as the potential V2

becomes more negative, the transmission of the unit through
the potential system will increase. In the other limit ω→0,
the two particles will act independently, with each separately
interacting with V1(x1) or V2(x2) and either being reflected
or transmitted at the barrier; each particle has a total energy
E/2 throughout the collision, as energy cannot be transferred
between the particles. The interest in the current investigation
is to consider the intermediate situation where there is a finite
coupling between C1 and C2, with the possibility that C2 can
become bound in V2.

The various reaction outcomes have been calculated as a
function of the projectile kinetic energy E and the Qg value.
The Qg value is defined as B2 − B12, where B2 is defined
as the ground-state binding of component C2 in the potential
well V2(x2), and B12 is the ground-state binding of C2 in the
projectile. The reaction probabilities for different Qg values
were determined first by running calculations for different
values of V0(2) ranging from 0 to −20 MeV.

B. Reaction outcomes involving reflection of C1 by V1

The probabilities for projectile elastic scattering and C2

capture by V2 are shown in Fig. 3. The general trend of these
curves is similar between Figs. 3(a) and 3(b) but with the
probabilities inverted, i.e., the probability is a maximum for
Qg values near zero for Fig. 3(b) and minimum for Fig. 3(a).
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FIG. 3. (Color online) Figure (a) shows the asymptotic integrated value of the probability for elastic scattering as a function of Qg for
different values of the projectile energy E. Figure (b) corresponds to the asymptotic probability of region D of Fig. 2(d), i.e., capture of C2 in V2

and reflection of C1 by V1. For both Figs. (a) and (b), Qg was varied by changing B2, the binding of component C2 in the potential well V2.
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For the two limiting situations discussed in Sec. V A,
capture of C2 would not be possible, so the capture functions
of Fig. 3(b) can be directly attributed to the finite coupling
between C2 and C1. This means that the projectile, upon
interaction with V1+V2, can exchange energy between C2 and
C1, and in particular C2 can be captured in V2, with the balance
of energy being transferred to C1. If Qg<0, then capture of
C2 will reduce the kinetic energy available to C1. For Qg>0,
C2 is more bound in V2 than in V12 so this extra binding will
increase the kinetic energy available to C1.

Away from Qg=0, there is a decrease in elastic probability
and an increase in reaction probability for increasing E. This
behavior is to be expected on an intuitive level; the harder
the projectile hits, the more likely an inelastic reaction will
occur. However, the behavior around Qg∼0 is dominated for
all energies E by a minimum in the elastic reflection probability
and by a maximum in the reaction probability; this behavior
becomes more pronounced as the projectile energy decreases.
This maximum and minimum behavior may be understood by
the following discussion. As the projectile’s wave function
overlaps the external potential system (Fig. 1), C2 can be
transferred to V2; the transference probability will depend on
the relative binding energy of C2 in V2 compared to that of C2

in V12 (the difference between these two energies is the Qg

value). The greater the difference between these two energies,
the greater will be elastic scattering rather than transfer. The
situation is similar to that of the classic case of a single particle
incident on a potential step, where starting with complete
transmission for a zero-height potential step, the transmission
decreases as the magnitude of the step size increases. It is
suggested here that Qg for the two-particle system of Fig. 1
has the same role to the potential step for the one-particle
scattering situation. For the situation illustrated in Fig. 1, the
maximum transference region would be expected to move to
negative Qg values to ensure that as the kinetic energy E of
the bound projectile increases, the energy difference between
the two well energies for C2 (taking full account of E) is a
minimum. Of course, the situation is made more complicated
due to the interaction of C1 with V1, which rapidly changes
with separation and therefore the interaction between the two
wells.

For higher values of E the capture probability again
increases for higher Qg [Fig. 3(b)]. This is associated with
capture of C2 into the first excited state in V2; this state is
bound for V2<−12 MeV (note: Qg=2.7 MeV at V2=−12
MeV). As an illustration of this behavior, the data shown in
Fig. 2 is for E=5 MeV and V2=−15 MeV; the double-node
oscillatory structure of the first excited state of C2 in V2 (region
D) can be seen clearly.

C. Reaction outcomes involving the transmission
of C1 through V1

Figure 4 shows the asymptotic values of the transmission
probability for the tunneling of C1, where C2 is either trapped
in V2 [region B, Fig. 2(d)] or is transmitted bound to C1 [region
C, Fig. 2(d)], as a function of Qg and for different values of
the projectile energy E.

The first case will be designated by TC (transmission-
capture), and the second by TT (transmission-transmission).
There are several interesting features of these transmission
functions: (a) For negative Qg values, the probability P(TT)
for the outcome TT is greater than the probability P(TC)
for the outcome TC, i.e., P(TT)>P(TC); (b) for positive Qg

values, P(TC)>P(TT); and (c) for all projectile energies E
investigated, P(TT) and P(TC) are equal (the curves cross) at
a point near Qg = 0.

Feature (c) could be an important clue to the physics
associated with Fig. 4. Some years ago Pruess and Licht-
ner [44] argued that when interpreting “slow” nucleus-nucleus
collisions it is important to take into account the effect
of the internal particle states continuously adjusting to the
instantaneous potential between the two closing nuclei. The
authors referred to this distortion of the states as “shape
polarization.” For the case of a reaction involving the transfer
of a nucleon between the two nuclei, a special case arises at
Qg≈ 0. In this situation the nucleon undergoes a tunneling
process between the nuclei with a characteristic transfer time
of (π/2)h̄/ |H12|, where|H12| is the off-diagonal energy matrix
element of the two-center nuclear system. If this cycle time is
sufficiently short then several population cycles can occur as
the nuclei are close—a situation termed resonant polarization
by Pruess and Lichtner. For the present situation specified
in Fig. 1 and Sec. II, (π/2) h̄/ |H12| ≈ 0.3 × 10−21 s at 5-fm
separation, and 1.3×10−21 s at 10-fm separation; these times
are independent of projectile energy. It therefore could be
argued that resonance polarization is the reason why there
is equal probability for TT and TC at Qg≈ 0 since in this
condition C2 can easily pass between V1 and V2.

A possibly more illuminating way of describing this is that
the transmission of C1 through the barrier V1 is necessarily
accompanied by a transitory situation in which C1 and C2 are
both approximately coincident with the barrier. As C1 tunnels
through the barrier and begins to depart the barrier region, the
component C2 experiences a diverging double-well potential,
with one well centered on the barrier, and one well centered
on C1. In the moments immediately following the tunneling
event there is a “tug of war” between the component C1 and
the barrier over which ends up with the component C2. The
wave function of the component C2 continuously reacts to the
combined potential; although one may imagine details such as
a sloshing oscillation between the two potential wells, overall
one would predict that the deeper well, i.e., the well which
can exert the greater force on the component C2, will gain the
majority of the C2 wave function. This can be seen in features
(a) and (b) listed above. When the two wells have the same
depth, so each exert around the same force on the component
C2, the division of the C2 wave function between the potential
V2 and the component C1 is approximately equal, as evidenced
by feature (c).

Figure 5 shows the combined probability P(TT)+P(TC)
for the transmission of C1 through the barrier V1.
The formula P (TT) + P (TC) = 8.44 × 10−5 exp(0.33Qg+
0.88E − 0.04E2) can be used to parametrize the linear portion
of these natural log curves. The appropriate curves using this
parameterization are plotted in Fig. 5.
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FIG. 4. (Color online) Transmission of C1 with and without C2; data point assignation shown in (a) also applies to (b), (c), and (d). For
Figs. (a)–(d), Qg was varied by changing B2, the binding of component C2 in the potential well V2.

-6 -4 -2 0 2 4 6 8 10
-12

-10

-8

-6

-4

-2

E=2.5 MeV

E=5 MeV

E=1 MeV

ln
(T

ra
n

sm
is

si
o

n
 P

ro
b

ab
ili

ty
)

Qg(MeV)

E=7 MeV

FIG. 5. (Color online) Combined transmission of C1,
P(TC)+P(TT), for various projectile energies E. For this figure, Qg

was varied by changing B2, the binding of component C2 in the
potential well V2.

D. Influence of projectile breakup on other reaction processes

Figure 6(a) shows the variation of elastic scattering prob-
ability with projectile energy for three values of Qg . For all
Qg values, the probability decreases with increasing projectile
energy since at higher energy the projectile has greater ability
to penetrate the potential. Figure 6(b) shows the probability
for C2 capture and C1 reflection as a function of energy for the
same three Qg values; as expected, this probability initially
increases with energy due to the increase in penetration with
energy. However, the energy dependence shown in Fig. 6(b)
changes for projectile energies greater than ∼4 MeV. To
provide some insight into this effect, also plotted in Fig. 6(b)
is the breakup probability of the projectile, which is the total
integrated probability in region E of Fig. 2(d); it is seen that
this probability increases significantly beyond 4 MeV. For
the parameters used to calculate the data shown in Fig. 6,
the binding energy of C1 and C2 interacting through V12

is 4.22 MeV; this value is indicated by the vertical dashed
line in these plots. Breakup is not possible unless the projectile
energy is greater than this energy. A loss of flux to the
capture channel, and possibly even the elastic channel, can
therefore be attributed to the increase in the probability flux to
the breakup channel as the projectile energy increases.
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FIG. 6. (Color online) (a) Elastic scattering as a function of projectile energy and for different Qg values, and (b) capture and breakup
probabilities. Vertical lines indicate projectile breakup energy. For both Figs. (a) and (b), Qg was varied by changing B2, the binding of
component C2 in the potential well V2.

Figure 7(a) shows probabilities for the transmission and
breakup outcomes for Qg=1.13 MeV as a function of the
projectile kinetic energy. There appears to be a small change
in the slope of the ln[P(TT)] curve at around the binding energy
(4.22 MeV). We hypothesize that this decrease in the gradient
of the transmission probability is related to the breakup process
diverting flux away from the other reaction channels.

In order to investigate this hypothesis, data is shown in
Fig. 7(b) for the same situation as in Fig. 7(a), but with a
reduced projectile binding energy of 3 MeV, which increases
Qg to 2.34 MeV. The change in the slope of the transmission
curves is shifted to ∼3 MeV, consistent with the hypothesis.

Note that the finite spatial width of the incident projectile
wave packet gives it a kinetic energy width of ∼1 MeV. This
acts to smear out sharp features in the plots, and accounts for
effects such as the small probability of breakup for projectiles
with a nominal kinetic energy a little less than their binding
energy.

To further investigate the influence of projectile binding
on reaction outcomes, data is shown in Fig. 8 for a projectile
with kinetic energy 2.5 MeV and a range of projectile binding
energies. From Fig. 8(a) it can be seen that the breakup
probability becomes large when the binding energy is less than

the kinetic energy of the projectile; this is accompanied by a
corresponding reduction in the elastic scattering probability.
However, the C2 capture probability smoothly passes through
the threshold breakup value without any obvious effect.
Figure 8(b) shows the total transmission probability for C1 to
penetrate the V1 barrier, i.e. P(TT)+P(TC). The two straight
lines highlight the change in transmission at ∼2.5 MeV.
The transmission probability becomes smaller as the binding
energy is decreased, and once projectile breakup becomes
possible, the decrease in the transmission becomes more rapid.

There is a close a relationship between the data shown in
Figs. 3, 5, and 8 through the expression Qg = B2 − B12, where
B2 is the binding of C2 in V2, and B12 is the binding of C2 to
C1 through V12; for Figs. 3 and 5 B12 is fixed at 4.22 MeV, and
for Fig. 8, B2 is fixed at 5.5 MeV. By using this expression,
and curves fitted to the data in Figs. 3, 5, and 8, a common
presentation can be made; this is shown in Fig. 9 for a projectile
kinetic energy of 2.5 MeV.

From Fig. 9 it can be seen that there is a substantial differ-
ence between the probability behavior with increasing Qg if
this increase arises from deeper binding of C2 in V2 or through
weaker binding of the projectile. If the increase in Qg arises
from deeper binding of C2 in V2, then with increasing Qg the

FIG. 7. (Color online) Transmission probabilities as a function of projectile energy for two projectile binding energies; (a) binding energy
= 4.22 MeV, (b) 3.0 MeV; the vertical lines are at these values.
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FIG. 8. (Color online) (a) Elastic, C2 capture, and breakup probabilities as a function of projectile binding energy at a fixed projectile
kinetic energy of 2.5 MeV; (b) C1 transmission and breakup probabilities; the straight lines indicate the change in slope at ∼2.5 MeV. Both
figures correspond to a fixed projectile energy of 2.5 MeV; the vertical lines are set at this energy.

elastic scattering probability and transmission P(TT)+P(TC)
increases monotonically, while the C2 capture decreases.
However, if the increase in Qg is the result of reduced binding
of the projectile, then the capture probability decreases more
rapidly, the elastic probability peaks and then decreases, while
the transmission probability decreases monotonically. So this
finding demonstrates that the Qg value alone is not necessarily
a complete guide to reaction outcome.

A further inspection of Fig. 9 shows that for the situation
where the variation of Qg is from changing B12, the probability
curves show feature changes at ∼3 MeV. These changes
are most likely associated with projectile breakup since
this becomes possible when Qg>3 MeV. The behavior of
the transmission probability through the barrier for the two
situations shown in Fig. 9(c) is particularly interesting since
they have opposite trends with increasing Qg . A possible way
to explain this behavior, which is based on a simple energy
redistribution argument, is outlined below.

The separation distance at which the projectile will be
significantly affected by the scattering potential V1 + V2 will
be related to the projectile binding energy B12, since this

determines the spatial spread of the projectile’s wave function.
For the case where variation of Qg arises from an increase in
B2, and the projectile is tightly bound, the projectile remains
relatively unaffected until it closely interacts with V2. This
interaction can lead to a transfer of C2 to V2, with the balance
of binding energy being transferred, through the coupling
between C1 and C2, into an increase in the kinetic energy
of C1, so giving C1 a greater ability to penetrate the barrier.
This is essentially the argument put forward in Ref. [29]. For
the case where variation of Qg arises from a reduction of B12,
the projectile’s internal structure will be substantially affected,
becoming more spatially extended and more easily deformed
by external interactions. However, deformation will result in a
transfer of kinetic energy to potential energy and so reduce the
ability of the projectile to penetrate the barrier. The effect of
kinetic energy increase due to C2 transfer would be operating
still, but since there is now a reduced coupling between C1 and
C2, the ability to transfer the binding energy of C2 in V2 to
an increase in the kinetic energy of C1 is reduced. The overall
balance in this situation is seen to be [Fig. 9(b)] a decrease
in transmission with increasing Qg , leading to the conclusion

FIG. 9. (Color online) The solid and dashed curves are those that fit the data of Figs. 3, 5, and 8 for projectile kinetic energy E of 2.5 MeV.
The elastic and capture probabilities are shown in (a), and the total transmission probability for C1 is shown in (b). The dashed curves are for
Qg values determined by varying B12, with B2 fixed at 5.5 MeV. The solid curves are for Qg determined by variation of B2 with B12 fixed at
4.22 MeV; for this case projectile breakup, BU, is not possible.
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that in this case the decreased coupling has more of an effect
on the penetration of C1 than the increase in available energy.
The decrease in transmission becomes particularly noticeable
if B12 is below the projectile kinetic energy E, which could
be explained by noting that part of this energy will be lost
to breakup (breakup is more likely to be irreversible than
deformation, at least on the reaction time scale), so further
reducing the ability of C1 to penetrate the barrier, as seen in
Fig. 9(b).

VI. STUDY CONCLUSIONS AND LINKAGE
TO SUB-BARRIER NUCLEAR REACTIONS

A. Study summary

For the scattering situation diagrammatically represented
in Fig. 1, this study has identified four main conclusions:

(i) All reaction processes are strongly influenced both
by the binding of the projectile and by the binding
of the projectile component C2 within the attractive
potential V2. In particular, for low projectile energies,
when these binding energies are equal, i.e., Qg = 0,
most of the final reaction flux resides in the channel
where the projectile component C2 is bound to V2 with
the other component C1 reflected; in these situations
the probability for elastic scattering of the projectile is
small.

(ii) The transmission of the C1 component through the
barrier V1 has a special significance at Qg = 0, where
there is equal probability that C1 will be transmitted
alone or attached to C2. This behavior is observed
irrespective of the projectile initial energy.

(iii) For variation of Qg arising from different B2 binding
energies, the transmission of C1 through the barrier
V1 varies approximately as exp(αQg + βE), for a
limited range of Qg values greater than zero, where
E is projectile kinetic energy and α and β are positive
constants.

(iv) For those situations where the projectile kinetic energy
is greater than its binding energy, breakup of the
projectile, where the two components independently
move away from the reaction site, becomes possible.
It is found that the reaction flux in the other reaction
channels is influenced significantly by the presence of
the breakup channel.

(v) An increasing Qg value is not necessarily accompanied
by an increase in transmission, since if the Qg increase
is due to reduced projectile binding then transmission
can be suppressed.

B. Linkage to nuclear tunneling

There are four main areas of interest concerning sub-
Coulomb nuclear fusion reactions identified in the brief review
at the beginning of this paper. The philosophy of the current
work has been to study a model with limited degrees of
freedom to determine if some of the issues of interest can
be identified in such a model, and so to link them to a

simple but general reaction mechanism. The potential system
V1 + V2 of Fig. 1 has been studied as being representative of a
fusion barrier that which permits processes such as scattering,
absorption and breakup.

Conclusion (i) of Sec. VI A certainly has parallels with the
nuclear situation, as matching of binding energies between
participants of nuclear reactions (sometimes termed Q match-
ing [45]) is a very important consideration when quantifying
the strengths of various reaction outcomes. For example, in
neutron-transfer reactions when angular momentum is not
involved (i.e., � = 0 reactions), the transfers that are favored
have Qg = 0; this is the same general trend as displayed
in Fig. 3.

Conclusion (ii) of Sec. VI A seems again to be related to Q
matching. There is a mixing of the wave-function amplitudes
for the neutral particle either to be attached to the potential
V2 or to V12; this mixing leads to equal amplitudes at Qg =
0. This behavior is common for a range of projectile energies.
As discussed in Sec. V C, this effect can be related to shape
polarization of the projectile and would be expected to occur
at low energy and for weakly bound projectiles.

Conclusion (iii) of Sec. VI A again finds a parallel in
sub-Coulomb reactions, and can be identified with the area
of interest (iv) of Sec. I. As discussed by Zagrebaev [29], the
fusion of the two charged cores can be enhanced by neutron
transfer between the two approaching nuclei, as this increases
the kinetic energy of the cores. In the paper it is proposed
that the tunneling (fusion) probability, and hence fusion cross
section, is increased by a factor of exp(const × Qg), where
Qg relates to the neutron transfer. The hypothesis of Zagrebaev
therefore seems consistent with conclusion (iii), which holds
when the increase in Qg arises from an increase in B2. Figure 5
shows the transmission probability for different Qg values
and projectile energies E; for the region above Qg = 0, the
logarithm of the transmission probability approximately varies
linearly as suggested by Zagrebaev. This is suggestive that the
physical process relevant to Fig. 5 is related to the transfer of
nuclear binding energy into the kinetic energy of the projectile
component penetrating the barrier. Indeed, inspection of
the wave function in momentum space clearly shows this
increase in momentum for C1 as the Qg value increases.
However, the results of the current work, [conclusion (v)
above] show that in other situations an increase in Qg can
result in a decrease in transmission.

Conclusion (iv) of Sec. VI A states that breakup of the
projectile has a strong effect on the reaction outcome of
other channels. Furthermore, the study shows that the breakup
probability increases with increasing projectile energy and
with decreasing projectile binding energy; the effect of
breakup on the other reaction channels increases with breakup
probability. These conclusions clearly have parallels with the
actual nuclear situation as identified in the area of interest (iii)
of Sec. I. In particular, when breakup of the projectile becomes
possible, the current study shows that the transmission of the
projectile through the barrier is suppressed.

The result identified in (v) of Sec. VI A has particular
significance for the debate concerning the influence that
projectile binding has on barrier transmission and therefore
fusion.
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Figure 9 clearly shows that if an increase in Qg arises
from stronger binding in the target system, then transmis-
sion increases. However, if an increase in Qg comes from
reduced projectile binding, then the transmission decreases.
Furthermore, if the binding is reduced to a level that pro-
jectile breakup can occur, then the transmission probability
decreases even more rapidly. In Sec. V D a simple energy
argument was given to explain this difference of behavior. In
addition, the decreasing transmission with decreasing binding
energy is consistent with the theoretical analysis of Lee and
Takigawa [43]. These authors demonstrate that for certain
bound two-particle systems, incident on a barrier, which have
internal wave functions which can respond quickly to external
influences, then this interaction can lead to a reduction in the
potential barrier, so leading to an increase in transmission
relative to an inert system (i.e., one with a very large binding
energy). This conclusion is consistent with other theoretical
analysis, e.g., Ref. [21]. However, Lee and Takigawa also show
that with weaker projectile binding a different process begins
to emerge; the projectile energy levels become closer and
therefore more readily populated, and so it becomes less likely
that the excitation energy will be returned to the projectile
kinetic energy—so leading to a reduction in transmission. It
can be further speculated that if excitation into the breakup
continuum becomes possible, then this would decrease further
the transmission probability.

The study of nuclear reactions using radioactive beams is
currently a very active research topic. One area of interest
concerns the fusion reactions involving these radioactive
nuclei, and in particular how the extended neutron tail affects
the fusion process. If we can cautiously extend the conclusions

of the present study to this particular nuclear situation, then
these results suggest that there are two different Qg regimes
influencing fusion reactions between stable and weakly bound
nuclei. First, for a transfer of a neutron from a particular
neutron-rich nucleus to a series of stable nuclei corresponding
to various positive Qg , then it would be expected that the
fusion probability would increase as exp(αQg), where α is
a positive constant. If, on the other hand, fusion of different
weakly bound nuclei on a particular stable target are studied,
then an increase of Qg associated with more weakly bound
nuclei would lead to a decrease in fusion, particularly so if
breakup becomes possible. The existence of these two Qg

regimes may go some way to explain some of the difficulties
of interpreting individual experimental results since which
regime is appropriate will be sensitive to the individual
parameters of the fusing nuclei.

In conclusion, it is interesting to see how a simple model
with limited degrees of freedom shows characteristics similar
to those observed in real fusion reactions which have many
degrees of freedom. Qg matching, shape polarization, transfer
of binding energy to kinetic energy, and breakup effects all
manifest themselves in a model with few degrees of freedom.
This demonstrates that even for complex reactions, such
as fusion, such models may be useful in providing some
guidance to the most important processes that determine
reaction outcome.
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