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Effective radii of deuteron-induced reactions
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The continuum-discretized coupled-channels method (CDCC) for exclusive reactions and the eikonal reaction
theory (ERT) as an extension of CDCC to inclusive reactions are applied to deuteron-induced reactions. The CDCC
result reproduces experimental data on the reaction cross section for d + 58Ni scattering at 200 MeV/nucleon,
and ERT provides data on the neutron-stripping cross section for inclusive 7Li(d,n) reaction at 40 MeV. For
deuteron-induced reactions at 200 MeV/nucleon, target-dependence of the reaction, elastic-breakup, nucleon-
stripping, nucleon-removal, and complete- and incomplete-fusion cross sections is clearly explained by simple
formulas. Accuracy of the Glauber model is also investigated.
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I. INTRODUCTION

Understanding of the fusion reaction mechanism is one of
the most important and challenging subjects in nuclear physics.
The fusion reaction consists of complete and incomplete fusion
processes. In the complete fusion process, all of the projectile
is absorbed by the target nucleus. In the incomplete fusion
process, meanwhile, a part of the projectile is absorbed, while
other parts of the projectile are emitted. The complete fusion
process at low-incident energies is essential to understand
the production of superheavy nuclei. The incomplete fusion
process in the scattering of unstable nuclei at intermediate
energies is important to extract information on the projectile
from the scattering. Actually, the nucleon-removal reaction
widely used for the spectroscopy of unstable nuclei [1] is
composed of the nucleon-stripping reaction as a consequence
of the incomplete fusion process and the elastic-breakup
reaction as a result of the direct-reaction process. Furthermore,
the proton-stripping process in inclusive 7Li(d,n) reaction at
incident energies up to 50 MeV attracts the interest of not only
nuclear physicists but also nuclear engineers, because emitted
neutrons through the process are planned to be used in the
International Fusion Materials Irradiation Facility (IFMIF) [2].
Accurate evaluation of the proton-stripping cross section is
highly required.

The theoretical tool of analyzing the incomplete fusion
process at intermediate energies is the Glauber model [3].
The theoretical foundation of the model is investigated in
Ref. [4]. The Glauber model is based on the eikonal and
the adiabatic approximation; the latter is known to make the
elastic-breakup and removal cross sections diverge when the
Coulomb interaction is included; see, for example, Ref. [5].
The Glauber model has thus been applied only for lighter
targets in which the Coulomb interaction is negligible; see,
for example, Refs. [1,6–16]. Very recently, inclusive 7Li(d,n)
reaction at 40 MeV [17] was analyzed by the hybrid calculation
[18] in which the elastic-breakup component is evaluated by
the continuum-discretized coupled-channels method (CDCC)
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[19,20] and the proton stripping component is by the Glauber
model. The analysis was successful in reproducing the data
[17], even if the Coulomb interaction is neglected in the
Glauber-model calculation. Such a hybrid calculation should
be justified by more accurate reaction theories.

CDCC is an accurate method for treating exclusive re-
actions such as elastic scattering and elastic-breakup re-
actions. The theoretical foundation of CDCC is shown in
Refs. [21–23]. CDCC succeeded in reproducing data on the
scattering of stable and unstable projectiles [19,20,24–37].
Very recently, CDCC was extended to inclusive reactions such
as nucleon-stripping reactions [38]. This method is referred
to as the eikonal reaction theory (ERT). In ERT, the adiabatic
approximation is not made for the Coulomb interaction, so
that the elastic-breakup and the nucleon removal reaction
never diverge. ERT is thus applicable for both light and heavy
targets. ERT assumes the eikonal approximation to be good.
The formulation starts with the eikonal approximation, but
non-eikonal corrections are made by calculating fusion cross
sections with CDCC. This is essential progress in the theory
on fusion reactions.

Extensive measurements of total-reaction and nucleon-
removal cross sections are now being made for the scattering
of unstable nuclei at intermediate energies, say 100–300 MeV/

nucleon, in MSU, RIKEN, and GSI. Accurate understanding
of the fusion-reaction mechanism is thus highly required
at intermediate energies. In this paper, we mainly consider
deuteron-induced reactions at 200 MeV/nucleon as a typical
case and analyze integrated cross sections of the reactions
with CDCC and ERT. Deuteron is as fragile as an unstable
nuclei and, furthermore, it has no ambiguity of structure.
In this sense, deuteron is the most suitable projectile to
understand the fusion-reaction mechanism. We will show that
CDCC reproduces experimental data on the reaction cross
section for d + 58Ni scattering at 200 MeV/nucleon, and ERT
provides data on the neutron-stripping cross section for in-
clusive 7Li(d,n) reaction at 40 MeV. Target-mass-number (A)
dependence of the reaction, elastic-breakup, nucleon-removal,
nucleon-stripping, and incomplete- and complete-fusion cross
sections for deuteron-induced reactions at 200 MeV/nucleon
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is clearly explained with simple formulas. Accuracy of the
Glauber model will be investigated.

ERT is recapitulated in Sec. II. Numerical results of CDCC
and ERT are presented in Sec. III. Section IV is devoted to
summary.

II. EIKONAL REACTION THEORY

A. Three-body model

Deuteron (d) is the system in which proton (p) and
neutron (n) are weakly bound. It is thus natural to assume
that scattering of d from target T is well described by the
p + n + T three-body model. Actually, the model is successful
in reproducing the experimental data on elastic scattering and
breakup reactions of d [19,20]. The model Hamiltonian is

H = − h̄2

2µ
∇2

R + U (rp, rn) + h (1)

with

U (rp, rn) = U (N)
p (rp) + U (C)

p (rp) + U (N)
n (rn), (2)

where h = Tr + V (r) denotes the intrinsic Hamiltonian of
d that consists of the kinetic-energy operator Tr and the
interaction V . Furthermore, µ is the reduced mass between
d and T, U (N)

p [U (N)
n ] is the nuclear part of the proton (neutron)

optical potential and U (C)
p is the Coulomb interaction between

p and T. The three-dimensional vector R = (b, Z) stands for
the coordinate between d and T, while r is the coordinate
between p and n. The vector rx = (bx, zx) for x = p or n

is the coordinate between x and T. The total wave function
�(R, r) of the three-body system is then obtained by solving
the three-body Schrödinger equation

[H − E]�(R, r) = 0. (3)

In the three-body model, transitions of the incident flux to
the inelastic (target-excitation) channels are expressed by the
imaginary parts of U (N)

p and U (N)
n . The imaginary part of U (N)

p

denotes the absorption of p by T, while the imaginary part of
U (N)

n corresponds to the absorption of n by T. Therefore, the
three-body model implicitly assumes that p and n are absorbed
independently.

B. Separation of S matrix

We consider d scattering at intermediate energies, say
200 MeV/nucleon. Since the eikonal approximation is con-
sidered to be good for the scattering, the S-matrix elements
and several types of cross sections are described by ERT.
Accuracy of the eikonal approximation is investigated later. In
this subsection, we recapitulate ERT for deuteron scattering.
In the eikonal approximation, the three-body wave function �

is assumed to be

� = Ôψ(R, r), (4)

with the operator

Ô = 1√
h̄v̂

eiK̂·Z, (5)

where K̂ = √
2µ(E − h)/h̄ and v̂ = h̄K̂/µ are wave-number

and velocity operators of the motion of deuteron relative to T,
respectively. When Eq. (4) is inserted into Eq. (3), we have
a term including ∇2

Rψ , but it is neglected, since ψ is slowly
varying with R compared with Ô. The neglect leads Eq. (3) to

i
dψ

dZ
= Ô†UÔψ. (6)

Regarding Z as “time” and solving Eq. (6) iteratively, we
obtain the formal solution

ψ = exp

[
−iP

∫ Z

−∞
dZ′Ô†UÔ

]
, (7)

where P is the “time” ordering operator. Taking Z to ∞ in
Eq. (7), we get the S-matrix operator

S = exp

[
−iP

∫ ∞

−∞
dZÔ†UÔ

]
. (8)

In the Glauber model, h is replaced by the ground-state
energy ε0 of d. This adiabatic approximation reduces Ô†UÔ

and P in Eq. (8) to U/(h̄v0) and 1, respectively, where v0

is the velocity of d in the ground state relative to T. This is
nothing but the S matrix in the Glauber model. Thus, ERT is
an extension of the Glauber model.

The operator Ô†UÔ describes the change in the motion of
p and n in d during the collision. The change is small for the
short-range nuclear interactions, U (N)

p and U (N)
n , while large

for the long-range Coulomb interaction U (C)
p . Therefore, the

adiabatic approximation that neglects this change is good for
the nuclear interactions but not for the Coulomb interaction.

More quantitative discussion can be made by considering
the matrix element∫ ∞

−∞
dZ〈φk|Ô†UÔ|φ0〉 ≈ ei(K0−K)RU

h̄v0

∫ ∞

−∞
dZ〈φk|U |φ0〉

(9)

between the ground state φ0 of d with the intrinsic energy
ε0 and its continuum state φk with the intrinsic momentum
h̄k and energy ε, where h̄K0 (h̄K) is the momentum of d

in the ground (continuum) state relative to T, and RU is
the range of the interaction considered. As an example, let
us consider the d + 208Pb scattering at 200 MeV/nucleon.
The spectrum of the elastic breakup reaction, dσEB/dε, has
a peak around ε = 10 MeV. The interaction range RU is
about 7.1 fm for the nuclear interactions, U (N)

p and U (N)
n ,

while that for the Coulomb interaction U (C)
p is infinity. Hence,

� = (K0 − K)RU ≈ 0.55 < π for the nuclear interactions
but ∞ for U (C)

p . Since the adiabatic approximation is good
for � � π , the approximation is acceptable for the nuclear
interactions but not for the Coulomb interaction. Actually, the
breakup cross section is known to diverge in the adiabatic
approximation [5,28].

The fact that the adiabatic approximation is fairly good for
U (N)

n indicates that U (N)
n is commutable with Ô. Therefore, we

can make the replacement

Ô†U (N)
n Ô ↔ U (N)

n /(h̄v0). (10)
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The accuracy of Eq. (10) is confirmed later by numerical
calculations. Using Eq. (10), we get

S = SnSp, (11)

with

Sn = exp

[
−iP

∫ ∞

−∞
dZO†U (N)

n Ô

]
, (12)

Sp = exp

[
−iP

∫ ∞

−∞
dZÔ†(U (N)

p + U (C)
p

)
Ô

]
. (13)

Thus, S can be separated into the neutron and proton parts, Sn

and Sp, respectively. The neutron part Sn describes scattering
of n by U (N)

n and recoil of p by the scattering. However, a
velocity caused by the recoil is much smaller than the initial
velocity v0 of p, so that the recoil effect is negligible. Similar
interpretation is possible for Sp. The operator Sp is the formal
solution of the Schrödinger equation,
[
− h̄2

2µ
∇2

R + h + U (N)
p (rp) + U (C)

p (rp) − E

]
�p = 0, (14)

and Sn is the solution of the Schrödinger equation,
[
− h̄2

2µ
∇2

R + h + U (N)
n (rn) − E

]
�n = 0. (15)

Hence, the matrix elements of Sn and Sp can be obtained by
solving Eqs. (14) and (15) with eikonal-CDCC [28], in which
the eikonal approximation is made in CDCC calculations.
Non-eikonal corrections to Sn and Sp can be easily made by
using CDCC instead of eikonal-CDCC in solving Eqs. (14)
and (15).

C. Integrated cross sections

In this subsection, we derive several formulas of integrated
cross sections with the product form [Eq. (11)], following the
formulation of the cross sections in the Glauber model [7,39].
The reaction and elastic-breakup cross sections, σR and σEB,
respectively, are defined by

σR =
∫

d2b[1 − |〈φ0|SpSn|φ0〉|2], (16)

σEB =
∫

d2b[〈φ0||SpSn|2|φ0〉 − |〈φ0|SpSn|φ0〉|2]. (17)

The cross sections σR and σEB can be evaluated from the
asymptotic form of � that is obtained by solving Eq. (3) with
CDCC.

The total fusion cross section σTF is defined by

σTF = σR − σEB =
∫

d2b〈φ0|[(1 − |SpSn|2)]|φ0〉. (18)

The total fusion cross section can be decomposed into the
neutron-stripping cross section σn:STR, the proton-stripping
cross section σp:STR, and the complete-fusion cross section
σCF:

σTF = σn:STR + σp:STR + σCF, (19)

where

σn:STR =
∫

d2b〈φ0||Sp|2(1 − |Sn|2)|φ0〉, (20)

σp:STR =
∫

d2b〈φ0||Sn|2(1 − |Sp|2)|φ0〉, (21)

σCF =
∫

d2b〈φ0|(1 − |Sn|2)(1 − |Sp|2)|φ0〉. (22)

The factor |Sp|2(1 − |Sn|2) in σn:STR shows that p is scattered
by T while n is absorbed by T, and the factor (1 − |Sn|2)
(1 − |Sp|2) in σCF means that both p and n are absorbed by T.
The sum of σn:STR and σp:STR describes the incomplete fusion
cross section σIF:

σIF = σn:STR + σp:STR. (23)

In the neutron removal reaction, n is either absorbed or
scattered by T, while p is independently scattered by T. Hence,
the cross section σ−n is the sum of σEB and σn:STR:

σ−n = σEB + σn:STR. (24)

The neutron-stripping cross section σn:STR is rewritten into

σn:STR =
∫

d2b〈φ0|[(1 − |SpSn|2) − (1 − |Sp|2)]|φ0〉
= σTF − σTF(p), (25)

where

σTF(p) = σR(p) − σEB(p), (26)

with

σR(p) =
∫

d2b[1 − |〈φ0|Sp|φ0〉|2], (27)

σEB(p) =
∫

d2b[〈φ0||Sp|2|φ0〉 − |〈φ0|Sp|φ0〉|2]. (28)

Here, σTF(p), σR(p) and σEB(p) are the total fusion, reaction,
and elastic-breakup cross sections induced by U (N)

p + U (C)
p

only. The cross sections, σR(p) and σEB(p), can be evaluated
from the asymptotic form of �p that are obtained by solving
Eq. (14) with CDCC. Thus, we can evaluate σn:STR with
Eq. (25).

Similarly, the proton removal cross section σ−p is obtained
by

σ−p = σEB + σp:STR, (29)

and the proton-stripping cross section σp:STR is rewritten into

σp:STR = σTF − σTF(n), (30)

where

σTF(n) = σR(n) − σEB(n), (31)

with

σR(n) =
∫

d2b[1 − |〈φ0|Sn|φ0〉|2], (32)

σEB(n) =
∫

d2b[〈φ0||Sn|2|φ0〉 − |〈φ0|Sn|φ0〉|2]. (33)

The cross sections, σR(n) and σEB(n), can be evaluated from
the asymptotic form of �n that are obtained by solving
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Eq. (15) with CDCC. We can thus evaluate σp:STR with
Eq. (30). Finally, σCF is obtained from σTF and σIF = σn:STR +
σp:STR by using the relation σCF = σTF − σIF.

D. Tests of the eikonal and the adiabatic approximation

In ERT, non-eikonal corrections to the integrated cross sec-
tions are taken into account by using CDCC instead of eikonal-
CDCC. For the d + 9Be scattering at 200 MeV/nucleon, the
correction is found to be less than 1% for σR, σEB, σn:STR, and
σp:STR. For the d + 208Pb scattering at 200 MeV/nucleon, the
correction is 1.5% for σR, σEB, and σn:STR and 16% for σp:STR.
Thus, the non-eikonal correction is small except for σp:STR for
heavy targets. As shown in Eq. (30), σp:STR is approximately
obtained by

σp:STR ≈ σR − σR(n), (34)

since σEB � σR. The 1.5% correction appears in σR because
of the strong Coulomb field, while the correction is negligible
in σR(n) as a consequence of the absence of the Coulomb field.
Thus, one can conclude that the 16% correction required for
σp:STR is nothing but the 1.5% correction for σR. Note that
σp:STR is much smaller than σR. Meanwhile, σn:STR is given by

σn:STR ≈ σR − σR(p). (35)

The 1.5% corrections appear in both σR and σR(p). The
cancellation between the two corrections makes the non-
eikonal correction small for σn:STR.

In ERT, the adiabatic approximation is assumed to be good
for the nuclear potential U (N)

n . This can be tested by setting

U (R, rn) = U (C)
p (R) + U (N)

p (R) + U (N)
n (rn)

in the Schrödinger equation [Eq. (3)]. In this setup, the
projectile breakup is induced only by U (N)

n (rn), since the
argument rp of U (C)

p and U (N)
p has been replaced by R.

Switching the adiabatic approximation on the Schrödinger
equation corresponds to the replacement [Eq. (10)]. For the
d + 9Be scattering at 200 MeV/nucleon, the error due to
the approximation is 0.3% for σR and 2% for σEB. For the
d + 208Pb scattering at 200 MeV/nucleon, the error is 0.4%
for σR and 6% for σEB. Errors due to these approximations are
even smaller for heavier projectiles such as 31Ne [38].

III. NUMERICAL RESULTS

We use the Koning-Delaroche global optical potential [40]
as U (N)

p and U (N)
n , and the Ohmura potential [41] as V that

reproduces the deuteron-binding energy |ε0| = 2.23 MeV. As
the model space of CDCC calculation, s-, p-, and d-wave
breakup states with k � 1.0 fm−1 are taken. Each k continuum
is divided into small bins with a common width �k =
0.1 fm−1, and the breakup states within each bin are averaged
into a single state. Maximum values of r and R are rmax =
200 fm and Rmax = 200 fm, respectively.
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without LS

FIG. 1. (Color online) The elastic cross section of d + 58Ni
scattering at 200 MeV/nucleon as a function of the c.m. scattering
angle θ . The solid (dashed) line stands for result of CDCC calculation
with (without) the spin-orbit interactions of the proton and neutron
optical potentials. The experimental data are taken from Ref. [42].

A. d + 58Ni elastic scattering at 400 MeV

In this subsection, we consider the d + 58Ni elastic scatter-
ing at 200 MeV/nucleon, because the elastic cross section was
measured and the reaction cross section was evaluated with the
optical potential analysis [42].

Figure 1 shows the elastic cross section as a function of the
center-of-mass (c.m.) scattering angle θ . The solid (dashed)
line represents a result of CDCC calculation with (without)
the spin-orbit interactions of U (N)

p and U (N)
n . The solid line

well reproduces the experimental data. Large deviation of the
dashed line from the solid line for θ � 10◦ shows that the
spin-orbit interactions yield a significant effect on the elastic
cross section.

In the Glauber model, the spin-orbit interactions and the
Coulomb breakup are neglected, and furthermore, the eikonal
and the adiabatic approximation are made. The Coulomb
breakup can be neglected by replacing U (C)

p (rp) by U (C)
p (R)

in CDCC calculation. In Fig. 2, the dotted line is the result of
CDCC calculation, neglecting both the spin-orbit interactions
and the Coulomb breakup. The dotted line agrees with the
dashed line of Fig. 1, that is, the result of CDCC calculation
with the Coulomb breakup and without spin-orbit interactions.
Thus, the Coulomb-breakup effect is small. In Fig. 2, the
dot-dashed line represents a result of the Glauber-model
calculation. The large deviation of the dot-dashed line from
the dotted line comes from the eikonal and adiabatic ap-
proximations, more precisely from the eikonal approximation.
Eventually, the result of the Glauber model (the dot-dashed
line) largely deviates from the full-CDCC result (the solid
line) in which both the spin-orbit interactions and the Coulomb
breakup are taken into account. Thus, the Glauber model does
not work well for the elastic cross section for θ � 10◦.
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FIG. 2. (Color online) Comparison of the Glauber model with
CDCC for the elastic cross section of d + 58Ni scattering at
200 MeV/nucleon. The solid line is the same as the solid line in
Fig. 1. The dotted line stands for the result of CDCC calculation,
neglecting both spin-orbit interactions and Coulomb breakup. The
dot-dashed line represents the result of the Glauber-model calculation.
The experimental data are taken from Ref. [42].

The reaction cross section calculated by full-CDCC is 1056
mb, while the value extracted from the measured elastic cross
section with an optical model analysis is 1083 mb [42]. Thus,
the CDCC result is consistent with the experimental data.
Table I shows effects of the spin-orbit interactions and the
Coulomb breakup on σR, σEB, and σTF. Comparing the results
with each other, one can find that the Coulomb breakup effect
is about 50% for σEB and 2% for σR, while the spin-orbit
interaction effect is 17% for σEB and 1% for σR. Thus, the
effects are sizable for σEB and appreciable for σR. Meanwhile,
these effects are quite small for σTF, because the absolute
value of S is mainly determined by the imaginary parts of
U (N)

n and U (N)
p . This is also the case with σp:STR, σn:STR,

σIF, and σCF. Table I shows that the spin-orbit interaction
effect is even smaller than the Coulomb-breakup effect. We
henceforth neglect the spin-orbit interactions but not the
Coulomb breakup, since the Coulomb breakup becomes more
significant for heavier targets.

TABLE I. Effects of the spin-orbit interaction and the Coulomb
breakup on σR, σEB, and σTF for the d + 58Ni scattering at
200 MeV/nucleon. The experimental data is taken from Ref. [42].
The cross sections are shown in units of mb.

Coulomb breakup spin-orbit σR σEB σTF

CDCC on on 1056 59 997
on off 1066 69 997
off on 1029 31 998
off off 1023 25 998

Exp. 1083

B. Inclusive 7Li(d,n) reaction at 40 MeV

The double-differential cross section (DDX) of inclusive
7Li(d,n) reaction was measured at 40 MeV [17]. The main
part of the DDX consists of the elastic-breakup and the
proton-stripping parts. When the elastic-breakup DDX is
calculated with CDCC and subtracted from the measured
DDX, the angular and the energy dependence of the remaining
DDX is well reproduced by the Glauber model [18]. This
indicates that the proton-stripping cross section σp:STR can
be obtained by fitting the theoretical DDX calculated by
the Glauber model to the remaining DDX and integrating it
over the angle and the energy. The σp:STR thus extracted is
244 ± 34(theor.) ± 37(exp.) mb; the theoretical error comes
from ambiguity of the fitting. ERT gives σp:STR = 253 mb and
the Glauber model does 214 mb. Thus, the two theoretical
results are consistent with the experimental data. The ERT
result seems to be slightly better than the Glauber-model result
for this case.

C. Relation between reaction and elastic-breakup cross sections

In this subsection, we discuss the relation between σR and
σEB for deuteron-induced reactions at 200 MeV/nucleon.

In the framework of CDCC, σR is the sum of the partial
reaction cross section σR(J ) over the total angular momentum
J , while σEB is the sum of the partial-breakup cross sections
σEB(J ):

σR =
∑

J

σR(J ) = π

K2
0

∑
J

(2J + 1)PR(J ), (36)

σEB =
∑

J

σEB(J ) = π

K2
0

∑
J

(2J + 1)PEB(J ), (37)

with

PR(J ) = 1 − |〈0|S(J )|0〉|2, (38)

PEB(J ) =
∑

β

|〈β|S(J )|0〉|2, (39)

where K0 is the initial wave number of d. The partial elastic
and breakup S-matrix elements are denoted by 〈0|S(J )|0〉 and
〈β|S(J )|0〉, respectively, where 0 (β) represents the elastic
(breakup) channel. The quantity PR(J ) shows, for each J , the
transition probability of the incident flux to all channels except
the elastic channel, while PEB(J ) describes the transition
probability to all the breakup channels. The probability PEB(J )
can be rewritten into

PEB(J ) = 〈0|S(J )†S(J )|0〉 − |〈0|S(J )|0〉|2. (40)

This indicates that PEB(J ) is the fluctuation of the mean
value |〈0|S(J )|0〉| for each J . In general, a rapid change in
|〈0|S(J )|0〉|, with respect to J , occurs where the fluctuation
becomes maximum. Since PR(J ) is a function of |〈0|S(J )|0〉|,
one can expect that PR(J ) is rapidly changed where PEB(J )
becomes maximum. We return to this point below.

The transition probabilities PR and PEB are plotted in Fig. 3
as a function of the effective distance R ≡ (J + 1/2)/K0

between the projectile and the target. For heavier targets,
58Ni, 93Nb, and 208Pb, PR behaves as a logistic function and
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FIG. 3. (Color online) Transition probabilities PR and PEB

as a function of R = (J + 1/2)/K0 for deuteron scattering at
200 MeV/nucleon.

hence the R dependence is close to a step function. This
indicates that the reaction cross section can be approximately
described by the black-sphere model [43]. Therefore, σR can
be expressed by the area of a disk,

σR = πR2
R, (41)

with effective radius RR. Meanwhile, the elastic-breakup
reaction is peripheral, since PEB has a single peak at a finite
value of R. An effective radius REB of σEB can be defined by
the peak of PEB. As expected, PR changes rapidly at R = REB.
This indicates that

RR = REB. (42)

For lighter targets such as 9Be and 27Al, PEB has two peaks; the
first peak is located at R = 0 and the second at finite value of
R. However, the second peak is more significant than the first
peak in σR because of the weight factor of 2J + 1 in Eq. (36).
We thus define REB by the second peak.
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FIG. 4. (Color online) A dependence of (a) REB and (b) σR.

Figure 4(a) shows REB as a function of A1/3, where A

is the target mass number. Since the elastic-breakup reaction
is peripheral, REB is expected to depend on A1/3. Actually,
A-dependence of REB is well fitted by a straight line (the solid
line)

REB = 0.33 + 1.46A1/3. (43)

The fitting is made only for heavier targets of 58Ni, 93Nb, and
208Pb, where PEB(J ) has a single peak. Figure 4(b) shows
A-dependence of σR, where the solid curve is obtained from
Eq. (41) with Eqs. (42) and (43), while closed circles stand for
the results of CDCC. Both results agree with each other. Thus,
the formula (42) is well satisfied.

D. A-dependence of integrated cross sections

A-dependence of integrated cross sections is discussed for
deuteron-induced reactions at 200 MeV/nucleon. Integrated
cross sections calculated by CDCC and ERT are tabulated in
Table II.
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TABLE II. Integrated cross sections calculated with CDCC and
ERT. The cross sections are shown in units of mb.

Nuclide σR σEB σTF σn:STR σ−n σp:STR σ−p σCF

9Be 295 11 284 111 122 133 144 40
27Al 628 30 598 211 241 245 275 144
58Ni 1066 69 997 312 381 343 412 342
93Nb 1469 110 1359 387 497 406 516 566
208Pb 2565 275 2290 540 815 489 764 1261

First, we consider the total-fusion cross section σTF. The
cross section is obtained by subtracting the area of the ring
σEB(J ) from that of the disk σR(J ). Thus, it can be described
also by the area of a disk,

σTF = πR2
TF, (44)

with effective radius RTF. Similar definition is possible for
σTF(p) and σTF(n):

σTF(p) = πRTF(p)2, σTF(n) = πRTF(n)2. (45)

Figure 5 presents RTF, RTF(p), and RTF(n) as a function of
A1/3. Symbols show effective radii evaluated from the CDCC
total-fusion cross sections in Table II. They can be fitted by
straight lines:

RTF = 0.18 + 1.41A1/3, (46)

RTF(p) = −0.60 + 1.36A1/3, (47)

RTF(n) = −1.09 + 1.46A1/3. (48)

This fitting is made only for heavier targets, 58Ni, 93Nb, and
208Pb, where PR(J ) has a logistic shape, but the fitting is still
good for lighter targets of 9Be and 27Al.
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FIG. 5. (Color online) A-dependence of RTF, RTF(p), and RTF(n).
The symbols denote the results of CDCC, while the lines stand for
the results of the straight-line fitting.

The neutron-stripping cross section is obtained from RTF

and RTF(p) as

σn:STR = π
[
R2

TF − RTF(p)2
] = 2πDn:STRRn:STR, (49)

with

Dn:STR = RTF − RTF(p), (50)

Rn:STR = [RTF + RTF(p)]/2. (51)

Thus, the neutron-stripping reaction occurs on a ring of
effective radius Rn:STR and effective width Dn:STR. The
effective width Dn:STR has small A-dependence because of
the cancellation between RTF and RTF(p). Similar discussion
can be made for the proton-stripping cross section:

σp:STR = 2πDp:STRRp:STR, (52)

with

Dp:STR = RTF − RTF(n), (53)

Rp:STR = [RTF + RTF(n)]/2. (54)

The effective radii, Rn:STR and Rp:STR, and the effective
widths, Dn:STR and Dp:STR, are simply obtained from RTF,
RTF(p), and RTF(n):

Rn:STR = −0.21 + 1.39A1/3, (55)

Rp:STR = −0.46 + 1.44A1/3, (56)

Dn:STR = 0.78 + 0.05A1/3, (57)

Dp:STR = 1.27 − 0.05A1/3. (58)

These are shown in Fig. 6 as a function of A1/3. As expected,
Dn:STR and Dp:STR have weak A-dependence. The values are
about 1 fm corresponding to the diffuseness of the target
density. Meanwhile, Rn:STR and Rp:STR has almost the same
A-dependence as RR.

The elastic-breakup reaction is peripheral as the stripping
reactions. It is thus natural to assume that it occurs on a ring
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Dn:STR=0.78+0.05A1/ 3

Dp:STR=1.27−0.05A1/ 3

FIG. 6. (Color online) A dependence of Rn:STR, Rp:STR, Dn:STR,
and Dp:STR.
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FIG. 7. (Color online) A dependence of DEB.

with effective radius REB and effective width DEB:

σEB = 2πDEBREB. (59)

The effective width DEB may be parameterized by

DEB = a + bA1/3 + cZT, (60)

with parameters a, b, and c. Note that the role of Coulomb
breakup, which is essential for σEB, is described by the last
term cZT, where ZT is the proton number of target. We use the
relation between ZT and A for nuclei on stability line,

ZT = A

2 + (aC/aA)A2/3
= A

2 + 0.015A2/3
, (61)

obtained from the Bethe-Weisäcker mass formula [44] neglect-
ing pairing energy term, where aC = 0.697 MeV and aA =
46.58 MeV are coefficients of the Coulomb and asymmetry
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FIG. 8. (Color online) A dependence of REB, RTF, Rn:STR, Rp:STR,
and RCF.

energy terms, respectively. The parametrization [Eq. (60)]
indeed works well as shown in Fig. 7. The circles denote DEB

evaluated from the CDCC elastic-breakup cross section with
Eq. (59). A-dependence of the CDCC results is well simulated
by the solid line

DEB = 0.007 + 0.011A1/3 + 0.005ZT. (62)

The DEB is found to be smaller than Dn:STR and Dp:STR.
It should be noted that the ring specified by REB and DEB

means the effective region of the elastic breakup process that
corresponds to PEB(J ) = 1. Since the PEB(J ) shown in the
lower panel of Fig. 3 are significantly smaller than unity, the
“actual” reaction region for elastic breakup has much wider
width than in Fig. 7. Furthermore, for heavier targets, PEB(J )
has a long-range tail, as a function of R, due to Coulomb
breakup, which makes the actual reaction region even wider.
Nevertheless, the use of Eq. (59) will be helpful for plain
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FIG. 9. (Color online) A-dependence of the stripping and removal
cross sections. σn:STR and σp:STR are plotted in the upper panel,
while σ−n and σ−p are shown in the lower panel. Symbols stand for
results of CDCC and ERT. Lines denote results of the parametrization
[Eqs. (49)–(66)].
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understanding of the “effective” reaction region of elastic
breakup.

Other integrated cross sections can be obtained by the
combination of σEB, σn:STR, σp:STR, and σTF:

σ−n = 2πDEBREB + 2πDn:STRRn:STR, (63)

σ−p = 2πDEBREB + 2πDp:STRRp:STR, (64)

σIF = 2πDn:STRRn:STR + 2πDp:STRRp:STR, (65)

σCF = πR2
TF − σIF. (66)

One can thus define effective radii RCF of the complete fusion
cross sections by

σCF ≡ πR2
CF (67)

and can evaluate the value of RCF from Eq. (66). A-dependence
of RTF, Rn:STR, Rp:STR, REB, and RCF is summarized in
Fig. 8. The order of the effective radii is RCF < Rp:STR ≈
Rn:STR < RTF < RR = REB, independently of A. Among these
reactions, the elastic-breakup reaction is most peripheral, and
it occurs at REB − DEB/2 � R � REB + DEB/2. The incom-
plete fusion reactions take place at Rn:STR − Dn:STR/2 � R �
Rn:STR + Dn:STR/2. At R � RCR, only the complete fusion
reaction occurs.

The cross sections σn:STR, σp:STR, σ−n, and σ−p are plotted
as a function of A in Fig. 9. The cross section σn:STR (σ−n)
has similar A-dependence to σp:STR (σ−p). The removal cross
sections have stronger A-dependence than the stripping cross
sections, since the former include the elastic-breakup cross
section.

A-dependence of σR, σTF, σIF, and σCF is summarized in
Fig. 10. For A � 150, σIF is larger than σCF and becomes the
largest component of σR, while for A � 150, σCF becomes the
largest.

E. Accuracy of the Glauber model for integrated cross sections

The accuracy of the Glauber model is investigated for
deuteron-induced reactions at 200 MeV/nucleon. For this
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FIG. 10. (Color online) A-dependence of integrated cross sections.

purpose, we define the relative error

δX = [X(CDCC) − X(GL)]/X(CDCC), (68)

where X(CDCC) and X(GL) are integrated cross sections
calculated with CDCC and the Glauber model, respectively.
In the Glauber-model calculation, the eikonal and adiabatic
approximations are made and the Coulomb interaction is set
to zero.

Figure 11 shows δX as a function of A for σEB, σ−n, and
σ−p in the upper panel and for σR, σTF, σn:STR, σp:STR, and σCF

in the lower panel. For light targets, say 9Be, the error is less
than 2% for all integrated cross sections except σCF. The error
is 8% for σCF, but σCF itself is small there. Thus, the Glauber
model is good at small A, as expected.

For heavier targets, say 208Pb, where the Coulomb breakup
is essential, the error is 80% for σEB, 20% for σ−n and σ−p, and
−20% for σp:STR. The error is slightly smaller for σ−p than for
σ−n. However, this is just a result of the cancellation in σ−p

between the positive error for σEB and the negative error for

0 50 100 150 200 250
−20

0

20

40

60

80

100

120

A

δ X
 (

%
)

δ EB

δ −n

δ −p

 (a) 

0 50 100 150 200 250
−20

−10

0

10

20

30

40

A

δ X
 (

%
)

δ R

δ TF

δ n:STR

δ p:STR

δ CF

 (b) 

FIG. 11. (Color online) Accuracy of the Glauber model for
integrated cross sections.
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σp:STR. The error is less than 6% for σn:STR, σR, σTF, and σCF.
Thus, the Glauber model is not good for σEB, σ−n, and σ−p.

IV. SUMMARY

The continuum-discretized coupled-channels method
(CDCC) and the eikonal reaction theory (ERT) are applied
to d + 58Ni elastic scattering at 200 MeV/nucleon and
inclusive 7Li(d,n) reaction at 40 MeV. For σR of the d + 58Ni
scattering, the CDCC result is consistent with the experimental
data. The spin-orbit interactions of the proton and neutron
optical potentials yield a significant effect on the differential
elastic-scattering cross section, but not on σR. For σp:STR of
the d + 7Li scattering, the ERT result is consistent with the
experimental data.

A-dependence of several types of integrated cross sections
is systematically investigated with CDCC and ERT for
the deuteron-induced reactions at 200 MeV/nucleon that
corresponds to typical RIBF and GSI beam energies. The
A-dependence is clearly explained with simple formulas as
follows. A black-sphere-type reaction such as the reaction,
total-fusion, and complete-fusion processes occurs on a disk
with the area of πR2

X with effective radius RX that is well
parameterized by aX + bXA1/3. A peripheral reaction such as
the elastic-breakup, nucleon-stripping, and nucleon-removal
processes takes place on a ring 2πDXRX with effective
radius and width, RX and DX, and A-dependence of RX

is well parameterized by aX + bXA1/3. For neutron- and
proton-stripping reactions as the incomplete-fusion reaction,
the effective widths, Dn:STR and Dp:STR, are about 1 fm
independently of A. The effective radii, Rn:STR and Rp:STR, are
smaller than effective radius RR for the reaction cross section
by about 1 fm independently of A, while effective radius RCF

for the complete-fusion cross section is smaller than RR by
about 2.5 fm independently of A. Thus, A-dependencies of
RR, Rn:STR, Rp:STR, and RCF are simple and similar to each
other. Thus, if σR, σCF, σn:STR, and σp:STR are determined
experimentally just for two targets, one can estimate these

cross sections for any target. It is of interest as a future work
to see whether this property is held for other incident energies
and projectiles.

The total-fusion cross section σTF is obtained from measur-
able cross sections, σR and σEB, by σTF = σR − σEB. Similarly,
neutron- and proton-stripping cross sections are determined
from measurable neutron- and proton-removal cross sections
by σn:STR = σ−n − σEB and σp:STR = σ−p − σEB. It is thus
important to determine A-dependence of σEB. However, the
A-dependence is known to be complicated [45,46], since it
depends on not only A but also the target proton number ZT.
This problem can be solved by the formula σEB = 2πDEBREB.
Effective radius REB agrees with RR = aR + bRA1/3 with
high accuracy, and effective width DEB is well parameterized
by aEB + bEBA1/3 + cEBZT. Thus, A-dependence of σEB is
determined, if σEB is measured for three targets and σR is
measured for two targets.

Accuracy of the Glauber model is also tested for the
deuteron scattering at 200 MeV/nucleon. The accuracy for
integrated cross sections is summarized as follows. The
Glauber model is good for light targets, if the interactions
between projectile and target are clearly determined. For heavy
targets, however, the model is not good for the elastic-breakup,
the nucleon-removal, and the proton-stripping cross sections,
because of the strong Coulomb field, while it is fairly good
for the other cross sections. It is quite interesting as a future
work that similar systematic analyses will be made for heavier
projectiles such as Ne and Ca isotopes with larger proton
numbers. Energy-dependence of the various cross sections
and corresponding effective radii and widths will also be an
important subject.
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Thompson, Phys. Lett. B 640, 91 (2006).
[46] K. Ogata, T. Matsumoto, Y. Iseri, and M. Yahiro, J. Phys. Soc.

Jap. 78, 084201 (2009).

054617-11

http://dx.doi.org/10.1143/PTPS.89.1
http://dx.doi.org/10.1016/0370-1573(87)90094-9
http://dx.doi.org/10.1103/PhysRevLett.63.2649
http://dx.doi.org/10.1103/PhysRevLett.63.2649
http://dx.doi.org/10.1103/PhysRevC.53.314
http://dx.doi.org/10.1103/PhysRevC.53.314
http://dx.doi.org/10.1103/PhysRevC.76.064602
http://dx.doi.org/10.1103/PhysRevC.61.034608
http://dx.doi.org/10.1103/PhysRevC.63.024617
http://dx.doi.org/10.1103/PhysRevC.63.024617
http://dx.doi.org/10.1103/PhysRevC.63.065806
http://dx.doi.org/10.1103/PhysRevC.63.065806
http://dx.doi.org/10.1103/PhysRevC.65.064619
http://dx.doi.org/10.1103/PhysRevC.65.064619
http://dx.doi.org/10.1103/PhysRevC.68.064609
http://dx.doi.org/10.1103/PhysRevC.70.061601
http://dx.doi.org/10.1088/0954-3899/31/10/093
http://dx.doi.org/10.1088/0954-3899/31/10/093
http://dx.doi.org/10.1103/PhysRevC.72.037603
http://dx.doi.org/10.1103/PhysRevC.73.051602
http://dx.doi.org/10.1103/PhysRevC.75.064607
http://dx.doi.org/10.1103/PhysRevC.77.064609
http://dx.doi.org/10.1103/PhysRevC.77.064609
http://dx.doi.org/10.1103/PhysRevC.80.051601
http://dx.doi.org/10.1103/PhysRevC.80.051601
http://dx.doi.org/10.1103/PhysRevC.82.051602
http://dx.doi.org/10.1103/PhysRevC.82.051602
http://dx.doi.org/10.1103/PhysRevC.82.037601
http://dx.doi.org/10.1103/PhysRevC.82.037601
http://arXiv.org/abs/arXiv:1103.3976
http://dx.doi.org/10.1016/0375-9474(85)90364-1
http://dx.doi.org/10.1016/S0375-9474(02)01321-0
http://dx.doi.org/10.1016/S0375-9474(02)01321-0
http://dx.doi.org/10.1143/PTP.43.347
http://dx.doi.org/10.1016/0370-2693(85)91506-0
http://dx.doi.org/10.1103/PhysRevC.72.024602
http://dx.doi.org/10.1103/PhysRevC.72.024602
http://dx.doi.org/10.1007/BF01337700
http://dx.doi.org/10.1103/RevModPhys.8.82
http://dx.doi.org/10.1016/j.physletb.2006.07.046
http://dx.doi.org/10.1143/JPSJ.78.084201
http://dx.doi.org/10.1143/JPSJ.78.084201

