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Gamow-Teller unit cross sections for (t,3He) and (3He,t) reactions
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The proportionality between differential cross sections at vanishing linear momentum transfer and Gamow-
Teller transition strength, expressed in terms of the unit cross section (σ̂GT ), was studied as a function of target
mass number for (t ,3He) and (3He,t) reactions at 115A MeV and 140A MeV, respectively. Existing (3He,t) and
(t ,3He) data on targets with mass number 12 � A � 120 were complemented with new and reevaluated (t ,3He)
data on proton, deuteron, 6Li, and 12C targets. It was found that in spite of the small difference in beam energies
between the two probes, the unit cross sections have a nearly identical and simple dependence on target mass
number A, for A � 12: σ̂GT = 109/A0.65. The factorization of the unit cross sections in terms of a kinematical
factor, a distortion factor, and the strength of the effective spin-isospin transfer nucleus-nucleus interaction was
investigated. Simple phenomenological functions depending on mass number A were extracted for the latter
two. By comparison with plane and distorted-wave Born approximation calculations, it was found that the
use of a short-range approximation for knock-on exchange contributions to the transition amplitude results in
overestimated cross sections for reactions involving the composite (3He,t) and (t ,3He) probes.
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I. INTRODUCTION

Charge-exchange (CE) reactions at intermediate energies
have been used to study spin-isospin excitations in nuclei for
more than three decades [1,2]. Many of those studies have
been aimed at the extraction of Gamow-Teller (GT) transition
strengths. Unlike β-decay experiments, there are only weak
restrictions due to the reaction Q value and GT transition
strengths can be extracted up to high excitation energies.

The GT transition strengths deduced from CE experiments
provide stringent tests for nuclear structure calculations and
serve as input for a variety of applications in which weak
transition strengths play a role. Such applications include the
role of electron capture and β decay in stellar evolution (see,
e.g., Refs. [3–7]), neutrino nucleosynthesis (see, e.g., Ref. [8]),
constraining calculations of matrix elements for (neutrinoless)
double-β decay (see, e.g., Refs. [9–12]) and the response of
neutrino detectors (see, e.g., Refs. [13,14]).

A variety of charge-exchange reactions, both in the �Tz =
−1 (β−) and �Tz = +1 (β+) direction, have been used.
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Irrespective of the probe, the extraction of GT strengths
from charge-exchange data is based on the proportionality
between differential cross sections at vanishing linear mo-
mentum transfer (q ≈ 0) and the strength of the corresponding
GT transitions. This proportionality—represented by the so-
called “unit cross section” (σ̂ )—was first studied extensively
for the (p,n) reaction [15], and subsequently investigated
for other probes and/or different beam energies (see, e.g.,
Refs. [16–22]). Key for such studies is that the unit cross
sections are conveniently calibrated using transitions for which
the GT transition strengths [B(GT )] are known from β-decay
f t values:

B(F ) +
(

gA

gV

)2

B(GT ) = K/g2
V

f t
, (1)

where gA

gV
= −1.2694 ± 0.0028 [23] and K/g2

V = 6143 ±
2 s [24]. Here, B(GT ) is defined such that it equals 3 for
the decay of the free neutron. The Fermi transition strength
is confined to the excitation of the isobaric analog state (IAS)
(Ji = Jf and Ti = Tf ) in the �Tz = −1 direction.

Recently, the GT (and Fermi) unit cross sections for the
�Tz = −1 (3He,t) reaction at 140A MeV have been studied for
several nuclei with mass numbers ranging from 12 to 120 [25].
A simple phenomenological relationship between the GT unit
cross section and target mass number was established. It allows
for the extraction of GT strengths via the (3He,t) reaction for
nuclei for which β-decay data are lacking for the purpose of
calibrating the unit cross section. The study of Ref. [25] is
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also important for the CE experiments that use the �Tz =
+1 (t ,3He) reaction. After several experiments that utilized
a secondary triton beam produced from a primary 4He beam
[22,26–29], experiments are now routinely performed using
tritons at 115A MeV created from fast fragmentation of 16O
nuclei [7,30–32]. In spite of the slight difference between beam
energies commonly used in (3He,t) and (t ,3He) experiments,
it is expected that the reaction mechanisms of these analog
probes are very similar and this was shown explicitly for the
26Mg(3He,t) and 26Mg(t ,3He) reactions [22] and 13C(3He,t)
and 13C(t ,3He) reactions [32].

In this work, we extend the analysis of Ref. [25] in two
ways:

(i) We combine the analysis of the GT unit cross section for
the (3He,t) reaction at 140A MeV with data obtained via
the (t ,3He) reaction at 115A MeV. Existing (t ,3He) data
on 6Li [28], 13C [32], and 26Mg [22] are complemented
with new results for reactions on 1H, 2H, and 12C and
extracted GT unit cross sections combined with those
presented in Ref. [25] for the (3He,t) reaction.

(ii) We provide a more in-depth analysis of the target mass
dependence of the extracted GT unit cross sections
for the (t ,3He) and (3He,t) reactions in terms of a
factorization in a kinematical, distortion, and interac-
tion component, based on the eikonal approximation
discussed in Ref. [15]. The evaluation is supported
by calculations in the plane- and distorted-wave Born
approximation.

II. PROPORTIONALITY AND EXTRACTION
OF GT STRENGTH

In the limit of vanishing linear momentum transfer q ≈ 0,
and applying the eikonal approximation for the effects of
distortions, the differential cross section for transitions with
�L = 0 excited in charge-exchange reactions at intermediate
energies (E � 100A MeV) can be factorized as shown in
Ref. [15]. For GT transitions, one finds[

dσ

d�
(q = 0)

]
GT

= KND|Jστ |2B(GT ). (2)

The kinematic factor K is defined as

K = EiEf

(πh̄2c2)2

kf

ki

, (3)

where Ei(Ef ) is the reduced energy for the incoming (out-
going) channel, and ki(kf ) is the incoming (outgoing) linear
momentum of the projectile (ejectile). ND is a distortion factor
and represents the influence of the mean field of the target
nucleus on the incoming and outgoing scattering waves. In the
limit of q = 0,

ND =
[

dσ
d�

(q = 0)
]

DWBA[
dσ
d�

(q = 0)
]

PWBA

, (4)

where subscripts DWBA and PWBA refer to calculations in the
distorted- and plane-wave Born approximation, respectively.
|Jστ | is the volume integral of the central στ component of

the effective interaction between nucleons in the target and
projectile nuclei.

From Eq. (2) the proportionality between the differential
cross section at q = 0 and B(GT ) is evident and the unit cross
section is defined as

σ̂ = KND|Jστ |2. (5)

The boundary condition of q = 0 for the use of Eq. (2) can
only be approximately satisfied in experiments. Although
the differential cross section at a scattering angle of 0◦ can
be obtained from fitting the measured angular distribution
at forward scattering angles to the calculated distribution
in DWBA, the differential cross section is almost always
associated with a reaction Q value Q = Qg.s. − Ex �= 0,
where Qg.s. is the reaction Q value for the transition to the
ground state and Ex is the excitation energy of the residual
nucleus. Therefore an extrapolation of the differential cross
section measured at finite Q value to Q = 0 is required. This
is usually done by applying the following relationship:[

dσ

d�
(0, 0◦)

]
=

[
dσ
d�

(0, 0◦)
dσ
d�

(Q, 0◦)

]
T

[
dσ

d�
(Q, 0◦)

]
E

, (6)

where the subscript T refers to calculated cross sections in
DWBA and the subscript E refers to the experimental cross
section. Equation (6) does not take into account exactly the
effects of the Coulomb potential in the scattering process. The
Coulomb potential causes a deceleration of the projectile and
acceleration of the ejectile in the field of the target nucleus, if
either is, or both are, charged. Since by definition the charges
of projectiles and ejectiles are different in charge-exchange
reactions, the linear momentum transfer at the interaction point
is slightly different from the value calculated using the initial
and final momenta of the projectile and ejectile, respectively.
If Qg.s. = 0, it causes the differential cross section to peak
at finite negative Q (the Q value for which q = 0 at the
interaction point) for (p,n)-type CE reactions, and at finite
positive Q for (n,p)-type CE reactions. This effect is usually
ignored in analyses of charge-exchange data and the momenta
of the projectile and the ejectile at large distances from the
interaction point are used. For the sake of consistency, we will
do the same in this work, both in the extraction of cross sections
at q = 0 from the data and in the theoretical calculations.

In CE reactions, the �J = �L + �S = 0 + 1 = 1 GT
transition is accompanied by transitions with �J = �L +
�S = 2 + 1 = 1. Incoherent �L = 2 contributions to the
cross section can be removed prior to applying Eq. (2),
based on the analysis of the experimental angular distribution.
Since the angular distributions associated with the �L = 0
and incoherent �L = 2 contributions are dissimilar, this is
usually and reliably accomplished by performing a multipole
decomposition of the measured angular distribution, based
on theoretically calculated angular distributions for each of
the multipole components (see also Sec. IV). The coherent
contribution, which is largely due to the effects of the
noncentral tensor interaction, is a bigger source of uncertainty
[22,29,33,34]. It cannot easily be accounted for based on
the experimental data as it has little effect on the angular
distributions at forward scattering angles. The interference

054614-2



GAMOW-TELLER UNIT CROSS SECTIONS FOR ( . . . PHYSICAL REVIEW C 83, 054614 (2011)

effects of the tensor force are relatively stronger for weaker GT
transitions and can only be estimated by comparing theoretical
reaction calculations with and without the tensor interaction
included (see, e.g., Refs. [7,22]). Of the charge-exchange
reactions discussed in this paper, the extraction of the unit
cross section for the 58Ni(3He,t) reaction was shown to be
significantly affected (20%) by interference from the tensor
interaction, as discussed in detail in Ref. [29].

Cross section calculations in the present work are per-
formed in the distorted-wave Born approximation (DWBA)
using the code FOLD [35]. FOLD is specifically designed to
perform charge-exchange reaction calculations with composite
probes: the form factor is created by double folding the
nucleon-nucleon interaction describing the interaction be-
tween nucleons in the target and projectile over the transition
densities of the target-residual and projectile-ejectile systems.
Shell-model calculations with the codes OXBASH [36] and
NUSHELLX [37] were used with appropriate effective inter-
actions in the relevant model spaces to generate realistic
sets of one-body transition densities based on modern shell-
model interactions. Radial wave functions used in the form-
factor calculations were typically generated in Wood-Saxon
potentials, for which the well depths were adjusted such that
single-particle binding energies matched those calculated in
the shell model using the Skyrme SK20 interaction [38].
For the 3H and 3He particles, radial densities obtained from
variational Monte Carlo calculations [39] were used.

The effective nucleon-nucleon interaction of Love and
Franey [40,41] at 140A MeV was used in the calculations
of the form factors. The main deficiency in the cross-section
calculations stems from the fact that a short-range approxima-
tion for the effects of the antisymmetrization of the dinuclear
system (the so-called “knock-on” exchange terms) must be
used in the code FOLD. In Eq. (2), the exchange contributions
affect the value of Jστ :

Jστ = JD
στ + JE

στ , (7)

where D refers to the direct contribution and E to the exchange
contributions. An exact treatment of exchange effects for
charge-exchange reactions with composite probes has only
been performed for very specific cases [42,43], and a general
tool to perform such calculations is not available.

Although the short-range approximation works reasonably
well for nucleon-induced charge-exchange reaction calcula-
tions at intermediate energies, it is known to lead to an under-
estimation of exchange effects for reactions with composite
probes [42–44]. Since the sign of the exchange contributions
is opposite to the direct contributions, the underestimated
exchange amplitudes give rise to a general overestimation
of the calculated cross sections compared to the data [25].
Correcting for such effects is complicated since the exchange
contributions are target-mass dependent [40,41]. However, for
transitions for which the B(GT ) is known from β decay and
the differential cross sections are extracted from experiment,
the effect of the exchange contributions can be deduced if the
parameters K and ND in Eq. (2) can be reliably calculated.
Since the calculation of K is trivial and the value of ND is
not very sensitive to the value of |Jστ |2, this is the case here,
and one of the goals of the present work is to establish a

phenomenological description of |Jστ | as a function of mass
number.

The 1H(t ,3He)n reaction discussed in Sec. IV A is a special
case. In the analysis of the data, DWBA calculations [for
the inverse 3H(p,n)3He reaction] were performed with the
code DW81 [45]. This code is particularly well suited for
nucleon-induced reactions, since exchange effects can be
treated exactly instead of using the short-range approximation.
However, in the analysis of the unit cross section for the
1H(t ,3He)n reaction in Sec. V C, calculations performed in
DW81 and FOLD were both used and compared. In the case of
the FOLD calculations, δ functions were used to describe the
proton and neutron densities.

After a brief summary of the data used in this paper in
Sec. III, new and reevaluated (t ,3He) data are discussed in
more detail in Sec. IV. The generated results for the GT unit
cross sections are then used to study the terms in the factorized
expression of Eq. (2) in Sec. V.

III. DATA USED IN THE ANALYSIS

The (3He,t) data at 140A MeV used in the current analysis
are identical to those presented in Ref. [25] and references
therein. GT unit cross sections were extracted for transitions
listed in Table I. The unit cross sections for nuclei with
mass numbers A of 62, 64, and 68 were derived from the
relationship between Fermi and GT unit cross sections [4] and
the empirical relationship between the unit cross section for
Fermi transitions and mass number as described in Ref. [25].
All these data were collected at the Research Center for
Nuclear Physics in Osaka, using a beam of 3He2+ particles
at 140A MeV. Tritons were analyzed in the Grand Raiden
spectrometer [46].

Data from six (t ,3He) experiments performed at 115A MeV
were included in the current investigation. An overview of
the transitions and their B(GT ) values is provided in the
first three columns of Table II. All (t ,3He) experiments were
performed at the Coupled Cyclotron Facility at NSCL. The
3He2+ particles were analyzed in the S800 spectrometer [47].
Results for experiments with 13C [32] and 26Mg [22] targets
have been published and we refer to the relevant publications
for details. The analysis of the 6Li(t ,3He) reaction has also
been published [28] but was reevaluated (see Sec. IV). The
new (t ,3He) data, using 1H, 2H, and 12C targets, are discussed
in more detail in Sec. IV.

IV. NEW AND REEVALUATED (t ,3He) DATA

A. 1H(t ,3He)n reaction

Data on the 1H(t ,3He)n reaction were extracted using a
99.3% isotopically enriched 13CH2 target with a thickness of
18.0 mg/cm2. Events associated with the (t ,3He) reaction on
hydrogen and 13C present in the target can be separated owing
to the difference in ground-state Q value of 12.6 MeV. The
analysis of the 13C(t ,3He) data has been discussed in Ref. [32]
and we refer to that publication for the experimental details.
In the same experiment, data were also taken with a natCH2
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TABLE I. Overview of extracted cross sections and unit cross sections for various transitions excited via the (3He,t) reaction at 140A MeV
(see also Ref. [25]). Indicated are the initial and final state, the B(GT ) associated with the transition, the extracted differential cross section
at 0◦ and the extrapolation to q = 0, the derived unit cross section, and the reference. The B(GT ) values were calculated from known logf t

values [48] following Eq. (1), unless indicated otherwise.

i f B(GT ) dσ/d�c.m.(0◦) dσ/d�c.m.(q = 0) σ̂ Ref.
(mb/sr) (mb/sr) (mb/sr)

12C(0+,g.s.) 12N(1+,g.s.) 0.88 16.1 ± 0.12 19.9 ± 1.0 22.6 ± 1.1 [25]
13C(1/2−,g.s.) 13N(3/2−,15.1 MeV) 0.23 ± 0.01 3.65 ± 0.10 4.51 ± 0.26 19.7 ± 1.1 [34]
18O(0+,g.s.) 18F(1+,g.s.) 3.11 51.2 ± 2.2 51.2 ± 3.4 16.5 ± 1.1 [25]
26Mg(0+,g.s.) 26Al(1+,1.06 MeV) 1.1 13.9 ± 0.3 14.1 ± 0.8 12.8 ± 0.7 [22]
58Ni(0+,g.s.) 58Cu(1+,g.s.) 0.155 1.5 ± 0.01 1.5 ± 0.08 9.65 ± 0.48a [25]
62Ni(0+,g.s.) 62Cu(1+,g.s.) 0.073 7.7 ± 1.0b [4,25]
64Ni(0+,g.s.) 64Cu(1+,g.s.) 0.123 7.4 ± 0.9b [4,25]
68Zn(0+,g.s.) 68Ga(1+,g.s.) 0.073 7.0 ± 0.8b [4,25]
118Sn(0+,g.s.) 118Sb(1+,g.s.) 0.344 1.71 ± 0.04 1.62 ± 0.09 4.72 ± 0.26 [25]
120Sn(0+,g.s.) 120Sb(1+,g.s.) 0.345 1.80 ± 0.10 1.72 ± 0.13 5.00 ± 0.37 [25]

aThis transition is known to be strongly affected by interference between �L = 0 and �L = 2 amplitudes; see Sec. II. The effect was estimated
to be 20% [29], which reduces the unit cross section to 8.0 ± 0.5 mb/sr.
bUnit cross section established using the R2 value from Ref. [4] and multiplying with σ̂F from Ref. [25].

target (see also Sec. IV D). Cross sections for the 1H(t ,3He)n
extracted from the two targets were consistent, but statistical
errors were smaller with the 13CH2 target. Therefore this data
set was used in the present analysis. The extracted differential
cross section for the 1H(t ,3He)n reaction is shown in Fig. 1.

A complication in the extraction of the cross section asso-
ciated with the GT transition is that the 1H(t ,3He)n reaction
has mixed Fermi (�S = 0) and GT (�S = 1) character. The
transition from the proton to the neutron exhausts the full Fermi
[B(F ) = |N − Z| = 1] and GT [B(GT ) = 3|N − Z| = 3]
sum rules. Since both types of transitions are associated with
angular momentum transfer �L = 0, the angular distributions
of the differential cross section for the two types are nearly
identical and the experimental results presented in Fig. 1
cannot easily be decomposed. However, the ratio of GT and
Fermi unit cross sections R2 = σ̂GT

σ̂F
is accurately described for

(p,n) charge-exchange reactions as a function of beam energy

Eb, for Eb � 200 MeV [15]:

R2
(p,n) =

[
Eb

E0

]2

. (8)

The constant E0 was empirically established to be 55.0 ±
0.4 MeV. At Eb = 115 MeV, R2

(p,n) = 4.37 ± 0.06. Therefore
the ratio of contributions from the GT and Fermi components
to the experimental differential cross section shown in Fig. 1
is expected to be R2

(p,n)
B(GT )
B(F ) = 13.1 ± 0.2. This ratio was

used to fix the relative contributions from differential cross
sections calculated for each of the components in DWBA.
The summed theoretical angular distribution was then fitted
to the data, with the absolute normalization as the only fit
parameter. As mentioned, for the purpose of the 1H(t ,3He)n
DWBA calculations, the code DW81 [45] was used. Optical
potential parameters deduced from p+3H and p+3He elastic
scattering at 156.5A MeV [49] were used. Single-particle

TABLE II. Overview of extracted cross sections and unit cross sections for various transitions excited via the (t ,3He) reaction at 115A MeV.
Indicated are the initial and final state, the B(GT ) associated with the transition, the extracted differential cross section at 0◦ and the extrapolation
to q = 0, the derived unit cross section, and the reference. The B(GT ) values were calculated from known logf t values [48] following Eq. (1),
unless indicated otherwise.

i f B(GT ) dσ/d�c.m.(0◦) dσ/d�c.m.(q = 0) σ̂ Ref.
(mb/sr) (mb/sr) (mb/sr)

1H(1/2+) 1n(1/2+) 3 25 ± 2 25 ± 2 8.3 ± 0.7 this work
2H(1+) 2n(0+) 13.0 ± 1.3a this work
6Li(1+,g.s.) 6He(0+,g.s.) 1.577 51 ± 4 52 ± 4 32.9 ± 2.6 [28], reevaluated
12C(0+,g.s.) 12B(1+,g.s) 0.99 16.6 ± 1.2 20.4 ± 1.5 20.5 ± 1.5 this work
13C(1/2−,g.s.) 13B(3/2−,g.s.) 0.711 13.1 ± 1.3 16.2 ± 1.6 22.8 ± 2.3 [32]
26Mg(0+,g.s.) 26Mg(1+,0.08 MeV) 0.41 ± 0.02b 4.1 ± 0.3 5.27 ± 0.4 12.8 ± 1.0 [22]

aSee Sec. IV C.
bDerived from combining with 26Mg(3He,t) data and applying isospin symmetry [22].
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FIG. 1. Differential cross section for the 1H(t ,3He)n reaction
E(t) = 115 A MeV. The theoretical angular distribution is fitted to
the data, with the normalization being the only fit parameter. The
relative contributions from transitions associated with �S = 0 and
�S = 1 are fixed (see text). Note that the statistical error bars on the
differential cross section are smaller than the markers used in the plot
and thus not visible.

states in 3He and 3H were generated in a harmonic oscillator
potential with oscillator parameter b = 1.4 fm, following
Ref. [50]. The effective interaction used in the calculations was
the Love-Franey interaction [40,41] at 140 MeV. All nucleons
in the ground states of the A = 3 nuclei were assumed to be
in the 0s1/2 shell.

Taking into account errors in the beam normalization of
5%, the total differential cross section for the 1H(t ,3He)n
reaction at 0◦ was found to be 27.0 ± 1.4 mb/sr. Using the
above-mentioned ratio for the contributions from the GT and
Fermi transitions, the GT cross section at 0◦ is 25 ± 1.4 mb/sr.
Because the value of E0 was established for (p,n) reactions
with targets of mass number A � 7 and the uncertainties
for A = 3 unknown, a systematic error was assigned to the
extracted GT cross section with the conservative assumption
that the Fermi contribution at 0◦ could be off by as much as
50% of the estimated value of 2 mb/sr. Therefore the GT cross
section at 0◦ used in the further analysis was 25 ± 2 mb/sr (see
Fig. 1), from which a unit cross section for the (t ,3He) reaction
on the proton of 8.3 ± 0.7 mb/sr was deduced.

B. 2H(t ,3He)2n reaction

The 2H(t ,3He) data were taken during an experiment
described in Ref. [7], which focused on the study of the
64Zn(t ,3He) reaction and we refer to the corresponding paper
for the details of the measurement. The target was a deuterated
polyethylene foil (CD2) with a thickness of 9.1 mg/cm2. The
12C present in the target was useful to cross calibrate the
absolute beam intensities between this earlier data set and
the one described in Secs. IV A and IV D by using the data from
the 12C(t ,3He) reaction. Whereas in the experiment described
in Ref. [7] systematic uncertainties in the measurement of

the absolute beam intensities were large (∼40%), in the more
recent measurement problems related to the beam integration
were resolved and a much reduced uncertainty of ±5% was
achieved. The scaling factor needed to normalize the older
12C(t ,3He) data with the newer ones was also applied in the
analysis of the 2H(t ,3He) reaction.

The (t ,3He) reaction on the deuteron populates the unbound
n + n system. Therefore information about the GT transition
strength cannot be obtained from β-decay data. However,
the B(GT ) distribution for the d → n + n transition can be
deduced from the B(M1) distribution for the analog d →
n + p transition. For the d → n + p transition, experimental
information is available from the study of γ d → np [51–57],
np → dγ [58], and d(e, e′) [59] reactions. The experimental
results agree well with calculations using effective field
theories (EFTs). The tabulated values from the pionless
EFT [EFT(π́ )] provided in Ref. [60] were used for the
present analysis. (n, p)-type charge-exchange reactions on the
deuteron have been studied in the past: Nakayama et al. [61]
used the (7Li,7Be) reaction and Bäumer et al. [62] employed
the (d,2He) reaction. Here we follow a procedure quite similar
to that of Ref. [61], which is briefly summarized below.

It is assumed that the Jπ = 1+ deuteron ground state is in
a pure triplet 3S (T = 0) configuration (thus neglecting the
2.5% D-state component [63]), and the (t ,3He) reaction on the
deuteron populates the 1S, T = 1, Jπ = 0+, n + n unbound
state. Under these assumptions, the orbital contribution to the
M1 transition can be neglected and d → n + n is the analog of
the d → p + n transition. In this approximation, the B(M1)
for the γ d → np reaction is a direct measure for the GT
transition strength associated with the isovector transition. It
follows that

dB(M1)

dE
= 3(µp − µn)2

8π

dB(GT )

dE
, (9)

where µp and µn are the magnetic moments of the proton
and the neutron, respectively. The cross section for the M1 γ

transition (σM1) for γ d → n + p can be expressed in terms of
B(M1) [61,64]:

dσM1

dEγ

(1+ → 0+) = 0.044Eγ

dB(M1)

dEγ

. (10)

Combining Eqs. (2), (9), and (10) then provides the relation
between σM1 and the cross section for the 2H(t ,3He) charge-
exchange reaction at q = 0:

dσM1

dEγ

(1+ → 0+) = 0.116Eγ

σ̂

d2σ (q = 0)

dqdE

∣∣∣∣∣
d(t,3He)

. (11)

Therefore given σM1 one can deduce σ̂ from the experimental
cross section for the 2H(t ,3He) reaction.

The measured excitation-energy spectrum for the 2H(t ,3He)
reaction is shown in Fig. 2(a), gated on events with a 3He
laboratory scattering angle of less than 1◦. Because the
n + n system is unbound, a broad energy distribution for the
n + n system is found. A peak due to the 12C(t ,3He)12B(g.s.)
transition can be seen at about 10 MeV. In addition, a minor
remaining amount of 1H in the CD2 target caused a small
peak at energies below that for the 2H(t ,3He) distribution due
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FIG. 2. (Color online) (a) Excitation energy spectrum for the
2H(t ,3He)2n reaction for events with θlab(3He< 1◦). Also visible are
peaks due to the 12C(t ,3He)12B(g.s.) transition and the 1H(t ,3He)n
reaction. (b) Differential cross section for the γ d → p + n reaction
based on EFT(π́) (solid blue line), EFT(π́) after folding with the
energy resolution achieved in the 2H(t ,3He)2n experiment (dashed
red line), and the measurement of 2H(t ,3He)2n. The GT unit cross
section σ̂ for the (t ,3He) reaction on the deuteron was determined by
fitting the experimental distribution to the theory.

to 1H(t ,3He)n reactions. The resolution in Ex(2n) depends
on (i) the difference in energy loss of the 3H and 3He in the
target, (ii) the intrinsic resolution of the energy measurement,
and (iii) the resolution in the 3He scattering angle (which
correlates with the recoil energy of the dineutron system). The
first contribution can be calculated and the second and third
contributions were determined from the resolutions achieved
for the 12C(t ,3He)12B(g.s.) transition also present in the data.
For θlab(3He< 1◦), the resolution in Ex(2n) was 400 keV (full
width at half maximum).

Before Eq. (11) can be applied to deduce σM1 from
the measured 2H(t ,3He) cross sections, the data have to
be extrapolated to q = 0. The linear momentum transfer q

increases with Ex(2n) and scattering angle. The multiplicative
extrapolation factors were estimated in DWBA using the code
FOLD [35]. They ranged from 1.05 for Ex(2n) = 0 MeV to 1.15
at Ex(2n) = 9 MeV. Since no empirical optical potentials are
available for the t+2H and 3He+2n channels, calculations with
a variety of optical potentials were performed: a plane-wave

calculation, calculations using optical parameters for t + p

(see Sec. IV A) and (t+6Li) (see Sec. IV C), and various
interpolations of these potentials. Although the choice of
optical potential strongly affects the absolute calculated cross
sections, the extrapolation factor from finite q to q = 0
changed by at most 2%. In these calculations, the radial wave
function for the deuteron was based on the parametrization
given in Ref. [65]. For the purpose of the DWBA calculation,
the neutrons in the dineutron system were initially assumed
to be in a bound state with radial wave functions equal to
that of the deuteron. The sensitivity of the extrapolation to
q = 0 to the nature of the radial wave functions was tested
by repeating the calculations with wave functions extending
to larger radii, as expected for the unbound system. The
effect on the extrapolation factors was ∼1%. We concluded
that although the uncertainties in the inputs for the DWBA
calculations are quite large, the extrapolation factors to q = 0
have small errors.

In Fig. 2(b), σM1 calculated in EFT(π́ ) is plotted as a
function of Eγ for the γ d → pn reaction (solid blue line).
The threshold for this reaction is 2.24 MeV (the binding
energy of the deuteron). The EFT(π́ ) curve was folded with the
experimental energy resolution (dashed red line). To determine
the unit cross section σ̂ in Eq. (11), the σM1 distribution
deduced from the 2H(t ,3He) data was then fitted to the EFT(π́ )
curve that was folded with the experimental energy resolution.
σ̂ was the only fit parameter. A value of 13.0 ± 0.3 mb/sr was
found (χ2/n = 1.16 with n = 37). Based on the assumptions
made about the reaction mechanism and the uncertainties in
various experimental parameters and the EFT(π́ ) calculations,
we estimated that the systematic error was about 10% of this
value.

C. 6Li(t ,3He)6He(g.s.) reaction

The 6Li(1+,g.s.)→6He(0+,g.s.) transition has a known
B(GT ) of 1.577 [66] from β-decay data and can thus be
used to extract a unit cross section. Because of concerns
about systematic uncertainties in the beam normalization, the
absolute scale of the differential cross section for this transition
reported in Ref. [28] was set by comparing data taken for the
12C(t ,3He)12B(g.s.) reaction in the same experiment, with data
from an earlier experiment for that reaction [26]. However, in
the earlier experiment, cross sections were integrated over
a relatively large solid angle and thus did not provide an
accurate measure for the differential cross section near 0◦.
The differential cross section for the 12C(t ,3He)12B(g.s.) 0◦
transition taken in the same experiment as the 6Li data
was measured to be 15.4 ± 0.9 mb/sr [67]. Since the value
reported in Ref. [26] was much lower (11.8 ± 1.4 mb/sr), the
measured differential cross sections for the 6Li(t ,3He) were
scaled down accordingly in Ref. [28]. However, the original
number of 15.4 ± 0.9 mb/sr is within error margins consistent
with our new result for the 12C(t ,3He)12B(g.s.) transition (see
Sec. IV D). We therefore decided to rescale the reported
differential cross section for the 6Li(t ,3He)6He(g.s.) reaction
in Ref. [28] by using the 12C(t ,3He)12B(g.s.) transition as a
reference. The result is shown in Fig. 3.
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FIG. 3. Differential cross section for the 6Li(t ,3He) 6He(g.s.)
reaction at 112A MeV. The experimental data have been reevaluated
as discussed in the text. The solid lines show the result of the DWBA
calculation; the contributions from the �L = 0 (dashed line) and
�L = 2 component (dotted line) were deduced in a fit.

The experimental differential cross sections were compared
with DWBA calculations by using the code FOLD [35].
Following Ref. [28], one-body transition densities (OBTDs)
were calculated in OXBASH [36] using the CKHE interaction
[68] in the p-shell model space. The CKHE interaction is a
modified version of the CKI interaction [69] that reproduces
the binding and excitation energies of the He isotopes [68].
Radial wave functions were generated in OXBASH as well,
by using the SK20 interaction [38] while forcing the binding
energies of the p3/2 protons (neutrons) in 6Li (6He) to match
the experimental values. The optical potential parameters
determined from elastic scattering of 3He on 6Li [28] were
used for the in- and outgoing scattering channels.

To determine the experimental cross section at 0◦, the
DWBA calculations were scaled to fit to the data, as shown
in Fig. 3. The relative contribution from �L = 0 (GT) and
�L = 2 components were deduced in a fit with a linear
combination of the two components. A good correspondence
between data and theory was achieved up to θcm = 11◦; at
higher angles the DWBA calculation underestimates the data.
The 0◦ cross section extracted was 51 ± 4 mb/sr (�L = 0
component only), where the error also indicates the uncertainty
in the absolute normalization. The DWBA calculation was
used to extrapolate this value to the q = 0 limit with a result
of 52 ± 4 mb/sr. By dividing this number with the known
B(GT ) of 1.577, a GT unit cross section of 32.9 ± 2.5 mb/sr
was deduced.

D. 12C(t ,3He)12B(g.s.) reaction

The 12C(t ,3He) reaction was measured in the same ex-
periment as the 13C(t ,3He) reaction. The results of the latter
reaction were published in Ref. [32] and we refer to that paper
for the experimental details. A 10.0-mg/cm2-thick natCH2

target was used. The measured excitation-energy spectrum
of 12B is shown in Fig. 4(a). The prominent peak at 0 MeV
corresponds to the 12C(0+, g.s.) → 12B(1+,g.s.) transition, for
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FIG. 4. (a) Excitation-energy spectrum for the 12C(t ,3He) re-
action at 115A MeV. (b) Differential cross section for the
12C(t ,3He)12B(g.s.) reaction. The data are compared with the DWBA
calculation (solid line), in which the total cross section is decomposed
in �L = 0 (dashed line) and �L = 2 (dotted line) contributions.

which the B(GT ) = 0.99 is known from β-decay data. The
extracted differential cross section for this transition is shown
in Fig. 4(b). The �L = 0 (GT) contribution was extracted
by decomposing the measured differential cross section in
�L = 0 and �L = 2 contributions. The code FOLD [35] was
used to calculate the theoretical angular distributions. OBTDs
were calculated in OXBASH [36] using the CKII interaction [70]
in the p-shell model space. Optical potential parameters were
taken from Ref. [71]. Following Ref. [72], well depths of the
real and imaginary potentials for the t+12C channel were set
to 85% of the well depths for the 3He+12B channel.

The result of the multipole decomposition is shown in
Fig. 4(b). The extracted cross section at 0◦ for the �L = 0
component is 16.55±1.2 mb/sr. The error includes a statistical
component and a systematic component related to the absolute
normalization of the cross section. Owing to the relatively large
Q value of −17.357 MeV for this transition, the effect of the
extrapolation of this cross section to q = 0 is significant. Using
Eq. (6), a value of 20.4±1.5 mb/sr is found, resulting in a unit
cross section of 20.5±1.5 mb/sr. This is close to the unit cross
section extracted via the analog 12C(3He,t) reaction [34], for
which a value of 22.6±1.1 mb/sr was found. It is another
confirmation that the (t ,3He) reaction at 115A MeV is very
similar to the (3He,t) reaction at 140A MeV, in spite of the
slight difference in beam energy.
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E. Summary of unit cross sections

Tables I and II provide overviews of extracted cross
sections and unit cross sections for transition studies via
the (3He,t) reaction at 140A MeV and the (t ,3He) reaction
at 115A MeV. The tables give both the differential cross
sections at θcm = 0◦ and the extrapolated values at q = 0.
The value of the latter is divided by B(GT ) to determine the
unit cross section. For the cases where the unit cross section
is derived using a different method, the tables indicate the
methods used.

In Fig. 5, the extracted unit cross sections are plotted as
a function of mass number. The solid line indicates the fit to
(3He,t) unit cross sections [25] for A � 12:

σ̂GT = 109

A0.65
. (12)

For reasons discussed in Sec. II, the unit cross section extracted
from the 58Ni(3He,t) reaction is larger than the fitted curve. The
arrow for this data point indicates the correction estimated
based on theoretical calculations for the effect of the tensor
interaction. In the further analysis presented in this paper,
this corrected value, which corresponds well with the fitted
curve, is used. The unit cross sections extracted from (t ,3He)
experiments with target masses greater than or equal to 12
are also consistent with Eq. (12). The unit cross section
for the 6Li(t ,3He) reaction also lies on this function, even
though A = 6 is outside of the mass region considered in
the fit. The unit cross sections for the (t ,3He) reactions
on the proton and deuteron are much lower (by factors
of 13 and 5, respectively) than the values expected based
on Eq. (12).
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FIG. 5. Unit cross sections obtained from (3He,t) and (t ,3He)
experiments at 115A MeV and 140A MeV, respectively. The solid
line shows a fit to the (3He,t) data for 12 � A � 120, as discussed
in Ref. [25]. The dashed line shows the extrapolation of the fitted
function toward lower and higher mass numbers.
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V. ANALYSIS OF THE UNIT CROSS SECTIONS AND
THEIR DEPENDENCE ON TARGET MASS NUMBER

In this section the phenomenological dependence of the unit
cross section on mass number as shown in Fig. 5 is analyzed
in terms of the factorization of Eq. (2).

A. Kinematic factor K

The kinematic factor can be calculated analytically as a
function of mass number using Eq. (3) and is shown in
Fig. 6(a). The markers correspond to the values of K for
mass numbers studied experimentally in this work. A small
difference in K is present for the experiments performed at
115A MeV and 140A MeV. The magnitude of the difference
is less than 5% [see Fig. 6(b)] which is smaller than typical
uncertainties in the unit cross sections extracted from the data.
The kinematic factor rises rapidly with mass A � 40.

B. Distortion factor N D

The distortion factor ND is calculated following Eq. (4).
The PWBA and DWBA calculations are identical except that
the depths of the optical potentials and the charges of the
nuclei involved are set to zero in the PWBA calculations.
Optical potential parameters are typically derived from fitting
theoretical calculations, using a fixed optical potential model,
to elastic-scattering data. The fitting procedure is associated
with statistical uncertainties and systematical errors due to un-
certainties in the beam normalization and the target thickness.
In addition, the choice of the terms used in the optical potential

054614-8



GAMOW-TELLER UNIT CROSS SECTIONS FOR ( . . . PHYSICAL REVIEW C 83, 054614 (2011)

model can lead to systematic errors. Further uncertainties arise
from the fact that elastic scattering data are not available for all
nuclei studied, and optical potential parameters must be used
from nuclei with similar mass numbers or by interpolating
parameters from two or more target nuclei with similar
mass numbers. An additional complication is that optical
potential parameters are not available for the scattering of
tritons on nuclei at beam energies exceeding 100A MeV.
For the 3He particles almost all elastic-scattering data were
taken at 140–150A MeV [71,73,74]. Following Ref. [72], one
usually adjusts the depths of the triton optical potentials to
be 85% of the ones for the 3He particles. For the (t ,3He)
experiments performed at 115A MeV, the parameters derived
from elastic scattering at 140–150A MeV were used. Given
the consistency between unit cross sections for the (t ,3He)
and (3He,t) reactions, one can conclude that this procedure is
reliable.

An estimate for the uncertainty in the distortion factors can
be based on their functional form in the Eikonal approximation
[15]:

ND = exp(−xA1/3 + a0), (13)

where

x = 4Wr

h̄cβ
. (14)

The parameters r and W are the radius and depth of the imag-
inary part of the optical potential, respectively, β the velocity
of the projectile, and a0 accounts for the difference between
the depth, radius, and velocity of the imaginary part of the
optical potentials for the in- and outgoing channels. Although
the approximation of Eq. (13) is too rough to accurately
calculate distortion factors, it indicates that the uncertainty
in their values is dominated by the product of the depth and
the radius of the imaginary part of the optical potential (Wr).
However, this product is rather stable as a function of mass
number and beam energy for the (3He,t) reaction, as can
be seen by comparing Ref. [71] [E(3He = 148A MeV)] and
Ref. [75] [E(3He = 72A MeV)]. Moreover, these parameters
cannot be changed drastically without degrading the overall
good description of the angular distributions for excitations
through the (3He,t) and (t ,3He) data calculated in DWBA.
On the basis of a sensitivity study, we estimated that the
uncertainties in the calculation of the distortion factors are
about 10%.

In Fig. 7, the distortion factors derived from Eq. (4) are
plotted as a function of A1/3. For A � 12, there is a strong
correlation between A1/3 and ND; within the uncertainty of
about 10%, the calculated values are consistent with a function
of the form of Eq. (13), with x = 0.895 and a0 = 1.0. We note
that the values of these parameters are 60–80% higher than
the corresponding parameters for the (p,n) reaction at similar
beam energies [15], yielding distortion factors for the (t ,3He)
reaction about 20% of those for the (p,n) reaction.

For the 2H(t ,3He)2n reaction measured optical potentials
are not available (see Sec. IV B), and the distortion factor
could not be reliably calculated. The distortion factor for
this reaction displayed in Fig. 7 is an average of the values
calculated with optical model parameters for the 3He+p and
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FIG. 7. The distortion factor ND as defined in Eq. (4) for (3He,t)
(open squares) and (t ,3He) (solid circles) reactions considered in
this work. The solid line represents the result of a fit with an a
function of the form expected for the distortion factor in the Eikonal
approximation [see Eq. (13) and text] for A � 12. The distortion
factor for the 2H(t ,3He)2n carries a large systematic error of 0.15
(see text).

6Li+3He reactions and has an uncertainty of 0.15(23%). The
distortion factors for the (t ,3He) reactions on the proton and
6Li also deviate strongly from the trend line valid for the higher
masses.

C. Volume integral of the interaction, |Jστ |
The volume integral of the effective στ interaction re-

sponsible is the third parameter of importance for calculating
the GT unit cross section. As mentioned in Sec. II, a
parametrization of the free nucleon-nucleon t matrix by Love
and Franey [40,41] can be used to calculate |Jστ |. The t matrix
is conveniently tabulated so that linear combinations of its
parameters can be applied directly to scattering processes
associated with the transfer of definite quanta of spin and
isospin. The free nucleon-nucleon interaction of Refs. [40,41]
must be transformed from the nucleon-nucleon system to
the nucleon-nucleus or nucleus-nucleus system [such as the
(t ,3He) and (3He,t) reactions discussed in this work] [40,76],
which results in a renormalization of |Jστ | with a weak target-
mass dependence, even if only direct terms of the interaction
are considered. This dependence is shown in Fig. 8 by open
square symbols. It causes |Jστ | to drop from 200 MeV fm3 for
A = 1 to ∼190 MeV fm3 for A > 100.

For reactions with composite probes, the Love-Franey
interaction must be double folded over the transition densities
of the nuclei involved in the reaction, thereby effectively
changing the ranges of the different components of the
interaction and resulting in a modification of |Jστ |. The effect
of the double folding of the interaction was estimated in PWBA
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calculated with the code FOLD, by using a modified version of
Eq. (5):

σ̂GT,PWBA = K|Jστ |2. (15)

In this equation, the left-hand side corresponds to the calcu-
lated cross section in PWBA. K and Jστ are the same as in
Eq. (5) and ND is set to unity since distortions are absent in
the plane-wave calculation. Equation (15) was used to solve
for |Jστ |. The results of this calculation are indicated by filled
squares in Fig. 8. Exchange contributions are neglected at this
point. Except for A = 1 (the double folding by definition has
no effect in that case), the folding of the interaction over the
densities leads to an overall reduction of |Jστ | and a flattening
of the target-mass dependence compared to the calculation
using the free nucleon-nucleon interaction.

As discussed in Sec. II, taking into account the effects
of exchange contributions is complex for composite probes.
The use of the short-range approximation presented in
Refs. [40,41] works reasonably well for nucleon-nucleus
scattering processes, but is known to result in overestimates
of the scattering cross sections for (3He,t) reactions on nuclei
[42]. To obtain a systematic picture of this effect, we compared
calculated values of |Jστ | using the short-range approximation
for the exchange terms with those extracted from the available
(3He,t) and (t ,3He) data. We used the formalism described
in Ref. [40], except that the calculation of kA (originally the
momentum of the incident nucleon in the nucleon-nucleus
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FIG. 9. (a) Extracted volume integrals of the effective interaction
for the (3He,t) (open circles) and (t ,3He) (open squares) reactions
from the data by using Eq. (5) and experimental GT strengths and
differential cross section extrapolated to q = 0. Local distortion
factors are used. Note the strongly suppressed zero on the ordinate.
(b) The same as (a), but with global distortion factors for A � 12.
The solid line is a fit [Eq. (16)] to these extracted values. In addition,
the theoretical values for |Jστ | are shown for comparison.

system) was modified to account for the transformation to the
nucleus-nucleus system.

Values of |Jστ | calculated from the free nucleon-nucleon
interaction of Refs. [40,41] are indicated in Fig. 8 with open
circles and should be compared to points indicated with the
open squares that do not include the exchange contributions.
The exchange amplitudes interfere destructively with the direct
amplitudes and |Jστ | decreases significantly. The reduction of
|Jστ | is stronger for light target nuclei. Taking into account
exchange contributions combined with the double folding of
the interaction over the transition densities results in a further
reduction of |Jστ |, as indicated by filled circular markers in
Fig. 8. This final set of calculations can be directly compared
to values of |Jστ | extracted from experiment.

Given the unit cross sections extracted from the (3He,t)
and (t ,3He) data, the calculated distortion factors ND and
kinematical factors K , |Jστ | can be deduced by using
Eq. (5). The results are shown in Fig. 9(a). The distortion
factors used are “local,” i.e., calculated for each reaction
separately, rather than using the trend line for A � 12 shown
in Fig. 7. The extracted values of |Jστ | vary from 105 to
140 MeV fm3, except for the (t ,3He) reaction on the proton
(|Jστ | = 195 MeV fm3). A minimum is found near A = 20.

Under the assumption that some scatter of the extracted
values is caused by the uncertainties in the distortion factors,
|Jστ | was recalculated by replacing local distortion factors
for reactions involving targets with A � 12 with the mass-
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dependent trend line shown in Fig. 7. The results (referred to
as “global”) are displayed in Fig. 9(b). Distortion factors for
the (t ,3He) reactions on the proton, deuteron, and 6Li were
left unchanged from their local values. As a result of using the
trend line for the distortion factors, the dependence of |Jστ |
on A is smoother and well reproduced with the following
purely phenomenological fit function, which is also included
in Fig. 9(b):

∣∣J exp
στ

∣∣ = 128.5√
A

+ 0.515A + 74.3 for A � 120. (16)

Also shown in Fig. 9(b) are the calculated values of |Jστ |,
taking into account direct and exchange contributions and the
double folding of the interaction over the transition densities
of the projectile and target nuclei (i.e., the values indicated
with solid circular markers in Fig. 8). Except for A = 1, the
calculated values are 15–30% larger than the values extracted
from the data and the discrepancy is largest for A ≈ 20. There
is some qualitative consistency between the theoretical and
experimental dependencies: for both, a rapid decrease of |Jστ |
with increasing mass number is seen for low mass numbers,
followed by a gradual increase for larger mass numbers.
However, the minimum value of |Jστ | is reached near A = 2–6
in the theoretical calculations, whereas it appears at A ∼ 26 in
the results deduced from the experiments.

The experimentally extracted value of |Jστ | for the p(t ,3He)
reaction is higher than the theoretical estimate. In fact, it
is close to the theoretical calculation in which exchange
contributions are neglected. To check the theoretical estimate
for this reaction, calculations were also performed using
the code DW81, which allows for the exact treatment of
exchange contributions, rather than the short-range approxi-
mation applied in FOLD. Results from DW81 for the distortion
factor and |Jστ | were found to be nearly identical (deviations
of less than 3% were found, presumably because the single-
particle wave functions of the nucleons in the triton and 3He
were generated in a harmonic oscillator potential, rather than
using the results from variational Monte Carlo calculations).
The close correspondence confirms the appropriateness of
the short-range approximation of the exchange contribution
for nucleon-nucleus scattering [i.e., for (p,n) reactions] but
does not explain the anomalously high value of |Jστ | found
for the 1H(t ,3He)n reaction. It is not inconceivable that the
distortion factor has a larger error than estimated, especially
since the optical model parameters for the p+3He channel vary
rapidly and nonuniformly as a function of beam energy [49].
If the distortion factor is larger than calculated using Eq. (4)
by about 15%, the extracted value of |Jστ | from the data
would decrease to the value predicted taking into account the
exchange contributions.

D. Synopsis

With the phenomenological description of |Jστ | given in
Eq. (16), the simple functional form of the distortion factor
in Eq. (13) with x = 0.895 and a0 = 1 and the kinematical
factor K in Eq. (3), one can calculate the GT unit cross
section for the (t ,3He) and (3He,t) reactions on targets with
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FIG. 10. (a) Experimentally extracted unit cross sections for the
(3He,t) (upright open triangles) and (t ,3He) (inverted filled triangles)
reactions are compared with the calculated unit cross sections using
the (phenomenological) functions for K , ND , and |Jστ |. For A < 12,
local distortion factors are used instead of Eq. (13). (b) The ratio of
unit cross sections extracted from the data to the unit cross sections
calculated with the (phenomenological) functions for K , ND , and
|Jστ |.

A � 12. The results of this calculation are compared with
the experimentally extracted unit cross sections in Fig. 10(a).
For targets with A < 12, the distortion factor was calculated
separately, but the phenomenological description of |Jστ | can
still be applied. In Fig. 10(b), the ratio of the experimental GT
unit cross sections and the phenomenological description is
shown, indicating a typical deviation between the two of less
than 10%. As explained in Sec. V C, the good correspondence
for A = 1 could be due to the fact that an underestimate
of the distortion factor ND led to an overestimate of |Jστ |.
The experimentally extracted unit cross section for A = 2
(deuteron) also has a large systematic error due to the difficulty
in calculating the distortion factor. Finally, we note that
the experimental unit cross section for A = 6 (6Li) is well
reproduced by the phenomenological description, in spite
of the relatively high distortion factor. It indicates that the
accurate prediction of the unit cross section for this case by
Eq. (12) is probably coincidental. We conclude that the validity
of Eq. (12) is uncertain for the mass range 6 < A < 12.

VI. SUMMARY AND CONCLUSIONS

By complementing available data for GT unit cross section
for the (3He,t) reaction at 140A MeV with existing, new,
and reevaluated data for the (t ,3He) reaction at 115A MeV,
a systematic picture of the mass dependence of the GT unit
cross section was achieved for these reactions in the target
mass range of 1 < A < 120. The small difference in beam
energy between the two probes does not noticeably (i.e., within
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statistical and systematic error margins) affect the GT unit
cross sections, given the consistency for the extracted unit
cross section from the two probes in the overlapping mass
region. For both probes and for target masses with A � 12,
the GT unit cross sections are well described by a simple
function [Eq. (12)]. In the analysis of (t ,3He) and (3He,t)
charge-exchange data, this simple function can directly be used
to extract GT strengths directly from experimental differential
cross sections.

The components that make up the unit cross section in
eikonal approximation (a kinematic factor K , the distortion
factor ND and the volume integral of the effective στ operator
|Jστ |) can also be described by simple functions of mass
number A and by combining these equations a description
equal in quality to the use of Eq. (12) for target masses A � 12
is achieved. In addition, the availability of a separate equation
for the mass dependence of |Jστ | allows for the calculation
of the unit cross sections for A < 12, where distortion factors
must be calculated on a case-by-case basis.

Although there is a rough qualitative correspondence, the
extracted values of |Jστ | from the data are systematically

lower (on average by about 20%) than the values predicted
in Born approximation if a short-range approximation for
exchange contributions to the transition amplitude is used.
This discrepancy is consistent with the findings of earlier
works [42,43] in which the exact treatment of exchange terms
for composite probes was compared with the short-range
approximation. To make further progress, a general tool
to calculate charge-exchange reactions involving composite
probes that treats exchange contributions exactly is needed.
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