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Energy partition in low energy fission
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The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time-dependent
pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles
and the other separates the pairing active spaces associated to the two fragments in the vicinity of the scission
configuration. The fission path is obtained in the frame of the macroscopic-microscopic model. The single-
particle-level schemes are obtained within the two-center Woods-Saxon shell model. It is shown that the available
intrinsic dissipated energy is not shared proportionally to the masses of the two fission fragments. If the heavy
fragment possesses nucleon numbers close to the magic ones, the accumulated intrinsic excitation energy is lower
than that of the light fragment.
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I. INTRODUCTION

Under the action of a mutual Coulomb repulsion, at scission
the fission fragments are accelerated in opposite directions.
These fragments are highly excited, as underlined in many
review papers, for example in Refs. [1,2]. The maximal kinetic
energy issued in the process amounts to the Q value in the
case of cold fission. The fragments decay on their ground
states mainly by evaporation of neutrons and by radiation
emission. It is known that the motion of any physical system
is governed by conservative forces and by frictional ones that
give rise to dissipation. Consequently, the excitation energy
of the fragments must depend on the dynamics of the nuclear
system in its path to scission.

The fission process offers a possibility to investigate how
two nuclei in contact share their excitation energy. In analyses
of experimental data, the authors of Ref. [3] evidenced an
energy sorting mechanism based on statistical arguments.
Considering a postulated difference between the temperatures
of the two nascent fragments in conjunction with the condition
of maximum entropy, they emphasized a flow of energy from
one fragment to another. This flow of energy depends on the
available states in the fragments in the scission configuration.
In this context, an explanation for the violation of the constant-
temperature hypothesis [4] that involves a proportionality
between the intrinsic excitation energy division and the mass
ratio of the fragment is offered.

Experimental direct indications about the excitation en-
ergies of the fragments are obtained by measuring their
evaporated neutrons [5]. Despite a similar temperature of
the neutron velocity distributions, the experiment revealed
that a larger excitation energy characterizes the light mass
distribution in comparison with the heavy one. The shifting
in the sawtoothlike behavior of the neutron multiplicity as
a function of the parent excitation was attributed mainly to
the deformation energy and not to the intrinsic heat. The
thermal neutron-induced fission of 233U [6] analyzed in Ref. [7]
evidenced a small neutron multiplicity in the A = 132 region.
By increasing the excitation energy of the compound nucleus,
it was observed that in this mass region the kinetic energy
decreases by a large value of about 2 MeV. The interpretation
ascribed a similar temperature of fragments as scission and it

was speculated that this increment in excitation energy is due
to a modification of the shape sequences during fission leading
to a deformed heavy fragment. Furthermore, the multiplicity
obtained for two neutron-induced 237Np fission energies [8]
revealed a modification of the heat of only the fragments in
the heavier mass distribution.

Motivated by these aspects, in this work, the intrinsic
excitation energy of the fragments are evaluated dynamically
in terms of time-dependent pairing equations (TDPEs) in the
cold fission regime. The macroscopic-microscopic model is
employed to obtain the fission path by using the minimal action
principle. The method is briefly described in the next section.
The basic ingredients for the TDPE are the single-particle
diagrams that must be computed from the initial state of the
fissioning nucleus up the configuration given by two separated
fragments. The Woods-Saxon two-center shell model [9] used
to determine realistic level schemes along the fission path is
presented in Sec. III. In Sec. IV, the formalism concerning the
TDPE is introduced and its relevance in calculating dissipation
energy is emphasized. In Sec. V, the formalism is extended
for two separated nuclei. In Sec. VI, the results concerning
the 234U fission are reported. The last section is devoted to
conclusions.

II. THE FISSION TRAJECTORY

To calculate the energy-level diagrams for the fissioning
system, the first step is the determination of a fission path
that satisfies the minimal action criteria [10]. The sequence of
shapes that follows a nucleus when it passes from the ground
state to the scission point depends principally on the potential
energy surface and the inertia.

In the macroscopic-microscopic method, the whole system
is characterized by some collective coordinates that determine
approximately the behavior of many other intrinsic variables.
The basic ingredient in such an analysis is a nuclear shape
parametrization that depends on several macroscopic degrees
of freedom. The generalized coordinates associated with these
degrees of freedom vary in time, leading to a split of the nuclear
system in two separated fragments.

In the following, an axially symmetric nuclear shape is
obtained by smoothly joining two spheroids of semiaxis ai and
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bi (i = 1, 2) with a neck surface generated by the rotation of a
circle around the axis of symmetry. By imposing the condition
of volume conservation we are left with five independent
generalized coordinates {qi} (i = 1, 5) that can be associated
to five degrees of freedom: the elongation R given by the
distance between the centers of the spheroids, the necking
parameter C = S/R3 related to the curvature of the neck,
the eccentricities εi associated with the deformations of the
nascent fragments, and the mass asymmetry parameter η =
a1/a2. The notations that describe this parametrization can be
identified by inspecting Fig. 1. Owing to the axial symmetry,
the surface equation is given in cylindrical coordinates for the
three regions involved:

ρ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b1

√
1 − (z − z1)2/a2

1, z � zc1,

ρ3 − S

√
R2

3 − (z − z3)2, zc1 < z < zc2,

b2

√
1 − (z − z2)2/a2

2, z � zc2.

(1)

It is known that a nuclear shape is well adapted for the
fission process if the following conditions are satisfied [11]:
(i) the three most important degrees of freedom, that is,
elongation, necking, and mass asymmetry, are taken into
account; (ii) a single sphere and two separated fragments
are allowed configurations; and (iii) the flatness of the neck
is an independent variable. All these conditions are fulfilled
by the preceding parametrization. If S = 1, the shapes are

FIG. 1. Nuclear shape parametrization. Two ellipsoids of differ-
ent eccentricities are smoothly joined with a third surface. Two cases
are obtained: (a) the curvature of the neck is positive (S = 1) and
(b) the curvature is negative (S = −1).

necked in the median surface, characterizing scission shapes;
for S = −1, the shapes are swollen, addressing the ground
state and the saddle configurations.

If we consider that the elongation q1 = R is the main
coordinate, the dependencies of the other generalized coor-
dinates qi = fi(R) (i = 2, 5) must be obtained. As specified
in Ref. [10], such trajectories emerge by minimizing the action
functional

P = −2

h̄

∫ Rf

Ri

√
2M(qi, ∂qi/∂R)V (qi) dR, (2)

where M(qi, ∂qi/∂R) is the inertia along the trajectory and
V (qi) is the deformation energy; Ri and Rf stand for the
elongations associated to the ground state and to the exit from
the barrier, respectively. In our calculation, the reference of the
deformation energy is always taken as the energy in the ground
state. So the next condition is fulfilled: V (Ri) = V (Rf ) = 0.
As it can be seen in Eq. (2), as the fissioning nucleus passes
from its ground state to the scission configuration, the se-
quences of shapes depends mainly on the deformation energy
and the inertia. The deformation energy is obtained in the
frame of the macroscopic-microscopic model [12], whereas
the inertia is computed within the cranking approximation
[10,13,14]. The deformation energy was obtained by summing
the liquid drop energy ELDM with the shell and the pairing
corrections δE:

V = ELDM + δE. (3)

The macroscopic energy ELDM is obtained in the framework of
the Yukawa-plus-exponential model [15] extended for binary
systems with different charge densities as detailed in Ref. [16]:

ELDM = En + EC + EV , (4)

where

En = − a2

8π2r2
0 a4

∫
v

∫
v

(
r12

a
− 2

)
exp

(− r12
a

)
r12
a

d3r1d
3r2

(5)

is the nuclear term,

EC = 1

2

∫
v

∫
v

ρe(�r1)ρe(�r2)

r12
d3r1d

3r2 (6)

is the Coulomb energy, and EV is the volume energy. In the
previous definitions, ρe are charge densities and r12 = |�r1 − �r2|.
The numerical values of the parameters a2, r0, and a are taken
from Ref. [17].

The shell effects δE are obtained as a sum between the
shell and the pairing microscopic corrections. In this context,
the Strutinsky procedure [10] was used. These corrections
represent the varying parts of the total binding energy caused
by the shell structure. The single-particle-level diagrams are
computed within the Woods-Saxon superasymmetric two-
center shell model.

The effective mass is computed within the cranking
adiabatic approximation [10,13,14]. In a multidimensional
deformation space, where the nuclear shape is described by
the set of n independent generalized coordinates qi , the inertia
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tensor Mij is defined by the equation of the kinetic energy T :

T = 1

2

n∑
i,j=1

Mij (q1, . . . , qn)
∂qi

∂t

∂qj

∂t
. (7)

In the adiabatic description of the collective behavior of a
nucleus, the nucleons are assumed to move in an average
deformed potential. Using a Hamiltonian H (q1, . . . , qn) that
includes pairing interactions, introducing the collective param-
eters qi by means of the Lagrange multipliers, it is possible to
obtain the response of the nuclear system for slow changes of
the shape within the cranking model formula

Mij (q1, . . . , qn) = 2

h̄2

∑
ν,µ

〈µ| ∂H
∂qi

|ν〉〈ν| ∂H
∂qj

|µ〉
(Eµ + Eν)3

× (uµvν + uνvµ)2 + Pij , (8)

where |ν〉 and |µ〉 are single-particle wave functions; Eν ,
uν , and vν are the quasiparticle energy, and the vacancy and
occupation amplitudes of the state ν, respectively, in the BCS
approximation; and Pij is a correction that depends on the
variation of the pairing gap and the Fermi energy as a function
of the deformation coordinates. Recently, Eq. (8) was gener-
alized by taking into account the intrinsic excitation produced
during the fission process itself [18]. The inertia M along a tra-
jectory in the configuration space spanned by the generalized
coordinates qi (i = 1, 5) can be obtained within the formula

M =
5∑

i=1

5∑
j=1

Mij

∂qi

∂R

∂qj

∂R
. (9)

The total inertia is the sum of the contributions that correspond
to the proton and to the neutron level schemes. Usually,
the matrix elements of the derivatives of the Hamiltonian in
Eq. (8) are replaced by the matrix elements of the derivatives
of the mean field potential alone.

III. SINGLE-PARTICLE ENERGIES

A microscopic potential must be constructed to be con-
sistent within our nuclear shape parametrization. The simplest
way is to use a semiphenomenological Woods-Saxon potential.
To take into account nuclear deformations going over to sepa-
rate shapes and to obtain two separated fragments, a two-center
shell model with a Woods-Saxon potential was developed
recently [9]. Other recipes that allow treatment of strongly
deformed nuclei are presented in Refs. [19,20]. The mean field
potential is defined in the frame of the Woods-Saxon model:

V0(ρ, z) = − Vc

1 + exp
[

�(ρ,z)
a

] , (10)

where �(ρ, z) represents the distance between a point (ρ, z)
and the nuclear surface. This distance is measured only along
the normal direction on the surface and it is negative if the point
(ρ, z) is located in the interior of the nucleus. The variable Vc is
the depth of the potential while a is the diffuseness parameter.
In our work, the depth is Vc = V0c[1 ± κ(N0 − Z0)/N0 + Z0)],
where the plus sign is for protons and the minus sign is

for neutrons; V0c = 51 MeV, a = 0.67 fm, and κ = 0.67.
Here A0, N0, and Z0 represent the mass number, the neutron
number, and the charge number of the parent, respectively.
This parametrization, referred as the Blomqvist-Walhlborn
parametrization in Ref. [21], is adopted because it provides the
same radius constant r0 for the mean field and the pairing field,
which ensures a consistency of the shapes of the two fields at
hyperdeformations, i.e., two tangent ellipsoids. The Hamilto-
nian is obtained by adding the spin-orbit and the Coulomb
terms to the Woods-Saxon potential. The eigenvalues are ob-
tained by diagonalization of the Hamiltonian in the semisym-
metric harmonic two-center basis [22–24]. In this work, the
major quantum number used is Nmax = 12. The two-center
Woods-Saxon model is used to compute shell and pairing
corrections together with inertia in this work. The two-center
shell model represents a valuable instrument to investigate the
role of individual orbitals in the treatment of a wide variety
of nuclear processes like cold fission [25], the formation of
superheavy elements [26], or superasymmetric disintegration
processes, pertaining to cluster and α decays [27–29].

IV. TIME-DEPENDENT PAIRING EQUATIONS

In the following formalism, the starting point is a many-
body Hamiltonian with pairing residual interactions. This
Hamiltonian depends on some time-dependent collective pa-
rameters q(t) = {qi(t)} (i = 1, . . . , n), such as the internuclear
distances nuclei:

H (t) =
∑
k>0

εk[q(t)](a+
k ak + a+

k̄
ak̄) − G

∑
k,i>0

a+
k a+

k̄
aiaī .

(11)

Here, εk are single-particle energies of the molecular potential,
and a+

k and ak denote operators for creating and destroying a
particle in the state k, respectively. The state characterized by
a bar signifies the time-reversed partner of a pair. The pairing
correlation arises from the short-range interaction between
fermions moving in time-reversed orbits. The essential feature
of the pairing correction can be described in terms of a
constant pairing interaction G acting between a given number
of particles. In this article, the sum over pairs generally runs
over the index k. Because the pairing equations diverge for an
infinite number of levels, a limited number of levels is used in
the calculation, that is, N levels above and below the Fermi
energy EF . In the following, N = 30.

To obtain the equations of motion, we start from the
variational principle taking the following energy functional

L = 〈ϕ|H − ih̄
∂

∂t
|ϕ〉 (12)

by assuming the many-body state as a time-dependent BCS
seniority-zero wave function

|ϕ(t)〉 =
∏
k

[uk(t) + vk(t)a+
k a+

k̄
]. (13)

To minimize this functional, expression (12) is derived with
respect to the independent variables vk , together with their
complex conjugates, and the resulting equations are set to
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zero. Eventually, the following TDPEs are obtained:

ih̄ρ̇k = κk�
∗ − κ∗

k �,
(14)

ih̄κ̇k = (2ρk − 1)� − 2κkεk,

where ρk = |vk|2 are occupation probabilities, κk = u∗
kvk are

pairing moment components, and � = G
∑

k κk is the pairing
gap; uk and vk are the complex BCS occupation and vacancy
amplitudes. The variations of single-particle densities ρk can
be evaluated for different values of the generalized velocities
by solving the previous system of coupled equations as was
done in Ref [30]. Equations (14) are also generically known
as the time-dependent Hartree-Fock-Bogoliubov equations
[31,32]. As mentioned in Ref. [32], a connection with the
Landau-Zener effect is included in these equations. Levels
undergo Landau-Zener transitions on virtual levels with
coupling strengths given by the magnitude of the gap, �.
Recently, these equations were generalized to take into account
the Landau-Zener effect in seniority-one systems [9,33] and
the pair-breaking mechanism [34].

These TDPEs can offer a measure of the average dissipated
energy. The difference between the total energy value E

obtained within the TDPE and E0 given by the static
BCS equations represents an approximate measure for the
dissipation E∗:

E∗ = E − E0. (15)

The total emergy E is expressed simply in terms of ρk and κk ,

E = 2
∑

k

εkρk − G

∣∣∣∣∣
∑

k

κk

∣∣∣∣∣
2

− G
∑

k

ρ2
k ; (16)

E0 corresponds to ρ0
k and κ0

k associated to the lower energy
state, that is, obtained from BCS equations. This definition
was introduced in Ref. [31], where the nuclear viscosity
coefficient was determined by comparing microscopic results
with hydrodynamic ones. In Ref. [30], a comparison between
results given by Eq. (15) and experimental excitation energies
of several fission fragments was made for the 236U parent. For
closed shell regions of fission fragments a very good agreement
was found, the dissipated energies being 12–15 MeV. For
symmetric fission, as expected, the calculated dissipation is
greater than 20 MeV. Such agreement gives strong support for
this model.

The sum of time derivatives of single-particle densities in
Eqs. (14) is

ih̄
∑

k

ρ̇k =
∑

k

[κk�
∗ − κ∗

k �]

= 1

G
[|�|2 − |�|2] = 0. (17)

This result shows that the sum of the single-particle occupation
probabilities is a constant quantity as the system evolves in
time according to Eqs. (14); that is, the average number of
particles in the pairing active level space is a constant of the
motion.

V. NUMBER OF PARTICLES

After scission, the levels from the pairing active space
are shared between the two fission fragments. The levels
of the core are sorted accordingly. The sum of occupation
probabilities of the levels located in each fragment must be
equal to the number of nucleons. This is a problem that can be
solved by appealing to two properties of the nuclear system.

First of all, the sorting is produced in a continuous manner:
the wave function associated to one single-particle energy
level is transferred gradually to one of the two potential
wells obtained asymptotically, after the scission. For example,
the Woods-Saxon wave function of the lowest single-particle
energy is displayed in Fig. 2 for different values of the
distance between the centers of the fragments, that is, for
different shapes of the potential. When the two fragments
are completely separated, the wave function is located in
one of the two wells. Making use of this property, it is
possible to identify the final localization of the single-particle
level even when the system behaves as a single nucleus
if the final mass asymmetry is known. For this purpose,
we calculate two quantities Q1k = 〈ϕk(z)|�(−z)|ϕk(z)〉 and
Q2k = 〈ϕk(z)|�(z)|ϕk(z)〉, where � is the Heaviside function

FIG. 2. (right) For the left axis, the lowest-energy Woods-Saxon
wave function for the two center model ϕ0(z) as a function of z for
different values of the distance between the centers is displayed with
a thin line. The right axis corresponds to a plot with a thick curve
of a section in the middle of the neutron Woods-Saxon potential
V0(z) at the same values of the distance between centers. (left) A
representation of the Woods-Saxon potential V0 in the cylindrical ρ

and z coordinates is made. The distances between centers R are 0, 6,
12, 18, and 21 fm from top to bottom. The configurations displayed
correspond to the minimal 234U fission trajectory.
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and ϕk is the Woods-Saxon single-particle wave function of
the state k along the axis z. If Q1k > Q2k , the wave function
is located in well 1. It is worth noting that this procedure fails
only in the avoided level-crossing regions.

Second, the matrix element of the pairing interaction G is
in principle dependent on the overlap of the wave functions
of the pairs [35,36]. In the simplest description, as long as
a single nucleus is involved, the monopole approximation is
considered to perform well [37] and all the values of the matrix
elements are considered to have the same value in the active
pairing space. However, after the scission, the matrix elements
of the pairing interaction between wave functions belonging
to states in different fragments must be zero. In general, the
pairing interaction matrix elements of two different fragments
are not the same. If the pairing matrix elements between pairs
located in different fragments are zero (G12 = 0), then the
energy given by Eq. (16) becomes

E = 2
∑

k

εkρk − G

∣∣∣∣∣
∑

k

κk

∣∣∣∣∣
2

− G
∑

k

ρ2
k

→ 2
∑
k1

εk1ρk1 − G1

∣∣∣∣∣
∑
k1

κk1

∣∣∣∣∣
2

− G1

∑
k1

ρ2
k1

+ 2
∑
k2

εk2ρk2 − G2

∣∣∣∣∣
∑
k2

κk2

∣∣∣∣∣
2

− G2

∑
k2

ρ2
k2

= E1 + E2, (18)

where the sum over k1 and k2 means that the levels belong
to fragments 1 and 2, respectively. We used an arrow in the
previous relation to indicate that the constant value G of the
parent nucleus can be also transformed in the two values G1

and G2 associated to the two fragments. In other words, the
monopole approximation is considered valid separately in each
fragment by considering two constant values of G1 and G2.
Relation (18) shows that the total energy E is decomposed in
two fragment total energies, E1 and E2, given by relations of
the type of Eq. (16) if the value of the matrix element of the
pairing interaction addressing different fragments is G12 = 0.

Within these properties, a simple recipe to fix the average
number of particles at scission can be elaborated. Taking as an
example the proton level scheme, the conditions that the sum
of occupation probabilities of single-particle levels in the two
wells must be equal to the number of nucleons of the fragments
can be written as

2Zp2

∑
k1

ρk1 = 2Zp1

∑
k2

ρk2 ,

Zp1 + Zc1 = Z1, (19)

Zp2 + Zc2 = Z2,

where Zi (i = 1, 2) are the numbers of protons in the two
fragments, and Zci

and Zpi
stand for the number of protons in

the core and the number of protons in the pairing active space,
respectively. For an initial number of protons 2N = Z1 + Z2

considered in the pairing active space, the values of Zci
and

Zp1 are simply obtained by counting the levels given by the
two-center shell model. The occupation probabilities ρki

must

be obtained from TDPE (14). Exploiting the two previous
properties, the problem of fixing the final average number of
particle within Eqs. (14) is now trivial. After the passage of
the external saddle point, in the descent to scission, we insert
condition (19) in functional (12) and we continue to solve the
equations of motion. When the good numbers of particles are
obtained, we impose the condition that G12 is zero between
the wave functions belonging to separated fragments.

The previous recipe is implemented in the equations of
motion in a very simple way. In the operator notation, condition
(19) becomes

Zp2Ẑp1 = Zp1Ẑp2 ,

Ẑp1 =
∑
k1

(
ak1a

+
k1

+ ak̄1
a+

k̄1

)
, (20)

Ẑp2 =
∑
k2

(
ak2a

+
k2

+ ak̄2
a+

k̄2

)
.

This condition is introduced in the energy functional (12)

L = 〈ϕ|H − ih̄
∂

∂t
− λ

(
Zp2Ẑp1 − Zp1Ẑp2

)|ϕ〉 (21)

using a Lagrange multiplier λ. Imposing also the condition
that the interaction matrix element G12 �= G1 �= G2, the new
time-dependent equations eventually read

ih̄ρ̇k1 = κk1�
∗
1 − κ∗

k1
�1,

ih̄ρ̇k2 = κk2�
∗
2 − κ∗

k2
�2, (22)

ih̄κ̇k1 = (
2ρk1 − 1

)
�1 − 2κk1

(
εk1 − λZp2

)
,

ih̄κ̇k2 = (
2ρk2 − 1

)
�2 − 2κk2

(
εk2 + λZp1

)
,

where �1 = G1
∑

k1
κk1 + G12

∑
k2

κk2 and �2 =
G12

∑
k1

κk1 + G2
∑

k2
κk2 . When G12 = 0, it can be

easily verified that Eq. (19) is fulfilled and that the average
number of particles in the two fragments is conserved
according to conditions of the type of Eqs. (17) applied
separately on the two working spaces. That means, once the
values Z1 and Z2 of a given partition are reached, they behave
as constants if G12 = 0. The previous recipe represents the
simplest dynamical method to project the average number of
particles onto two separate nuclei. These equations are named
time-dependent pairing equations with constraint (TDPEC).

VI. RESULTS

To obtain the fission trajectory, action integral (2) must
be minimized in our five-dimensional space. The first turning
point, Ri , is obtained by determining the ground-state config-
uration, while the second one, Rf , lies on the equipotential
surface that characterizes the exit from the outer barrier.
That means Rf is defined by the multidimensional function
V (R,C, ε1, ε2, η) = 0. Different methods are currently envis-
aged to obtain the heights of the barriers. In static calculations
[38], the immersion procedure is extensively used, whereas
for dynamical paths [39–41], the Ritz method is applicable.
To minimize the action integral, we used a numerical method
initiated in Ref. [42] and used it for fission processes in a large
range of mass asymmetries [34,43–45]. The dependencies
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C(R), ε1(R), ε2(R), and η(R) were considered as spline
functions of n variables Ck , ε1k , ε2k , and ηk (k = 1, n) that are
associated to the fixed mesh points Rk located in the interval
(Ri, Rj ). The integral action is transformed in a numerical
function that depends on the 4n variables and it is minimized
numerically.

Determination of potential energies V and of effective
masses Mij are very expensive in computing time. For
the numerical minimization procedure, a large number of
iterations is required and it is not possible to calculate the
values of V and Mij for each iteration. An interpolation of
calculated values of the energy and of the effective masses is
used. Therefore, to make the problem tractable, first of all, a
grid of deformation values was fixed in the five-dimensional
configuration space: 25 values of R between 0 and 24 fm, 7
values of the eccentricities εi between 0 and 0.6, 7 values of
the ratio η in the interval 1 to 1.6, and 23 values of C between
−0.115 and 0.105 fm−1. The pertinent region of deformations
for the possible trajectories between the ground state and the
exit point from the fission barrier was spanned. In each point of
the configuration space, the deformation energy and the tensor
of inertia were computed. During the minimization process,
interpolated values of the deformation energy and the inertia
were used. Different initial values of the generalized coordi-
nates were used as input parameters for the minimization.
Therefore, different local minima were obtained. The best
value was selected. Moreover, additional calculations of the
action integral were performed by slowing varying the general-
ized coordinates around the best trajectory previously obtained
from the numerical procedure. Among all results, the best final
trajectory for the least action was retained. Such a procedure
was used in determining a theoretical system of fission barrier
heights in Ref. [46]. In the present work, the trajectory in the
configuration space was modified after the saddle of the outer
barrier. The generalized coordinates were changed to obtain at
scission a required final configuration, as explained later.

The minimization leads to a definite path in the subbarrier
region. Its extrapolation to the scission point is not unique
[47]. We choose two fission partners at scission by searching
the best candidates that have deformations close to those
obtained in the exit point of the barrier from minimization. We
found that the eccentricities and mass-asymmetry parameters
in the exit point of the outer barrier are consistent with
the formation of a pair given by the isotopes 102Zr and
132Te. The ground-state configurations of the fragments were
calculated for this purpose. It is known that the excitation
energy has mainly two components: an excitation due to the
deformations and an intrinsic one. So, by taking into account
the ground-state deformations of the fragments at scission,
the excitation due to the deformation energy is eliminated
and we are only left with the dissipation. Comparing our
theoretical result with an evaluation [48], we found that the
partition 102Zr + 132Te has a very probable yield. Moreover,
this final configuration is also interesting because the numbers
of nucleons in the heavy fragment are close to the magic
ones. This configuration also allows a simple comparison with
the hypothesis made in Ref. [3] concerning the excitation
accumulated in a magic fission product. The fission barrier,
together with some particular shapes, is plotted in Fig. 3.

FIG. 3. 234U fission barrier V for a final partition 102Zr + 132Te
determined along the minimal action trajectory. Some particular
shapes related to the ground state, the extremes of the barrier, the exit
point, and the scission point are inserted in the plot. The distances for
the elongation R that characterizes the shapes are 4.17, 7.7, 10.43,
12.64, 15.53, 17.53, and 20.2 fm.

The neutron and proton single-particle diagrams are calcu-
lated along the minimal action trajectory, from the ground state
of the parent up to the formation of two separated fragments.
These level schemes are plotted in Figs. 4 and 5. In Fig. 4, at
R = 0, the parent nucleus is considered spherical. For small
deformations, the system evolves in a way similar to a Nilsson
diagram for prolate deformations. In the left part of Fig. 4,
the orbitals of the parent are labeled with their spectroscopic
notations. The levels belonging to the heavy fragment can be
identified before that the scission is produced, allowing us to
plot them with thick lines. The heavy fragment is spherical at
scission, so its levels are bounced in shells. Making use of the
fact that the heavy fragment becomes spherical after scission,
it is possible to label its orbitals with spectroscopic notations.
The levels of the light fragment are not degenerate due to
its deformation. In the proton diagram of Fig. 5, a smooth
decrease of the single-particle energies after the scission due
to the Coulomb mutual polarization can be observed. The
energy slope for the light fragment is larger than that for the
heavy one.

It is known that the projection on a given particle number
changes the pairing coupling constant G [49]. For our
exploratory investigation, constant values of the pairing matrix
elements are kept for the parent nucleus and for the fragments
without considering the variations due to projections. A
renormalization procedure [10] in the BCS theory that depends
on the energy level distribution and a smoothed gap distribution
is used to obtain the values of G, G1, and G2 used in
TDPEC (22).
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FIG. 4. Neutron level diagram for the 234U fission with respect to
the elongation R.

To solve TDPE (14), we need the velocity of the generalized
coordinate. Our calculations pertain to the cold fission regime
and are characterized by small values of the collective kinetic
energy and of the excitations energies. These properties can
be obtained by selecting an appropriate value for the col-
lective velocity. Therefore, different constant values of the
internuclear velocity Ṙ ranging from 104 to 106 m/s were
tested. These values can be translated over a time to penetrate
the barrier ranging in the interval [10−18, 10−20] s. The time for

FIG. 5. Same as Fig. 4 for the proton diagram.

the descent between saddle to scission reaches about 4 ×
10−21 s for a velocity of 106 m/s, a value considered a typical
time for scission [2]. Within the semiadiabatic cranking model
[18], the inertias in the ground state and in the asymptotic
region of two separated fragments are 1.26 and 1.208 h̄2

MeV−2 fm−2, respectively. Within this estimation of the mass,
the velocities can also be translated in a macroscopic kinetic
energy that amounts to 0.3 MeV, of the order of magnitude
of the zero point vibration energy. System (14) is solved
numerically for the selected velocities. The initial conditions
for ρk and κk are set by the ground-state BCS solutions of
the parent, i.e., the configuration located at R ≈ 4 fm in
Fig. 3. In Fig. 6, the variations of the dissipated energy E∗
for different internuclear velocities are displayed as a function
of the distance between the centers of fragments, R. The
TDPEs are solved and no conditions for fixing the number
of particles are imposed here. The dissipated energy for the
proton level scheme is lower than that of the neutron one. The
dissipated energy for the lower collective velocity of 104 m/s
is negligible, whereas for the largest one of 106 m/s the total
dissipation reaches about 10.5 MeV at scission. This value is
larger than that given in previous estimations [18] because of
the imposed modification concerning the fission trajectory that
gives a particular configuration at scission. In connection with
the shape of the barrier displayed in Fig. 3, it can be deduced
that the larger part of the excitation is formed during the
penetration of the second barrier and in the descent from saddle
to fission. This result is not in line with the hypothesis that the

FIG. 6. Dissipation energy E∗ calculated for the proton level
scheme (top) and for the neutron one (bottom) as a function of the
elongation R. The calculations are made within relation (15) and
Eqs. (14) without imposing any condition for fixing the number of
of particles. The dashed line, the dot-dashed line, and the solid line
correspond to internuclear velocities dR/dt of 104, 105, and 106 m/s,
respectively.
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excitation energy does not increase after the passage of the
saddle point [50]. Also, Fig. 6 evidences a strong correlation
between the collective kinetic energy and the final excitation
of the fragments: an increase in the kinetic energy produces
an increase of the dissipation.

It is interesting to compare the dissipated energy and the
number of nucleons attributed to the two nuclei in the case of
the treatment with TDPE and that with TDPEC. In Fig. 7(a), the
TDPE dissipation energy for the neutron workspace is plotted
with a thick curve as a function of R at dR/dt = 106 m/s.
The dissipation obtained within the TDPEC is displayed with
a thin line. So, up to the external saddle, Eqs. (14) are solved.
After R ≈ 16 fm, we imposed condition (20), and the TDPEC
was used. It can be observed that the TDPEC give a larger
dissipation. In Fig. 7(b), the sums Np1 = ∑

k1
ρ2

k1
and Np2 =∑

k2
ρ2

k2
for TDPEs are plotted with a thick line. As mentioned

FIG. 7. (a) The TDPE dissipated energy is plotted with a solid
thick line as a function of the elongation R for the neutron working
space for the collective velocity dR/dt = 106 m/s. The TDPEC
dissipated energy (after imposing the condition for projecting the
number of particles) is plotted with a thin line. The dissipated energy
obtained by replacing the ground state of the parent nucleus within
the ground states of the two nascent fragments is displayed with a
dashed line. (b) The number of pairs Np1 and Np2 located on the levels
that belong to the first and second well are plotted with thick lines in
the framework of the TDPE. The number of pairs within the TDPEC
are plotted with thin lines. Np2 corresponds to the heavy fragment
and it is always larger than Np1 .

also for relation (16), k1 and k2 are levels in the active pairing
space attributed to fragment 1 and to fragment 2, respectively.
The total number of pairs is conserved: N1 + N2 = N = 30.
After imposing condition (20), the numbers of pairs located on
the two-level schemes of the two fragments reach the correct
values, that is, N1 = 15 and N2 = 15, that define the partition
analyzed.

It was remarked in Ref. [31] that the maxima of the
dissipated energy arise because the character of the ground-
state solution is changing so rapidly that the system cannot
adjust itself. Thus, the system appears excited, not because of
any large changes in the occupation amplitudes but because of
the changes in the ground state to which the dynamic state is
studied. In this respect, in Fig. 7, we also analyzed the behavior
of the system by replacing the ground state. Instead of the
ground state of the parent E0, we used E01 + E02, that is, the
sum between the BCS lower energy states calculated within
the level schemes attributed to the two nascent fragments.
Within this modification, the true dissipation energy of the
fragments is obtained with relation (15). The result is plotted
with a dashed line. At scission we obtain approximately
8 MeV as the neutron contribution in the dissipated energy.
The proton contribution is calculated in the same way.

Having the dynamical occupation probabilities together
with the BCS solutions and the level schemes of the nascent
nuclei, it is possible to evaluate the excitation energy separately
for an individual fragment. As mentioned previously, a strong
dependence exists between the collective velocity and the
total dissipation released in fission. Therefore, it is possible
to emphasize the correlation between the modality in which
the excitation is shared between fragments and the total
excitation energy by appealing to the internuclear velocity.
In Fig. 8, the dissipation energies obtained for each of the
two fragments are displayed separately as a function of the
collective velocity. The total excitation energy is the sum
between the contributions of the two fission products. It is
found that the dissipated energy for the heavy fragment is much
lower than that for the light one. This result is consistent with
the experimental finding addressing the neutron multiplicities.
The number of evaporated neutrons is directly proportional
to the E∗ of the fragment. In the 0.8-MeV neutron-induced
fission of 237Np [8], the number of evaporated neutrons from
the heavy fragment of mass 132 is about half of that emitted
from the light partner. In our calculations, the excitation energy
accumulated in the heavy fragment is also about half of the
excitation obtained in the light one. It is also revealed in Fig. 8
that in the low energy regime the increase in excitation energy
of the heavy fragment is smaller than in the light one, for
a modification of the total excitation energy of the parent
nucleus. However, the experimental findings [8] show that
the excitation energy of the compound nucleus goes almost
completely into excitation energy of the heavy fragments. We
can speculate that a large part of this energy is transferred in
deformations of the heavy nucleus, not taken into account here.
A similar behavior is assessed from statistical considerations
in Ref. [3], and detailed in Ref. [51], for energy partitions
involving nuclei close to magic numbers.

In the present work, TDPEC are derived involving the
variational principle in a way similar to that of Ref. [32].
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FIG. 8. Excitation energies for 102Zr (dashed line) and 132Te (solid
line) as a function of the internuclear velocity dR/dt . The excitations
after scission are displayed for the (a) neutron and (b) proton
contributions. (c) The total dissipation energies accumulated in each
fragment are presented with the same line types.

Alternatively, in Ref. [31], system (14) is obtained from the
Heisenberg form of the equations of motion. In this treatment,
a full solution of the dynamics describing the time evolution
emerges that reflects more accurately the response of the
nuclear system to the changing single-particle potential. It
was shown in Ref. [18] that the two derivations give the
same results when the antisymmetric time-derivative matrix
of the wave function is explicitly taken into account. The
collective kinetic energy associated to the coherent movement

of the nucleons is revealed in terms of a nonadiabatic cranking
inertia. According to a classification made in Ref. [2], the
model used in the present work belongs to a family in which the
dissipation can be identified with the excitation obtained within
coupled-channel equations, as in Refs. [31,52,53]. Another
important family of models solves equations of motion and
extracts the excitation energy by following the trajectory
backward with reversed velocity as in Ref. [54].

This model is based on the same fundamental grounds as
those found in Refs. [47,55]. The main differences are given
by the time-dependent equations used and by the fact that
the dissipation is not evaluated for each fragment separately.
They used the time-dependent Schrödinger equations and
introduced quasiparticle excitations through the cranking
approximation.

VII. CONCLUSIONS

Dynamical estimations of the excitation energies in cold
fission are evaluated within time-dependent pairing equations.
Using conditions that fix the number of particles in each
fragment, it was possible to obtain for the first time the
excitation energy of each nucleus issued in the process. A
recent hypothesis [3] that claims the excitation energy is not
equilibrated between fragments was confirmed in the cold
fission regime. If the heavy fragment is close to magic number,
its excitation energy is smaller than that of the light one. It
was found that the dissipation energy in fission fragments
is intimately related to the distribution of pairing occupation
probabilities of the levels at scission. These probabilities can be
obtained by solving an appropriate set of equations of motion.
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