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Hard breakup of the deuteron into two � isobars
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We study high-energy photodisintegration of the deuteron into two � isobars at large center of mass angles
within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main
steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a
quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into
two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed
through the amplitude of pn → �� scattering which we evaluated based on the quark-interchange model of hard
hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration
is mainly determined by the properties of the pn → �� scattering. We predict that the cross section of the
deuteron breakup to �++�− is 4–5 times larger than that of the breakup to the �+�0 channel. Also, the angular
distributions for these two channels are markedly different. These can be compared with the predictions based on
the assumption that two hard � isobars are the result of the disintegration of the preexisting �� components of
the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup
in both �++�− and �+�0 channels to be similar.
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I. INTRODUCTION

Hard nuclear processes provide an important testing ground
for QCD degrees of freedom in nuclei. One of such processes is
the high-energy large-angle photodisintegration of light nuclei.
These reactions were intensively studied during the last two
decades. The studies included the experiments on large center
of mass (c.m.) angle breakup of the deuteron into the pn

pair [1–8] as well as breakup of the 3He nucleus into two high-
energy protons and a slow neutron [9]. The uniqueness of these
reactions is in the effectiveness by which high momentum
and energy are transferred to the NN system [10] at a given
photon energy, Eγ . Namely at large and fixed values of the
c.m. scattering angle, s,−t ∼ 2MdEγ which is by a factor
of two larger than the invariant energy and transferred mo-
menta achieved in hadronic interactions at the same incident
energies.

The above-mentioned reactions confirmed the prediction
of quark-counting rule [11] according to which the energy
dependence of the differential cross section at large c.m.
scattering angles scales as dσ

dt
∼ s−11.

However, calculations of the absolute cross sections require
a more detailed understanding of the dynamics of these
processes. The considered theoretical models can be grouped
by two distinctly different underlying assumptions made in the
calculations [12]. The first assumes that the large c.m. angle
nucleons are produced through the interaction of the incoming
photon with a preexisting hard two nucleon system in the
nucleus [13–15]. The second approach is based on the as-
sumption that the two high-momentum nucleons are produced
through a hard rescattering at the final state of the reaction
[16–21].

In the hard rescattering model (HRM) [16] in particular, by
explicitly introducing quark degrees of freedom, a parameter
free cross section has been obtained for hard photodisin-
tegration of the deuteron at 90◦ c.m. angle [16,17]. Also
HRM’s prediction of the hard breakup of two protons from

the 3He nucleus [21] agreed reasonably well with the recent
experimental data [9].

In the present work we extend the HRM approach to
calculate hard breakup of the deuteron into two � isobars
produced at large angles in the γ − d center-of-mass reference
frame. In our estimates, we calculate the relative strength
of γ d → �++�− and γ d → �+�0 cross sections as they
compare with the γ d → pn cross section.

The investigation of the production of two energetic �

isobars from the deuteron has an important significance in
probing possible non-nucleonic components in the deuteron
wave function. Studies of non-nucleonic components of the
deuteron have a rather long history. Already in the 1970s, the
possible existence of the baryonic resonance components in
the deuteron has been studied in potential and pion-exchange
models (see e.g., Refs. [22–25]). They were also considered in
quark-interchange [27] and chiral quark [26] models.

Among the all possible resonance components the ��

component has an interesting relation to the possible existence
of the hidden color component in the deuteron wave function
(see e.g., Refs. [28–32]). This relation follows from the
observation [28,29] that in the regime in which the chiral
symmetry is restored the color singled six-quark configuration
can be expressed through the superposition of NN , ��, and
hidden-color components with relative normalizations fixed
by the SU (3) symmetry. Thus, experimental verification of the
relative strength of the NN to �� component could shed light
on the existence of hidden color components in the deuteron
wave function. However, both components should be probed
in hard nuclear processes in which case small internucleon
distances in the deuteron are probed. Our calculation in this
case will allow us to asses the role of the hard rescattering in
these processes. It will allow us also to explore another venue
for checking the basic mechanism of the high momentum
transfer breakup of nuclei into two baryons. Our calculations
result in the distinct predictions for angular distributions of
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the �-isobar pair at large c.m. production angle as well as
their relative strength compared with the production of the pn

pair at the same kinematics. Despite experimental challenges
associated with the investigation of two �-isobar breakup of
the deuteron [33], there are ongoing efforts in performing such
experiment at Jefferson Lab [34,35] which we hope will allow
to verify our predictions.

II. HARD RESCATTERING MODEL

We consider the photoproduction of two baryons, B1 and
B2, in the reaction

γ + d → B1 + B2 (1)

in which the baryons are produced at large angles in the γ − d

center-of-mass reference frame.
According to the HRM, the large angle breakup of the

NN system proceeds through the knockout of a valence quark
from one of the nucleons with subsequent hard rescattering
of the struck quark with a valence quark of the second
nucleon. The two quarks then recombine with the spectator
systems of nucleons forming two emerging baryons with
large transverse momenta. The hard rescattering provides the
mechanism of sharing the photon’s energy among two final
baryons.

The invariant amplitude of the photodisintegration Eq. (1)
is calculated by applying Feynman diagram rules to diagrams
similar to Fig. 1. During the calculation we introduce un-
determined quark wave functions of baryons to account for
the transition of the initial nucleons to the quark-spectator
systems, and also for the recombination of the final state
quarks with these spectator systems into the final two baryon
system.

Figure 1 displays the chosen independent momenta for
three-loop integration involved in the invariant amplitude.
Two major approximations simplify further calculations. First,
using the fact that the struck quark is very energetic we treat
it on its mass shell. Then the struck quark’s propagator is
evaluated at its pole value at such magnitudes of nucleon
momenta that maximize the deuteron wave function. These
approximations allow us to factorize the invariant amplitude
into three distinguished parts. The first, representing the tran-
sition amplitude of the deuteron into the (pn) system, which

q

FIG. 1. Deuteron photodisintegration according to the HRM.

can be evaluated using a realistic deuteron wave function.
The second is the amplitude of photon-quark interaction,
and the third term represents the hard rescattering of the
struck quark with recombination into a two large transverse
momentum baryonic system. Combined with the initial state
nucleon wave functions, the rescattering part is expressed
through the quark-interchange (QI) amplitude of pn → B1B2

scattering. Details of the derivation are given in Refs. [16,21].
After the above-mentioned factorization is made, the overall
invariant amplitude of γ d → B1B2 reaction can be expressed
as follows:

〈λ1f , λ2f |M|λγ , λd〉

= ie[λγ ]

{ ∑
i∈N1

∑
λ2i

∫
Q

N1
i√
2s ′ 〈λ2f ; λ1f |T QI

(pn→B1B2),i(s, tN )

× |λγ ; λ2i〉�λd

d (p1i , λγ ; p2i , λ2i)
d2p⊥
(2π )2

+
∑
i∈N2

∑
λ1i

∫
Q

N2
i√
2s ′ 〈λ2f ; λ1f |T QI

(pn→B1B2),i(s, tN )

× |λ1i ; λγ 〉�λd

d (p1i , λ1i ; p2i , λγ )
d2p⊥
(2π )2

}
, (2)

where λγ ,λd , λ1f , and λ2f are the helicities of the photon,
deuteron, and the two outgoing baryons, respectively. Here
�

λd

d (p1i , λ1i ; p2i , λ2i) is the λd -helicity light-cone deuteron
wave function defined in the q+ = 0 reference frame.
The initial light-cone momenta of the nucleons in the
deuteron are p1i = (α1i = 1

2 , p1i⊥ = −p⊥) and p2i = (α2i =
1
2 , p2i⊥ = p⊥) with λ1i and λ2i being their helicities, re-
spectively. The 1√

s ′ factor with s ′ = s − M2
d comes from the

energetic propagator of the struck quark before its rescattering.
The squares of the total invariant energy as well as the
momentum transfer are defined as follows:

s = (q + pd )2 = (p1f + p2f )2 = 2Elab
γ Md + M2

d ,

t = (p1f − q)2 = (p2f − pd )2, (3)

where q, pd , p1f , and p2f are the four-momenta of the
photon, deuteron, and two outgoing baryons, respectively. The
laboratory energy of the photon is defined by Elab

γ , and Md is
the mass of the deuteron. The transfer momentum, tN in the
rescattering amplitude in Eq. (2) is defined as

tN = (p1f − p1i − q)2 = (p2f − p2i)

≈
(

p2f − pd

2

)2

= t

2
+ m2

B2

2
− M2

d

4
, (4)

where the approximation in the right-hand side follows from
the assumption that the magnitudes of light-cone momentum
fractions of bound nucleons dominating in the scattering
amplitude are α1i = α2i = 1

2 , and that the transverse momenta
of these nucleons are negligible as compared to the momentum
transfer in the reaction, p2

⊥ � |tN |, |uN |.
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In Eq. (2) the expression

Qi〈λ2f ; λ1f |T QI
(pn→B1B2),i(s, tN )|λ1i ; λ2i〉 (5)

represents the quark-charge weighted QI amplitude of pn →
B1B2 hard exclusive scattering. The factor Qi corresponds to
the charge (in e units) of the quark that interacts with the
incoming photon. In a further approximation we factorize
the hard rescattering amplitude from the integral since the
momentum transfer entering in T(pn→B1B2),i(s, tN ) significantly
exceeds the Fermi momentum of the nucleon in the deuteron.
Also, after calculating the overall quark-charge factors, the
QI scattering amplitudes are identified with the NN → B1B2

helicity amplitudes as follows:

〈λ2f ; λ1f |T QI
pn→B1B2

(s, tN )|λ1i ; λ2i〉 = φj

(
s, θN

c.m.

)
, (6)

where θN
c.m. is the effective center of mass angle defined for

given s and tN .
The differential cross section for unpolarized scattering is

obtained through

dσγd→B1B2

dt
= 1

16π

1(
s − M2

d

) |M̄|2γ d→B1B2
, (7)

where

|M̄|2γ d→B1B2
= 1

3

1

2

∑
λ1f ,λ2f ,λγ ,λd

|〈λ1f , λ2f |M|λγ , λd〉|2, (8)

with the invariant amplitude square averaged by the number
of helicity states of the deuteron and photon.

III. CROSS SECTION OF THE γ + d → pn
BREAKUP REACTION

We derive the amplitude of the breakup of the deuteron
into the pn pair from Eq. (2) by introducing the independent
helicity amplitudes of pn elastic scattering Eq. (A2) and by
separating the quark-charge factors into Q̂N1 and Q̂N2 which
correspond to the scattering of the photon off the quark of the
first and the second nucleons in the deuteron. Then, for Eq. (8)
one obtains

¯|M|2 = 1

2

1

3

e2

2s ′ [S12{|(Q̂N1 + Q̂N2 )φ1|2 + |(Q̂N1 + Q̂N2 )φ2|2}
+ S34{|Q̂N1φ3 + Q̂N2φ4|2 + |Q̂N1φ4 + Q̂N2φ3|2}
+ 2S0|(Q̂N1 + Q̂N2 )φ5|2], (9)

where the light-cone spectral functions of the deuteron are
defined as follows:

S12 =
1∑

λ=−1

1
2∑

(λ1=λ2=− 1
2 )

∣∣∣∣
∫

�
λd

d (p1, λ1; p2, λ2)
d2p⊥
(2π )2

∣∣∣∣
2

,

S34 =
1∑

λ=−1

1
2∑

(λ1=−λ2=− 1
2 )

∣∣∣∣
∫

�
λd

d (p1, λ1; p2, λ2)
d2p⊥
(2π )2

∣∣∣∣
2

,

S0 = S12 + S34. (10)

Equation (9) can be further simplified if we assume (see e.g.,
[36]) that φ3 ≈ φ4, as well as S12 ≈ S34 = S0

2 , which results in

¯|M|2 = 1

2

1

3

e2

2s ′ Q
2
F,pn

S0

2
[|φ1|2 + |φ2|2 + |φ3|2

+ |φ4|2 + |φ4|2 + 4|φ5|2]. (11)

Using the expression of the differential cross section of elastic
pn scattering:

dσNN→NN
(
s, θN

c.m.

)
dt

= 1

16π

1

s
(
s − 4m2

N

) 1

2
(|φ1|2 + |φ2|2

+ |φ3|2 + |φ4|2 + 4|φ5|2), (12)

and the relation between the light-cone and nonrelativistic
deuteron wave functions [16,37–39] at small internal mo-
menta: �d (α, p⊥) = (2π )

3
2 �d,NR(p)

√
mN in Eq. (9), for the

differential cross section on obtains from Eq. (7)

dσγd→pn
(
s, θc.m.

)
dt

= αQ2
F,pn8π4

s ′
dσpn→pn

(
s, θN

c.m.

)
dt

S̄0,NR,

(13)

where we neglected the difference between 4m2
N and M2

d . Here
the averaged nonrelativistic spectral function of the deuteron
is defined as follows:

S̄0,NR = 1

3

λ=1∑
λ=−1

1
2∑

λ1,λ2=− 1
2

∣∣∣∣∣
∫

�
λd

d,NR

×
(
α = 1

2
, p⊥, λ1; α = 1

2
,−p⊥, λ2

)√
mN

d2p⊥
(2π )2

∣∣∣∣∣
2

,

(14)

where �d,NR is the nonrelativistic deuteron wave function,
which can be calculated using realistic NN interaction
potentials.

The quark-charge factor, QF,pn = 1
3 [16] accounts for

the amount of the effective charge exchanged between the
proton and the neutron in the rescattering. It is estimated by
counting all the possible quark exchanges within the pn pair
weighted with the charge of one of the exchanged quarks
(for more details see Appendix B). The result in Eq. (13) is
remarkably simple and contains no free parameters. It can
be evaluated using the experimental values of the differential

cross section of the elastic pn scattering, dσpn→pn(s,θN
c.m.)

dt
. The

angle θN
c.m. entering in the pn → pn cross section is the center-

of-mass angle of the scattering corresponding to the NN

elastic reaction at s and tN . It is related to θc.m. of the pn

photodisintegration by [21]

cos
(
θN

c.m.

) = 1 −
(
s − M2

d

)
2
(
s − 4m2

N

)
[√

s −
√

s − 4m2
N cos(θc.m.)

]
√

s

+ 4m2
N − M2

d

2
(
s − 4m2

N

) . (15)
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It is worth mentioning that as it follows from the equation
above, θc.m. = 90◦ photodisintegration will correspond to the
θN

c.m. = 60◦ hard pn elastic rescattering at the final state of the
reaction.

IV. CROSS SECTION OF THE γ d → ��

BREAKUP REACTION

We use an approach similar to that in Sec. III to derive
the invariant amplitude of the γ d → �� reactions. In this
case Eq. (2) requires an input of the helicity amplitudes
of the corresponding pn → �� scattering. One has a total
32 independent helicity amplitudes for this scattering. To
simplify further our derivations, we will restrict ourselves
by considering only the seven helicity conserving amplitudes
given in Eq. (A3). Using these amplitudes in Eq. (2) and
separating the quark-charge factors into Q̂N1 and Q̂N2 , similar
to Eq. (9) one obtains

¯|M|2γ d→��

= 1

2

1

3

e2

2s ′ [S12{|(Q̂N1 + Q̂N2 )φ1|2 + |(Q̂N1 + Q̂N2 )φ6|2

+ |(Q̂N1 + Q̂N2 )φ7|2} + S34{|Q̂N1φ3 + Q̂N2φ4|2
+ |Q̂N1φ4 + Q̂N2φ3|2 + |Q̂N1φ8 + Q̂N2φ9|2
+ |Q̂N1φ9 + Q̂N2φ8|2}], (16)

where S12 and S34 are defined in Eq. (10). Similar to the
previous section, we simplify further the above expression
assuming that all helicity conserving amplitudes are of the
same order of magnitude. Assuming also that S12 ≈ S34 ≈ S0

2 ,
we obtain

¯|M|2 = 1

2

1

3

e2

2s ′ QF,��

S0

2
[|φ1|2 + |φ3|2 + |φ4|2 + |φ4|2

+ |φ6|2 + |φ7|2 + |φ8|2 + |φ9|2], (17)

where QF,�� = Q̂N1 + Q̂N2 = 1
3 is obtained by using the

same approach as for the case of the pn breakup in Sec. III.
Using now the expression of the differential cross section of
pn → �� scattering,

dσpn→��
(
s, θN

c.m.

)
dt

= 1

16π

1(
s − 4m2

N

) 1

2
[|φ1|2 + |φ3|2 + |φ4|2 + |φ4|2

+ |φ6|2 + |φ7|2 + |φ8|2 + |φ9|2] (18)

as well as the relation between light-cone and nonrelativistic
deuteron wave function discussed in Sec. III, from Eq. (7)
we obtain the following expression for the differential cross
section of the γ d → �� scattering:

dσγd→��(s, θc.m.)

dt
= αQ2

F,��8π4

s ′
dσpn→��

(
s, θN

c.m.

)
dt

S̄0,NR,

(19)

where S̄0,NR is given in Eq.(14). The effective c.m. angle θN
c.m.

entering in the argument of the differential cross section of
pn → �� reaction can be calculated by using Eqs. (3) and
(4) to obtain

cos θN
c.m. = 1√(

s − 4m2
N

) (
s − 4m2

�

)
[
s − M2

d − 4m2
N

2

− s − M2
d

2
√

s

(√
s −

√
s − 4m2

� cos θc.m.

)]
. (20)

As it follows from Eq. (19), provided there are enough
experimental data on high-momentum transfer pn → ��

differential cross sections, the γ d → �� cross section can be
computed without introducing an adjustable free parameter.
However, there are no experimental data on hard exclusive
pn → �� reactions with sufficient accuracy that would allow
us to make quantitative estimates based on Eq. (19). Instead,
in the next section we will attempt to make quantitative
predictions based on the quark-interchange framework of hard
scattering.

V. ESTIMATES OF THE RELATIVE STRENGTH
OF THE �� BREAKUP REACTIONS

Our further calculations are based on the experimental
observation [40] that the quark-interchange [41] represents
the dominant mechanism of hard exclusive scattering of
baryons that carry valence quarks with common flavor. The
quark-interchange mechanism however will not allow us to
calculate the absolute cross sections. Instead, we expect that its
predictions will be more reliable for the ratios of the differential
cross sections for different exclusive channels.

As an illustration of the reliability of calculations of cross
section ratios in the QI model, in Fig. 2 we compare the QI
predictions for the ratios of pn to pp differential cross sections
at 90◦ c.m. scattering. Here, we compare predictions based on
SU(6) [42,43] and diquark [44] symmetry assumptions for the
valence quark wave function of the nucleons. As comparison
shows one achieves a rather reasonable agreement with the
data without any additional normalization parameter. Based
on this, we now estimate the ratio of the differential cross

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

s(GeV2)

R
(p

n/
pp

)

SU(6), =1

Diquark, =0

FIG. 2. (Color online) Ratio of the pn → pn to pp → pp elastic
differential cross sections as a function of s at θN

c.m. = 90◦.
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sections of γ d → �� to the γ d → pn cross sections. We use
both SU(6) and diquark-symmetry quark wave functions of the
nucleon and � isobars (see Appendix B) in the calculation of
the pn → �� amplitudes.

To calculate the photodisintegration amplitudes we go back
to Eqs. (9) and (16) and evaluate the quark-charge factors
using SU(6) or diquark symmetries of the valence quark wave
functions of baryons. For this we separate the t and u channels
in the helicity amplitudes:

φi

(
s, θN

c.m.

) = φt
i

(
s, θN

c.m.

) + φu
i

(
s, θN

c.m.

)
(21)

and then treat the charge factors for the given nucleon N as

Q̂Nφl = Q
t,N
i φt

l + Q
u,N
i φu. (22)

This yields the following expression for the photodisintegra-
tion amplitude of Eq. (2):

〈λ1f , λ2f |M|λγ , λd〉

= ie[λγ ] ×
{∑

λ2i

1√
2s ′

[
Q

tN1
i φt

i + Q
uN1
i φu

i

]
λ2i

×
∫

�
λd

d (p1, λγ ; p2, λ2i)
d2p⊥
(2π )2

+
∑
λ1i

1√
2s ′

[
Q

tN2
i φt

i + Q
uN2
i φu

i

]
λ1i

×
∫

�
λd

d (p1, λ1i ; p2, λγ )
d2p⊥
(2π )2

}
. (23)

A. γ d → pn scattering

For the γ d → pn amplitude, the charge factors calculated
for the helicity conserving amplitudes according to the QI
framework yield for both SU(6) and diquark models (see
Appendix B)

Q
tN1
j = Q

tN2
j = QF,pn

2
,

(24)
Q

uN1
j = −2Q

uN2
j = 2QF,pn

with QF,pn = 1
3 and independent of j . Using these relations

in Eq. (22), from Eqs. (23) and (9) one obtains

|M̄|2γ d−→pn

= e2

6 · 2s ′ Q
2
F,pn

{
S12φ

2
1 + S34

[(
φt

3 + φt
4

2
+ 2φu

4 − φu
3

)2

+
(

φt
4 + φt

3

2
+ 2φu

3 − φu
4

)2]}
, (25)

where the different predictions of SU(6) and diquark models
follow from the different predictions for the pn → pn helicity
conserving amplitudes given in Eq. (B8).

B. γ d → �+�0 scattering

The calculation for the γ d → �+�0 amplitude yields the
same quark-charge factors as for the γ d → pn reactions

in Eq. (24). Using the helicity amplitudes of the pn →
�+�0 scattering from Eq. (B9) and the expressions for the
photodisintegration amplitudes from Eqs. (23) and (16) one
obtains

|M̄|2γ d−→�+�− = 1

6

e2

2s ′ Q
2
F,��

{
S12[|φ1|2 + |φ6|2 + |φ7|2]

+ S34

[(
φt

3 + φt
4

2
+ 2φu

4 − φu
3

)2

+
(

φt
4 + φt

3

2
+ 2φu

3 − φu
4

)2

+
(

φt
8 + φt

9

2
+ 2φu

9 − φu
8

)2

+
(

φt
9 + φt

8

2
+ 2φu

8 − φu
9

)2
]}

, (26)

where the different predictions of SU(6) and diquark models
follow from the different predictions for the pn → �+�0

helicity conserving amplitudes given in Eq. (B9).

C. γ d → �++�− scattering

For the charge factors in the γ d → �++�− scattering
within the quark-interchange approximation from Appendix B
we obtain

− QtN1 = QtN2

2
= QF,�� = 1

3
. (27)

Inserting these charge factors in Eqs. (23) and (16) one obtains
for the photodisintegration amplitude

|M̄|2γ d−→�++�−

= 1

6

e2

2s ′ Q
2
F,��{S12(|φ1|2 + |φ6|2 + |φ7|2)

+ S34[(2φ3 − φ4)2 + (2φ4 − φ3)2 + 5|φ8|2]}. (28)

where predictions for the helicity conserving amplitudes of
pn → �++�− are given in Eq. (B10).

D. Numerical estimates

Using Eqs. (25), (26), and (28) with the baryonic helicity
amplitudes calculated in Appendix B we estimate the ratio
R(θc.m.) of the γ d → �� to γ d → pn differential cross sec-
tions at given s and θc.m. angle. For simplicity we consider the
kinematics in which s � 4m2

�, which allows to approximate
both Eqs. (15) and (20) to

cos θN
c.m ≈ 1 + cosθc.m.

2
. (29)

Before considering any specific model for angular distribution,
one can make two general statements about the properties of
the photodisintegration amplitude. First, that from the absence
of the u channel scattering in the pn → �++�− helicity
amplitudes [see Eq. (B10)], one observes that R(θc.m.) cannot
be a uniform function of θc.m.. Second, that independent of
the choice of SU(6) or diquark models, the γ d → �++�−
cross section is always larger than the cross section of the
γ d → �+�− reaction.
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TABLE I. Strength of �� channels relative to pn in
deuteron photodisintegration at θc.m. = 90◦.

R(90◦)

γ d → BB SU(6) Diquark

γ d → �+�0 0.47 0.11
γ d → �++�− 2.01 0.47

We quantify the above observations by parametrizing the
angular function f (θN

c.m.), which enters in Eqs. (B8)–(B10), in
the following form [36,44]:

f (θ ) = 1

sin(θ )2[1 − cos(θ )]2
(30)

known to describe reasonably well the elastic pp and pn

scattering cross sections.
Magnitudes of the ratio R at θc.m. = 90◦ are given in Table I,

while the angular dependencies [solid curves for diquark
model and dashed curves for SU(6) model] are presented
in Fig. 3(a). They clearly show strong angular anisotropy
and the excess (by a factor of 4–5) of the �++�− breakup
cross section relative to the cross section of the �+�0

breakup [Fig. 3(b)]. Our calculations show that the ratio of
the γ d → �� to γ d → pn cross sections is very sensitive to
the choice of SU(6) or diquark models of the wave functions.
However, because of the absence of isosinglet two-quark state
in the � wave functions, the ρ parameter dependence that
characterizes the choice of SU(6) or diquark models in the
baryons wave functions is factorized and enters only in the
normalization factor of the pn → �� helicity amplitudes.
As a result, the ratio of the γ d → �++�− to γ d → �+�0

cross sections [Fig. 3(b)] is independent of the choice
between SU(6) and diquark models for the baryons wave
functions.

10
-1

1

10

50 100 150

θc.m.(deg)

R

4

6

50 100 150

θc.m.(deg)

(a)
d(γ∆)∆/d(γp)n

(b)
d(γ∆++)∆-/d(γ∆+)∆0

∆++∆-

∆+∆0

FIG. 3. (Color online) (a) Ratio of the γ d → �� to γ d → pn

differential cross sections and (b) ratio of the γ d → �++�− to γ d →
�+�0 differential cross sections as a function of θc.m..

Finally, it is worth discussing how our calculations compare
with the predictions of models in which the production of two
�’s is a result of the breakup of the preexisting �� component
of the deuteron wave function. In this case, the final state
interaction is dominated by soft scattering of two �’s in the
final state which will induce similar angular distributions for
both �++�− and �+�0 channels (see e.g., Refs. [47,48]). As
a result, we expect essentially the same angular distribution
for both �++�− and �+�0 production channels. Also,
because of the deuteron being an isosinglet, the probabilities
of finding preexisting �++�− and �+�0 are equal. For
coherent hard breakup of the preexisting �’s we will obtain
the same cross section for both the �++�− and the �+�0

channels.
One interesting scenario for probing the preexisting �’s

in the deuteron is using the decomposition of the deuteron
wave function, in the chiral symmetry restored limit, into
the nucleonic and non-nucleonic components in the following
form [28–30]:

�T =0,S=1 = (
1
9

) 1
2 �NN + (

4
45

) 1
2 ��� + (

4
5

) 1
2 �CC, (31)

where �CC represents the hidden color component of T = 0
and S = 1 six-quark configuration. Since �++�− and �+�0

components enter with equal probability in the total isospin
T = 0 configuration, one expects close (≈0.8) strengths for
deuteron breakup to �++�− or �+�0 channels as compared
to the strength of the deuteron breakup into the pn pair. This
result should be compared with the similar ratios presented in
Table I from HRM and with the HRM angular distributions in
Fig. 3.

It is worth noting that HRM can be applied for calculation
of the large angle photoproduction of any given two baryonic
resonances. In all cases the model will be sensitive to the
valence quark wave function of the baryons as well as to
the effective color charge factors entering in the scattering
amplitude. One such possibility is the large center-of-mass
angle photoproduction of the NN∗ pair which will allow
us to evaluate the role of the rescattering in reactions
aimed at probing the NN∗ component of the deuteron wave
function. Note that such a process will not interfere with
the amplitude of �� production at large center of mass
angles, since the decay products of the produced resonances
occupy distinctly different phase spaces in the final state of the
reaction.

VI. SUMMARY

We extended the hard rescattering model of large c.m. angle
photodisintegration of a two-nucleon system to account for the
production of two � isobars. The HRM allows to express the
cross section of γ d → pn and γ d → �� reactions through
the large c.m. angle differential cross section of pn → pn and
pn → �� scattering amplitudes.

Because of lack of experimental information on pn → ��

scattering, we further applied the quark-interchange model
to calculate the strength of the γ d → �� cross section
relative to the cross section of γ d → pn breakup reaction.
We predicted a significantly larger strength for the �++�−
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channel of breakup as compared to the �+�0 channel which
is related to the relative strength of the pn → �++�− and
pn → �+�0 scatterings. Because of the different angular
dependences of these hadronic amplitudes, we also predicted
a significant difference between the angular dependences
of photoproduction cross sections in �++�− and �+�0

channels.
These results can be compared with the prediction of

the models in which two �’s are produced due to the
coherent breakup of the �� component of the deuteron wave
function. In this case one expects essentially similar angular
distributions and strengths for the �++�− and �+�0 breakup
channels.
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APPENDIX A: BARYON-BARYON SCATTERING
HELICITY AMPLITUDES

We are using helicity states to label the entries of the
photodisintegration and the baryon-baryon scattering matrices.
The number of independent helicity amplitudes for a given
ab → cd processes can be expressed through the total spin of
the scattering particles as follows [45,46]:

N = 1
2 (2sa + 1)(2sb + 1)(2sc + 1)(2sd + 1), (A1)

where si is the total spin of particle i and for the photon we
replace (si + 1) by 2. The factor 1

2 follows from the constraint
due to the parity conservation. For elastic scattering, there is a
further reduction in N due to time reversal invariance, and if
the scattering particles are identical, or lie in the same isospin
multiplet, the number of independent helicity amplitudes is
reduced further [45,46]. For the pn elastic scattering case, out
of the possible 16 helicity amplitudes only five are independent
[46] for which we use the following notations:〈+ 1

2 ,+ 1
2

∣∣ T ∣∣+ 1
2 ,+ 1

2

〉 = φ1,〈+ 1
2 ,− 1

2

∣∣ T ∣∣+ 1
2 ,− 1

2

〉 = φ3,〈− 1
2 ,+ 1

2

∣∣ T ∣∣+ 1
2 ,− 1

2

〉 = φ4, (A2)〈− 1
2 ,− 1

2

∣∣ T ∣∣+ 1
2 ,+ 1

2

〉 = φ2,〈− 1
2 ,+ 1

2

∣∣ T ∣∣+ 1
2 ,+ 1

2

〉 = φ5.

For the pn → �� scattering amplitude, we have from
Eq. (A1), N = (2)(2)(4)(4)/2 = 32 independent helicity am-
plitudes. We use the following notations for the helicity
conserving independent amplitudes of pn → �� scattering:〈+ 1

2 ,+ 1
2

∣∣ T ∣∣+ 1
2 ,+ 1

2

〉 = φ1,〈+ 1
2 ,− 1

2

∣∣ T ∣∣+ 1
2 ,− 1

2

〉 = φ3,

〈− 1
2 ,+ 1

2

∣∣ T ∣∣+ 1
2 ,− 1

2

〉 = φ4,〈+ 3
2 ,− 1

2

∣∣ T ∣∣+ 1
2 ,+ 1

2

〉 = φ6,〈− 1
2 ,+ 3

2

∣∣ T ∣∣+ 1
2 ,+ 1

2

〉 = φ7,〈+ 3
2 ,− 3

2

∣∣ T ∣∣+ 1
2 ,− 1

2

〉 = φ8,〈− 3
2 ,+ 3

2

∣∣ T ∣∣+ 1
2 ,− 1

2

〉 = φ9, (A3)

which are consistent with the definitions in Eq. (A2).

APPENDIX B: HELICITY AMPLITUDES OF
PHOTODISINTEGRATION IN THE
QUARK-INTERCHANGE MODEL

1. Quark interchange model

Following the approach presented for example in
Refs. [41–44], the scattering amplitude for a process ab → cd,
in which a, b, c, and d are baryons, is obtained from

〈cd|T |ab〉 =
∑
α,β,γ

〈ψ†
c |α′

2, β
′
1, γ

′
1〉〈ψ†

d |α′
1, β

′
2, γ

′
2〉

× 〈α′
2, β

′
2, γ

′
2, α

′
1β

′
1γ

′
1|H |α1, β1, γ1, α2β2γ2〉

× 〈α1, β1, γ1|ψa〉〈α2, β2, γ2|ψb〉, (B1)

where (αi, α
′
i), (βi, β

′
i), and (γiγ

′
i ) describe the spin-flavor

quark states before and after the hard scattering, H , and

C
j

α,β,γ = 〈α, β, γ |ψj 〉 (B2)

describes the probability amplitude of finding an α, β, γ

helicity-flavor combination of three valence quarks in the
baryon j . These coefficients are obtained from the expansion of
the baryon’s spin-isospin wave function in three-quark valence
states as follows:

ψi3
N ,hN = N√

2

{
σ
(
χ

(23)
0,0 χ

(1)
1
2 ,hN

)(
τ

(23)
0,0 τ

(1)
1
2 ,i3

N

)

+ ρ

1∑
i3
23=−1

1∑
h3

23=−1

〈
1, h23;

1

2
, hN − h23

∣∣∣∣1

2
, hN

〉

×
〈
1, i3

23;
1

2
, i3

N − i3
23

∣∣∣∣1

2
, i3

N

〉

×
(
χ

(23)
1,h23

χ
(1)
1
2 ,hN−h23

)(
τ

(23)
1,i3

23
τ

(1)
1
2 ,i3

N−i3
23

)}
. (B3)

The indexes 1 and 23 label the quark and the diquark states.
The first term corresponds to quarks 2 and 3 being in a helicity
zero isosinglet state, while the second term corresponds to
quarks 2 and 3 in helicity 1-isotriplet states. Where χ and τ

represent helicity and isospin states with helicity h and isospin
projection i3, respectively. For the wave functions of � isobars
σ = 0 and ρ = 1, while for nucleon wave functions σ = 1
and the parameter ρ characterizes the average strength of the
isotriplet diquark radial state relative to that of the isosinglet
state. Two extreme values of ρ = 1 and ρ = 0 correspond to
the realization of the SU(6) and good diquark symmetries in
the wave function.
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Using Eq. (B3) in Eq. (B1) for the hadronic scattering
amplitude one obtains

〈cd|T QIM |ab〉 = Aα′
1,α

′
2,α1α2

(
θN

c.m.

)
Mac

α1,α
′
1
Mbd

α2,α
′
2

+Aα′
1,α

′
2,α1α2

(
π − θN

c.m.

)
Mad

α1,α
′
1
Mbc

α2,α
′
2
, (B4)

where

M
ij

α,α′ = Ci
α,β,γ C

j

α′,β,γ + Ci
β,α,γ C

j

β,α′,γ + Ci
β,γ,αC

j

β,γ,α′ , (B5)

which accounts for all possible interchanges of α and α′ quarks
leaving β and γ quarks unchanged. In the QI model the
interchanging quarks conserve their corresponding helicities
and flavors, this is accounted for in the matrix elements of A

in Eq. (B4),

Aα′
1,α

′
2,α1α2

(
s, θN

c.m.

) ∝ δα′
1,α2δα′

2,α1

f
(
θN

c.m.

)
s2

. (B6)

Equation (B4) has two terms, first (referred as a t term) in
which four quarks scatter at angle θN

c.m. and two (interchanging)
quarks scatter at π − θN

c.m. and the second (referred as a u term)
in which two interchanging quarks scatter at θN

c.m., while four
spectator quarks scatter at π − θN

c.m..

2. Helicity amplitudes in the quark interchange model

Through the above procedure using Eq. (B4) for the helicity
amplitudes of pn scattering one obtains

φ1
(
θN

c.m.

) = (2 − y)f
(
θN

c.m.

) + (1 + 2y)f
(
π − θN

c.m.

)
,

φ2
(
θN

c.m.

) = 0,

φ3
(
θN

c.m.

) = (2 + y)f
(
θN

c.m.

) + (1 + 4y)f
(
π − θN

c.m.

)
, (B7)

φ4
(
θN

c.m.

) = 2yf
(
θN

c.m.

) + 2yf
(
π − θN

c.m.

)
,

φ5
(
θN

c.m.

) = 0,

where

y = 2

3

ρ

1 + ρ2

(
1 + 2

3

ρ

1 + ρ2

)
. (B8)

For pn → �+�0 scattering amplitudes we obtain

φ1 = 2

9
N��

[
2f

(
θN

c.m.

) − f
(
π − θN

c.m.

)]
,

φ3 = 1

9
N��

[
4f

(
θN

c.m.

) + f
(
π − θN

c.m.

)]
,

φ4 = 2

9
N��

[
f

(
θN

c.m.

)] + f
(
π − θN

c.m.

)
,

(B9)

φ6 = N��

3
√

3

[
2f

(
θN

c.m.

) − f
(
π − θN

c.m.

)]
,

φ7 = N��

3
√

3

[
2f

(
θN

c.m.

) − f
(
π − θN

c.m.

)]
,

φ8 = 2

9
N��f

(
θN

c.m.

)
, φ9 = 1

3
N��f

(
π − θN

c.m.

)
,

and similarly for the amplitudes of the pn → �++�− scatter-
ing, QI model gives

φ1 = −2

3
N��f

(
θN

c.m.

)
, φ3 = −2

3
N��f

(
θN

c.m.

)
,

φ4 = −1

3
N��f

(
θN

c.m.

)
, φ6 = −N��√

3
f

(
θN

c.m.

)
, (B10)

φ7 = −N��√
3

f
(
θN

c.m.

)
, φ8 = −N��f

(
θN

c.m.

)
, φ9 = 0.

For both sets of equations in Eqs. (B9) and (B10), we
have

N�� = (1 + ρ)2

1 + ρ2
, (B11)

which shows that the strength of the two �� channels relative
to each other is independent of the value of ρ. This is not
the case for their strengths relative to the pn channel; from
Eqs. (B8) we see that the ρ dependence of the helicity
amplitudes in pn → pn cannot be factorized.

3. Quark-charge factors

In the hard rescattering model, photodisintegration ampli-
tudes are expressed in terms of hadronic scattering amplitudes
weighted by the charges of struck quarks, Eq. (5). We
further split the amplitude of Eq. (5) into t and u channel
scatterings:∑

i

Q
Nk

i 〈λ2f ; λ1f |T(pn→B1B2),i(s, t̃)|λγ ; λ2i〉

= [
Q

tNk

j φt
j + Q

uNk

j φu
j

]
, (B12)

where Q
t/uN

i is the charge of the quark, struck by the incoming
photon from the nucleon N with further θN

c.m. or π − θN
c.m.

scattering. The helicity amplitudes are also split into t and u

parts

φi

(
θN

c.m.

) = φt
i

(
θN

c.m.

) + φu
i

(
θN

c.m.

)
= ctf

(
θN

c.m.

) + cuf
(
π − θN

c.m.

)
, (B13)

with φt and φu corresponding to the θN
c.m. or π − θN

c.m. scattering
terms in Eq. (B4).

Using the above definitions and Eqs. (B4), (B5), and (B8)–
(B10) the charge factors Qt and Qu are calculated using the
following relations:

Q
tNk

j =
Q(αk)Aα′

1,α
′
2,α1α2M

ac
α1,α

′
1
Mbd

α2,α
′
2

φt
j

,

(B14)

Q
uNk

j =
Q(αk)Aα′

1,α
′
2,α1α2M

ad
α1,α

′
1
Mbc

α2,α
′
2

φu
j

,

where summation is understood for repeated α indices, Q(α)
is the charge in e units of a quark α and the index j labels the
process ab → cd.
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