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Andrzej Sołtan Institute for Nuclear Studies, PL-05-400 Otwock-Świerk, Poland
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We present a modified version of the Fusion by Diffusion (FBD) model aimed at describing the synthesis of
superheavy nuclei in cold fusion reactions, in which a low excited compound nucleus emits only one neutron.
The modified FBD model accounts for the angular momentum dependence of three basic factors determining the
evaporation residue cross section: the capture cross section σcap(l), the fusion probability Pfus(l), and the survival
probability Psurv(l). The fusion hindrance factor, the inverse of Pfus(l), is treated in terms of thermal fluctuations
in the shape degrees of freedom and is expressed as a solution of the Smoluchowski diffusion equation. The
l dependence of Pfus(l) results from the l-dependent potential energy surface of the colliding system. A new
parametrization of the distance of starting point of the diffusion process is introduced. An analysis of a complete
set of 27 excitation functions for production of superheavy nuclei in cold fusion reactions, studied in experiments
at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley, is presented. The FBD model satisfactorily reproduces
shapes and absolute cross sections of all the cold fusion excitation functions. It is shown that the peak position
of the excitation function for a given 1n reaction is determined by the Q value of the reaction and the height of
the fission barrier of the final nucleus. This fact could possibly be used in future experiments (with well-defined
beam energy) for experimental determination of the fission barrier heights.
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I. INTRODUCTION

This article presents a new theoretical analysis of the
complete set of experimental data on synthesis of superheavy
nuclei in cold fusion reactions, including measurements for 27
reactions carried out at GSI Darmstadt, RIKEN Tokyo, and
LBNL Berkeley. Very heavy nuclei in the range of atomic
numbers Z = 104–113 were produced in these experiments
by bombarding strongly bound target nuclei, 208Pb and 209Bi,
with the variety of projectiles ranging from 48,50Ti to 70Zn.
In all these reactions only one neutron is evaporated from the
compound nucleus to cool it down to its ground state. This
makes it considerably easier to calculate the probability of
the statistical deexcitation of the compound nucleus and thus
focus on disentangling the physics of amalgamation of very
heavy nuclear systems.

For the analysis we used the Fusion by Diffusion (FBD)
model developed by Świa̧tecki et al. [1,2]. A smaller set of cold
fusion reactions had already been analyzed with the original
version of the FBD model [2]. In this article an up-to-date set
of 1n evaporation-residue excitation functions, including new
LBNL and RIKEN data, is reanalyzed by using a modified
version of the FBD model. The most important modifications
consist in the inclusion of the angular momentum in the
description of the potential energy surface of the interacting
nucleus-nucleus system on its way to overcome the fusion
barrier as well as in the description of the deexcitation of the
compound nucleus. Moreover, an individual treatment of the
geometry of the rapid growth of the neck between the target
and projectile is proposed for each individual reaction. This
enables one to establish a phenomenological parametrization
of this very critical constituent of fusion of very heavy systems,
decisively influencing the cross sections.

In the following we give an overview of the FBD model
together with the information on all the modifications imple-
mented to the model described in Ref. [2].

II. BASIC SCHEME AND MODIFICATIONS OF THE
FUSION BY DIFFUSION MODEL

For each value of the entrance-channel angular momen-
tum, the partial evaporation-residue cross section σER(l) for
production of a given final nucleus in its ground state is
factorized in the FBD model as the product of the partial
capture cross section σcap(l) = πλ-2(2l + 1)T (l), the fusion
probability Pfus(l), and the survival probability Psurv(l):

σER = πλ-2
∞∑
l=0

(2l + 1)T (l)Pfus(l)Psurv(l). (1)

The capture transmission coefficients T (l) are calculated in a
simple sharp cutoff approximation: T (l) = 1 for l � lmax, and
T (l) = 0 for l > lmax, where lmax is determined by the capture
cross section σcap, i.e., the cross section of overcoming the
interaction barrier at a given bombarding energy Ec.m.,

σcap = πλ-2
lmax∑
l=0

(2l + 1) = πh̄2

2µEc.m.
(lmax + 1)2, (2)

where λ- is the wavelength, λ-2 = h̄2/2µEc.m., and µ is the
reduced mass of the colliding system. For determination of
σcap, see the next subsection.

Two other factors in Eq. (1) are defined as follows: Pfus(l)
is the probability that the colliding system, after reaching the
capture configuration, will eventually overcome the fission
barrier and fuse, thus avoiding reseparation, and Psurv(l) is
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the probability for the compound nucleus to decay to the
ground state of the final residual nucleus via evaporation of
light particles and γ rays, thus surviving fission.

A. The capture cross section

The capture cross section σcap is the cross section for
overcoming the entrance channel Coulomb barrier and is given
by the “diffused barrier formula” [2,3] based on the assumption
of a Gaussian distribution of barriers around a mean B0:

σcap = πR̃2 w

Ec.m.

√
2π

[X
√

π (1 + erfX) + exp(−X2)], (3)

where

X = Ec.m. − B0

w
√

2
, (4)

and erfX is the Gaussian error integral of the argument X.
Here the parameter B0 denotes the mean value of the barrier
distribution and w its width. Both these parameters, as well
as the cross section normalization parameter R̃, had been
determined from analysis of fusion excitation functions for
about 50 nuclear systems [3]. The resulting mean barrier
parameter B0 was parameterized by a cubic polynomial:

B0 = 0.853315z + 0.0011695z2 − 0.000001544z3 MeV,

(5)

where z = Z1Z2/(A1/3
1 + A

1/3
2 ). The normalization R̃ param-

eter was taken as R̃ = 1.16(A1/3
1 + A

1/3
2 ) fm [3], and the width

w was calculated as described in Ref. [2], but with some minor
modifications:

ω = CB0

√
ω2

1 + ω2
2 + ω2

0, (6)

where ωi = R2
i β

2
2i/4π , with the radii R1 and R2 defined as

Ri = 1.15A
1/3
i and their quadrupole deformation parameters

β2 taken from Ref. [4]. In this notation the parameters C and
ω0 were found to be C = 0.0421 fm−1 and ω0 = 0.531 fm.

B. The fusion hindrance factor

Contrary to lighter systems, in collisions of heavy nuclear
systems the fusion probability Pfus is not equal to unity.
For the heaviest systems Pfus is reduced by several orders
of magnitude due to the fact that the fusing system must
find its way from the configuration of two touching nuclei
at the Coulomb barrier to the saddle point of the compound
nucleus, which is located well inside the Coulomb barrier
configuration. It is assumed in the model that after the contact
at the Coulomb barrier configuration, the neck connecting
the two nuclei grows rapidly at an approximately fixed mass
asymmetry and constant length of the system. This “neck zip”
is much faster than the characteristic speeds of other collective
degrees of freedom due to a large savings in surface energy
during the filling in of the crevice between the surfaces of
the touching nuclei. The neck zip is expected to carry the
system toward the bottom of the asymmetric fission valley
corresponding to the initial projectile-target mass asymmetry.
This is the “injection point,” from where the system starts

its climb uphill over the saddle in the process of thermal
fluctuations in the shape degrees of freedom. Obviously, it
is a simplification to assume that there is no contribution to the
probability of overcoming the saddle point directly from the
fast neck-zip stage. Also, it is largely idealized to assume that
the point at which the diffusion effectively begins is just at one
location of the asymmetric fission valley, but the crudeness
of this assumption is contained in treating the location of the
injection point as an adjustable parameter. By idealizing the
process of thermal fluctuations as a one-dimensional diffusion
over a parabolic barrier, one finds [1,2,5] the probability that
the system injected on the outside the saddle point at an energy
H below the top will achieve fusion is

Pfus = 1
2 (1 − erf

√
H/T ), (7)

where T is the temperature of the fusing system, which
decreases during the uphill diffusion from an initial tem-
perature at the injection point Tinj to a lower temperature at
the top of the saddle point Tsaddle. It is reasonable to use
in Eq. (7) the geometrical mean between these two values.
The energy threshold H opposing fusion in the diffusion
process is calculated using simple algebraical expressions
that approximate the potential energy surface (see Sec. II C).
The corresponding values of the rotational energy at the
injection point and at the symmetric saddle point are calculated
assuming moments of inertia as specified in Sec. II D. The fact
that H depends on the angular momentum causes that for
higher partial waves, fusion is strongly reduced in comparison
with central collisions (the rotational energy of the saddle point
rises faster with l than the rotational energy at the injection
point). The effective energy thresholds that oppose fusion,
H (l), are typically of several MeV, ranging in cold fusion
reactions (see Sec. IV) from about 2 to 7 MeV, thus resulting
in a considerable hindrance of the fusion probability Pfus, by
two to six orders of magnitude, respectively, especially for the
heaviest fusing systems.

C. The deformation energy along the asymmetric fission valley

The macroscopic (liquid drop) part of the potential energy
for the colliding projectile-plus-target system and for the
fissioning compound nucleus was tabulated in Ref. [6] as
functions of three degrees of freedom: elongation, asymmetry,
and neck size. Based on this approach, an algebraic expression
for the macroscopic deformation energy along the asymmetric
fission valley was obtained in Ref. [2]. This algebraic approxi-
mation was later improved. Therefore in the following we give
the complete set of the modified equations.

We calculate the deformation energy of the drop Edef,
originally spherical with the radius R, parameterized by two
spheres with radii R1 and R2 connected smoothly by a portion
of a spheroid, cone, or hyperboloid [6], expressed in units of
the surface energy Esurf of the spherical shape [2,7],

ξ = Edef/Esurf. (8)

Let L stand for the total length of the dinuclear shape, and
s for the surface separation between the two spheres, s =
L − 2(R1 + R2). The following quadratic approximation to
the deformation energy ξ along the asymmetric fission valley,
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in dependence on the variable S = s/R, was found for the
range of outer configurations L > 2(R1 + R2):

ξ> = a + bS + cS2. (9)

The parameters a, b, and c are expressed as follows:

a = α1 + α2t + α3t
2, (10)

b = β1 + β2t + β3t
2, (11)

c = γ1 + γ2t + γ3t
2, (12)

where

α1 = −0.00564 − 0.01936 exp(−D/0.02240), (13)

α2 = 0.05122 + 0.11931 exp(−D/0.03800), (14)

α3 = −0.07424 + 0.95959D, (15)

β1 = −0.06080 + 1.37825D − 10.7077D2, (16)

β2 = 0.27691 − 2.93119D + 12.60944D2, (17)

β3 = −0.02398 − 1.14854D, (18)

γ1 = −0.02722 + 0.2231D, (19)

γ2 = 0.02050 + 0.32122D, (20)

γ3 = 0.03843 + 1.03731D. (21)

The following notation is used in the above formulas: t = 1 −
x, where x is the fissility parameter as defined in Ref. [7], and
D = 	2, where 	 = (R1 − R2)/(R1 + R2) is the asymmetry
parameter used in Ref. [6].

In the interval of lengths between contact, L = 2(R1 + R2),
and the spherical shape at L = 2R (i.e., for negative values of
s) we shall use instead of Eq. (9) the cubic

ξ< = p(S − S0)2 − q(S − S0)3, (22)

where S0 corresponds to a value of S for the spherical
compound nucleus

S0 = 2R − 2(R1 + R2)

R
= 2 − 4

(2 + 6D)1/3
. (23)

From a smooth junction of Eqs. (9) and (22) for S = 0 we find

p = b

S0
+ 3a

S2
0

, (24)

q = − b

S2
0

− 2a

S3
0

. (25)

The above formulas of the algebraic approximation to the
macroscopic deformation energy have been tested for adequate
accuracy in the range 0.85 < x < 1.05 and −0.25 < 	 <

0.25.

D. Macroscopic saddle and rotational energy

Equations (9) and (22) were used to calculate the de-
formation energy of the system at the injection point in
the asymmetric fission valley (corresponding to the initial
projectile-target mass asymmetry) and also the deformation
energy of the saddle point that separates the equilibrium hollow
of the compound nucleus and the symmetric fission valley,
	 = 0. The deformation energy (zero for the spherical shape)
was added to the macroscopic energy of a spherical nucleus
(calculated with the Thomas-Fermi model [8]) to obtain the

macroscopic energy of the system for a given shape. The
ground-state energies of the compound nucleus (accounting
for the ground-state shell effect [4]) were taken from Ref. [8].

In the present (modified) version of the FBD model the
rotational energy at both the injection point and the saddle
point was calculated by assuming the rigid-body moments of
inertia for the respective shapes. For the injection point

Iinj = µr2 + 2/5MP R2
P + 2/5MT R2

T , (26)

where MP and MT and RP and RT are masses and radii
of the projectile and target, respectively, µ is the reduced
mass of the projectile and target system, and r is the distance
between the projectile and target at the injection point. For the
saddle configuration the moment of inertia is calculated for
ellipsoidal shape

Isd ≈ 1
5MR2[(1 + α)2 + (1 + α)−1] + 2Mb2

f , (27)

where α = (Rmax − R)/R is the deformation of the (axially
symmetric) ellipsoid defined by its semimajor axis Rmax and
the radius R of a sphere of the same volume. The last term
in Eq. (27) accounts [9] for the diffuseness bf ≈ 1 fm of the
mass distribution of the fissioning nucleus of mass M .

The difference of the potential energy between the saddle
point and the injection point, corrected for the respective
rotational energies, determine the barrier height H opposing
fusion; see Eq. (7).

A comment is necessary on how the energy of the saddle
point can be estimated in case of superheavy compound
systems with fissility approaching the limit x = 1, for which
the macroscopic saddle tends to have nearly spherical con-
figuration with the disappearing macroscopic fission barrier.
As these heavy nuclei are entirely stabilized by the shell
effect, their saddle-point deformation is not determined by
their macroscopic properties. Macroscopic-microscopic cal-
culations [10] show that this deformation may be quite large,
especially if the ground state is deformed. In the present study,
the energy of the saddle point was calculated as the macro-
scopic energy of the deformed nucleus along the symmetric
(	 = 0) fission valley assuming the saddle-point deformation
following from a systematics of macroscopic-microscopic
calculations of Muntian et al. [10]. An approximate rule
resulting from these calculations for superheavy nuclei of Z =
106–120 is that for superheavy nuclei that are deformed in their
ground state the saddle-point deformation is equal to αsd ≈
0.35, while for nuclei that are spherical in the ground state
αsd ≈ 0.18. A given nucleus is assigned to be deformed when
the theoretical [4] rms deformation parameter of its ground
state βrms = √

β2
2 + β2

4 + β2
6 is larger than 0.15, otherwise the

nucleus is assumed to be spherical. The deformation parameter
αsd (at the saddle) converts into the separation parameter Ssd

(also at the saddle) via the relation αsd = (Ssd − S0)/2.
For completeness, it should be noted that the moment of

inertia of the compound nucleus in its ground state (used
to calculate the rotational energy of the decaying compound
nucleus; see next section) is also calculated as for the
ellipsoidal shape with Eq. (27). The effective deformation
parameter αgs is then defined [9] by theoretical ground-state
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deformations β2, β4, and β6 taken from Möller et al. [4]:

αgs =
√

5

4π
β2 +

√
9

4π
β4 +

√
13

4π
β6. (28)

III. SURVIVAL PROBABILITY

The competition between deexcitation of the compound
nucleus by neutron emission and fission is treated by standard
methods. In cold fusion reactions, when only one neutron is
emitted from the compound nucleus, the survival probability
Psurv in Eq. (1) is given by the ratio of the neutron decay width

n and the total neutron plus fission width, 
tot ≈ 
n + 
f ,
multiplied by the probability P< that the excitation energy
(after the emission of the neutron) is less than the threshold
for second chance fission or second neutron emission:

Psurv = 
n


n + 
f

P<. (29)

Traditionally, the neutron width is calculated by using the
Weisskopf formula,


n = gnmnσn

π2h̄2ρA(E∗
A)

∫ E∗max
A−1

0
ρA−1

(
E∗max

A−1 − εn

)
εn dεn, (30)

where the product of the kinetic energy of the emitted neutron
εn and the level density of the daughter nucleus of mass number
(A − 1) is integrated over εn in the range from 0 to a maximum
possible energy E∗max

A−1 = E∗
A − BA

n − Erot
A−1 − E

pair
A−1, where

E∗
A is the excitation energy of the parent nucleus, BA

n is the
neutron binding energy in the parent nucleus, and Erot

A−1 and
E

pair
A−1 are the rotational and pairing energies in the daughter

nucleus, respectively. In the preintegral factor of Eq. (30),
gn = 2 is the neutron spin degeneracy, mn is the neutron mass,
σn ≈ πr2

0 A2/3 with r0 ≈ 1.45 fm [11] stands for the cross
section for neutron capture, the inverse of neutron evaporation,
and ρA(E∗

A) is the level density of the parent nucleus at the
initial excitation energy E∗

A.
The fission width is given by the transition state theory,


f = 1

2πρA(E∗
A)

∫ E∗max
A,sd

0
ρA,sd

(
E∗max

A,sd − K
)

dK, (31)

where the level density ρA,sd of the fissioning nucleus of mass
A and excitation energy at the saddle point, E∗

A,sd = E∗max
A,sd −

K , is integrated over the kinetic energy K in the fission degree
of freedom in the range of the excitation energy at the saddle
configuration from 0 to a maximum possible thermal excitation
energy E∗max

A,sd = E∗
A − BA

f − Erot
A,sd − E

pair
A , where Erot

A,sd and
E

pair
A are the rotational and pairing energies of the fissioning

nucleus, respectively, and BA
f is the fission barrier given by

the difference of the potential energy at the saddle point of the
fissioning nucleus of mass number A and the energy of that
nucleus in its ground state, BA

f = EA,sd − EA,gs.
The factor P< in Eq. (29) represents the probability that

evaporation of a neutron will bring the final nucleus (A − 1)
below its threshold for the second chance fission, E∗thr

A−1(f ) =
BA−1

f + Erot
(A−1)sd − Erot

A,sd, or the threshold for emission of
a second neutron, E∗thr

A−1(n) = BA−1
n + Erot

(A−2)gs − Erot
(A−1)gs,

whatever is lower. Therefore

P< =
∫ E∗max

A−1
εthr

ρA−1
(
E∗max

A−1 − εn

)
εn dεn∫ E∗max

A−1
0 ρA−1

(
E∗max

A−1 − εn

)
εn dεn

, (32)

where the threshold value of the variable εn equals εthr =
E∗max

A−1 − E∗thr
A−1 or εthr = 0 if E∗max

A−1 − E∗thr
A−1 � 0. Here E∗thr

A−1 =
min[E∗thr

A−1(f ), E∗thr
A−1(n)].

In Ref. [2] a close form expression for P< based on the
integration of the Maxwellian shape of the integrand in Eq. (32)
was used. In the present work we used exact integrals in
Eq. (32). This resulted in a more accurate description of the
high-energy part of energy distributions of the fusion cross
section.

It should be noted that in all calculations of the survival
probability Psurv, the excitation energy of a given nucleus was
evaluated with respect to its ground state energy which, if
unknown experimentally, was taken from the Thomas-Fermi-
model mass tables of Myers and Swiatecki [8]. For example,
the excitation energy of the compound nucleus, E∗

A = Ec.m. −
Qfusion = Ec.m. − (MP + MT − MA)c2, was calculated as-
suming experimental masses of the projectile and target,
MP and MT , and the theoretical [8] mass of the compound
nucleus MA.

A. Level densities and shell effects

To calculate the survival probability Psurv discussed in this
section, we used the Fermi-gas-model level densities

ρ = const. × exp 2
√

aU, (33)

where U is the excitation energy E∗ of a nucleus of a given
shape corrected for its rotational energy Erot and pairing
energy Epair, U = E∗ − Erot − Epair, where Epair = 21/

√
A

MeV, 10.5/
√

A MeV and 0 for even-even, odd, and odd-odd
nuclei, respectively [12]. Well-tested and realistic values of a
smooth, shape-dependent level density parameter ã proposed
by Reisdorf [12] was used:

ã = avA + asA
2/3BS + acA

1/3BK, (34)

where av = 0.0696 MeV−1, as = 0.1801 MeV−1, and
ac = 0.1644 MeV−1, and BS and BK are the surface and
curvature functions [9] that approximately determine the shape
dependence of the level density on the deformation variable
α used in the calculations of the macroscopic energy and
moments of inertia (see Sec.II.D):

BS = 1 + (0.6416α − 0.1421α2)2, (35)

BK = 1 + (0.6542α − 0.0483α2)2. (36)

As demonstrated by Ignatyuk et al. [13], the level densities
determined experimentally can be well reproduced assuming
that the smooth value of the level density parameter ã is
modified due to shell effects according to the formula

a = ã

{
1 + Eshell

U
[1 − exp (−U/ED)]

}
, (37)

where Eshell is the shell correction energy, and ED is a
parameter determining the damping of shell effects with the
increasing effective excitation energy U . According to the
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TABLE I. List of cold fusion reactions studied in experiments at GSI Darmstadt, RIKEN Tokyo, and LBNL Berkeley. The reactions are
arranged according to Z of the compound nucleus and the Coulomb parameter z = Z1Z2/(A1/3

1 + A
1/3
2 ). The table contains respective values

of the ground-state Q value, calculated for the Thomas-Fermi mass tables of Myers and Swiatecki [8]. Target thicknesses quoted in original
papers and used to average the theoretical excitation functions (see text) are also listed.

Reaction Ref. Coulomb Q value Target thickness
parameter z (MeV) (µg/cm2)

Z = 104
208Pb(50Ti, n)257Rf [15,16] 187.74 −177.74 400
208Pb(50Ti, n)257Rf [17] 187.74 −177.74 104
208Pb(48Ti, n)255Rf [17] 188.72 −173.03 470

Z = 105
209Bi(50Ti, n)258Db [16,18] 189.84 −180.02 450
209Bi(50Ti, n)258Db [19] 189.84 −180.02 441
208Pb(51V, n)258Db [19] 195.78 −184.28 470

Z = 106
208Pb(54Cr, n)261Sg [15,16] 202.79 −195.48 450
208Pb(52Cr, n)259Sg [20] 203.78 −192.34 470

Z = 107
209Bi(54Cr, n)262Bh [21] 205.06 −198.18 441
209Bi(54Cr, n)262Bh [22] 205.06 −198.18 390–660
209Bi(52Cr, n)260Bh [23] 206.06 −195.59 441
208Pb(55Mn, n)262Bh [21,24] 210.73 −202.45 470

Z = 108
208Pb(58Fe, n)265Hs [15,16] 217.64 −213.48 450
208Pb(56Fe, n)263Hs [25] 218.65 −210.86 250

Z = 109
209Bi(58Fe, n)266Mt [16,26] 220.08 −216.80 450
208Pb(59Co, n)266Mt [27] 225.50 −220.36 460

Z = 110
208Pb(64Ni, n)271Ds [15,16] 231.34 −232.39 450
208Pb(64Ni, n)271Ds [28,29] 231.34 −232.39 500
208Pb(64Ni, n)271Ds [30,31] 231.34 −232.39 190–270
207Pb(64Ni, n)270Ds [32] 231.56 −231.92 435
208Pb(62Ni, n)269Ds [16] 232.32 −231.33 450

Z = 111
209Bi(64Ni, n)272Rg [16] 233.93 −236.07 450
209Bi(64Ni, n)272Rg [31,33] 233.93 −236.07 280
208Pb(65Cu, n)272Rg [29] 239.10 −239.72 470

Z = 112
208Pb(70Zn, n)277Cn [15,16] 244.87 −251.03 450
208Pb(70Zn, n)277Cn [34] 244.87 −251.03 450

Z = 113
209Bi(70Zn, n)278113 [35,36] 247.62 −254.77 450

parametrization tested by Reisdorf [12], ED = 18.5 MeV. In
our calculations, the level densities of the nuclei in their ground
state were calculated by using the shell corrections Eshell(g.s.)
of Möller et al. [4], while for the saddle point no shell effect
was assumed, Eshell(saddle) = 0. (See the discussion on this
question in Ref. [14].)

IV. COLD FUSION EXCITATION FUNCTIONS
AND CROSS SECTIONS

The l-dependent version of the FBD model outlined
above can be used to calculate excitation functions of the

evaporation-residue cross section σER given by Eq. (1). Table I
shows a list of cold fusion reactions, in which different isotopes
of superheavy elements of atomic numbers Z from 104 to
113 were synthesized in the bombardment of 208Pb and 209Bi
targets with a variety of projectiles ranging from 48,50Ti to
70Zn [15–36]. The list contains, as independent entries, some
data for the same reactions obtained in experiments carried out
in different laboratories.

As an example, Fig. 1 shows the experimental excitation
function for the 208Pb(58Fe,n)265Hs reaction [15,16] compared
with the results of the FBD model calculation. As discussed
in Ref. [2], the rise and fall of the excitation function is due
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FIG. 1. (Color online) Theoretical excitation function for the
208Pb(58Fe,n)265Hs reaction calculated with the l-dependent FBD
model for infinitely thin target (dashed line) and the corresponding
curve corrected for the actual target thickness (solid line), compared
with experimental data [15,16]. The height of the theoretical curve,
averaged over the beam energy spread due to the target thickness,
is fitted to the maximum of the experimental excitation function by
adjusting a value of sinj (the injection point), the only adjustable
parameter of the model.

to the rising capture cross section above the energy threshold
determined by the Q value of the 1n reaction channel,

Ethresh
c.m. = −Q(1n) = (MA−1 + Mn − MP − MT )c2, (38)

combined with the rising Pfus factor, both counterbalanced
by the factor P< sharply decreasing above the threshold for
second chance fission [see Eq. (32)]. Therefore the maximum
of the excitation function is expected to be located near the
energy corresponding to the top of the fission barrier of the
nucleus (A − 1), BA−1

f :

Emax
c.m. ≈ BA−1

f + (MA−1 + Mn − MP − MT )c2. (39)

In the above expressions MT , MP , Mn, and MA−1 stand for
the target mass, projectile mass, neutron mass, and daughter-
nucleus mass, respectively.

The plot in Fig. 1 is displayed in the linear scale to
emphasize discrepancies between the calculated excitation
function and the measured cross sections. The dashed line
is calculated for an infinitely thin target. In real experiments
the beam loses its energy while passing through the target,
so the fusion reaction may occur within a range of energies
E ± 1

2	E, where E corresponds to the energy at the center
of target, and 	E is the loss of the beam kinetic energy
in the target (converted to the scale of the center-of-mass
energies). For typical target thicknesses used in experiments
listed in Table I, 	E was about 3–5 MeV. In order to compare
the model predictions with experimental excitation function,
for each point of the theoretical curve at an energy E, the
calculated cross section has to be averaged over the energy
range from E − 1

2	E to E + 1
2	E. The resulting theoretical

curve is decreased and wider than for the infinitely thin target,
as shown by the solid curve in Fig. 1.

The height of the target-thickness-corrected curve has to
be compared now with the data points of the experimental
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FIG. 2. (Color online) The injection point distances sinj deduced
from fitting predictions of the FBD model to 27 excitation functions
of cold fusion reactions listed in Table I. The sinj values are plotted as
a function of the excess of kinetic energy above the Coulomb barrier,
Ec.m. − B0. A least-square linear fit, sinj ≈ 2.30 fm − 0.062(Ec.m. −
B0) fm/MeV, is shown by the solid line.

excitation function. The FBD model contains only one
adjustable parameter, namely, the injection-point distance sinj,
from where the fusing system starts its climb uphill in the
process of thermal fluctuations to overcome the saddle point
and to form the compound nucleus. (We remind readers that
the variable s is the excess of length of the system at a
given configuration over the sum of the projectile and target
diameters; see Sec. IIC.) By fitting the hight of the theoretical
curve (averaged over the target thickness) to the maximum of
the experimental excitation function we determine a value of
sinj for a given reaction.

Figure 2 shows the compilation of the deduced sinj values
for the whole set of analyzed reactions. They range from
about 1.8 to 3.8 fm. This means, in accordance with the
definition of s mentioned above, that the deduced length
of the colliding system at the injection point exceeds the
length of the target plus projectile system by 1.8–3.8 fm.
The deduced values of sinj are plotted in Fig. 2 as function
of the excess of kinetic energy above the Coulomb barrier,
Ec.m. − B0. Such a dependence might be expected on the
grounds of classical trajectory calculations. However, only a
weak trend of slowly decreasing sinj with the increasing energy
is observed,

sinj ≈ 2.30 fm − 0.062(Ec.m. − B0) fm/MeV. (40)

One can observe that the deduced sinj values are dispersed
much more than would result from the error bars based only on
the statistics of the cross section measurements. Nevertheless,
the trend of the decreasing sinj values with the increasing
energy seems to be really present in the data. This trend should
be established more precisely in future analysis of hot fusion
reactions that cover a wider energy range. We adopt the linear
expression for sinj, Eq. (40), as the only adjustable input to the
model.

A comparison of the experimentally measured excitation
functions for 12 selected reactions with the corresponding
theoretical curves is shown in Fig. 3. Solid curves show
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FIG. 3. (Color online) Comparison of the measured excitation functions for 12 selected cold fusion reactions (for references see Table I)
with predictions of the l-dependent FBD model assuming sinj values given by Eq. (40). Solid curves represent predictions accounting for the
effect of the beam energy smearing due to the target thickness. Dashed lines show the theoretical curves shifted in energy and multiplied by a
factor to fit the experimental points (see text).

054602-7
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predictions of the new version of the FBD model calculated
according to Eq. (1), with the empirically found approximation
for sinj given by Eq. (40). The theoretical curves have been
averaged over the energy range 	E accounting for the target
thickness, as described above. Values of the target thickness,
reported in the listed papers, are given in Table I.

The first two panels in Fig. 3 present data and results of
calculations for the same reaction, 208Pb(50Ti,n)257Rf, with
the excitation function taken for a thick (400 µg/cm2) and
a thin (104 µg/cm2) target. A difference in the width of the
excitation functions is clearly seen. Dashed lines in all panels
of Fig. 3 show the theoretical curves (solid lines) shifted in
energy and multiplied by a factor to fit the experimental points.
For most of lighter elements, the necessary energy shifts turned
out to be about 2–3 MeV (usually toward higher energies),
while for the heaviest elements the predicted positions of the
maxima do not show such a systematic shift. The multiplying
factors range from 0.3 to 3. A degree of agreement of the
solid and dashed curves is a measure of the accuracy of the
model predictions regarding both the location of the maximum
of the excitation function and the absolute value of the cross
section.

Figure 4 presents the compilation of the peak positions
of the excitations functions measured in all 27 experiments
(carried out in GSI Darmstadt, LBNL Berkeley, and RIKEN
Tokyo), which are listed in Table I. The peak energy (or
the energy of a single measurement for the heaviest ele-
ments) is plotted in Fig. 4 as a function of the Coulomb
interaction parameter z = Z1Z2/(A1/3

1 + A
1/3
2 ), which is a

convenient quantity to systemize the studied fusion reactions.
The theoretical peak positions of the excitation functions
calculated with the FBD model are joined by the solid line in
Fig. 4.

As discussed earlier, the maximum of the excitation func-
tion is expected to be located near the energy corresponding
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FIG. 4. (Color online) Peak positions of the experimental ex-
citation functions (circles, squares and triangles) compared with
the l-dependent FBD model predictions and plotted as a function
of the Coulomb interaction parameter z. The dotted line shows an
approximation to the peak position corresponding to the top of the
fission barrier of the final nucleus after the neutron emission, given
by Eq. (39). The exact theoretical peak position is shown by the solid
line.
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FIG. 5. (Color online) Complete set of measured cross sections
(at the maximum of the excitation function) for cold fusion reactions
(see Table I), plotted as a function of the Coulomb interaction
parameter z, and compared with the l-dependent FBD model
predictions (dotted line).

to the top of the fission barrier of the final nucleus of the
mass number A − 1, and thus given by Eq. (39). This position
depends only on the ground-state masses of the projectile,
target, and the final nucleus after the neutron emission and
on the fission barrier BA−1

f . Figure 4 presents the “optimum
energies” [1,2] prescribed by Eq. (39) and shown by the dotted
line. It is seen that the approximate formula of Eq. (39)
approximates very well the exact theoretical peak positions
represented by the solid line.

It should be noted that Eq. (39) gives at least a potential
possibility to directly measure the fission barrier height BA−1

f

of the final nucleus A − 1, provided its ground-state mass
MA−1 is known. In practice it will require a considerable im-
provement of the precision of the beam energy determination,
which in the present-time experiments is of about ±2–3 MeV,
but potentially it offers an important tool for verification of
theoretical models, especially in light of large discrepancies
between the fission barriers of superheavy nuclei predicted by
Möller et al. [37] and Kowal et al. [38].

Having discussed the predictions of the optimum bombard-
ing energy, we pass to predictions of the cross sections for
the production of the final compound-residue nuclei. In Fig. 5
we present the complete set of the measured cross sections
(at the maximum of the excitation function) for all the cold
fusion reactions listed in Table I. The cross sections are plotted
as a function of the Coulomb interaction parameter z and
compared with our FBD model predictions. The theoretical
values of the cross section are visualized by the dotted line.
(Particular reactions can be identified in Fig. 5 according
to their z values, which are listed in Table I together with
respective references.) The calculated cross sections agree
quite well with the experimental values in a wide range of cross
sections varying over six orders of magnitude from several tens
of nanobarns to tens of femtobarns. It is interesting to note
that the theoretical cross sections, when plotted as a function
of z, clearly show structure effects characterizing individual
combinations of the target and projectile used to synthesize
a given superheavy nucleus. Figure 5 demonstrates that the
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predicted with the l-dependent FBD model. The excitation functions
are averaged over the assumed beam energy spread corresponding to
a thick target of 	E = 5 MeV.

measured cross sections evidently are correlated with these
entrance channel effects.

A review of the cross sections for the production of
superheavy nuclei in cold fusion reactions, presented in Fig. 5,
demonstrates that this class of fusion reactions practically
cannot be extended for the synthesis of superheavy nuclei
beyond, say, Z = 115. For the element Z = 113 a record
low cross section of about 30 fb had been reached [35,36].
As demonstrated in the series of discovery experiments
by Oganessian et al. (see the review article [39]), heavier
superheavy elements of Z = 114–118 are easier to reach
in hot fusion reactions, especially in those induced by 48Ca
projectiles bombarding heavy actinide targets.

On the other hand, the cold fusion reactions remain the
only way to reach new nuclides in the empty, unexplored
region of the chart of nuclides located in the neutron-deficient
side of the decay products of elements 114–118 discovered
in hot fusion reactions [39]. Specifically, we have in mind
reactions on 208Pb and 209Bi targets induced by 74,76Ge
projectiles leading to the synthesis of 281,283114 and 282,284115
nuclides in cold fusion (1n) reactions. The predicted excitation
functions for these reactions are shown in Figs. 6 and 7.
The 208Pb(76Ge,n)283114 reaction seems to be especially
promising, showing the peak cross section of about 130 fb at
Ec.m. ≈ 278 MeV, i.e., achievable in very sensitive subpicobarn
experiments such as those of Refs. [35,36]. Thus, if the 283114
nuclide were successfully formed, the chain of its α decays
would significantly fill the present gap between the area of the
heaviest nuclei, products of the decay of elements 114–118,
and better-known decay products of cold fusion (1n) reactions
explored so far.
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FIG. 7. (Color online) Two excitation functions for the synthesis
of Z = 115 nuclei in cold fusion reactions 209Bi(74,76Ge,n)282,284115,
predicted with the l-dependent FBD model. The excitation functions
are averaged over the assumed beam energy spread corresponding to
a thick target of 	E = 5 MeV.

In conclusion, the present version of the FBD model
satisfactorily describes all the experimental data on cold
fusion reactions in which superheavy nuclei of Z � 113 were
produced in (fusion,1n) reactions. This well tested l-dependent
version of the FBD model can be used for planning future
experiments in attempts to produce new nuclides accessible
in the cold fusion reactions. The model is suitable to easily
choose an optimum combination of the target and projectile to
synthesize a given nuclide, to predict the optimum bombarding
energy and the production cross section. Moreover, having in
mind the prospect of future experiments with precisely known
beam energies, the FBD model can be helpful for experimental
determination of the fission barrier heights from peak positions
of the excitation functions.

Having tested particular components of the FBD model in
the domain of relatively simple cold fusion (1n) reactions, one
can attempt to generalize this model for the class of hot fusion
(xn) reactions, the only way to reach the unsynthesized yet
heaviest elements of Z = 119, 120, and beyond.
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G. K. Pang, J. M. Schwantes, R. Sudowe, P. M. Zielinski,
H. Nitsche, and D. C. Hoffman, Phys. Rev. Lett. 93, 212702
(2004).

[30] K. Morita et al., Eur. Phys. J. A 21, 257 (2004).
[31] K. Morita et al., Nucl. Phys. A 734, 101 (2004).
[32] S. Hofmann et al., Eur. Phys. J. A 10, 5 (2001).
[33] K. Morita et al., J. Phys. Soc. Jpn. 73, 1738 (2004).
[34] K. Morita et al., J. Phys. Soc. Jpn. 76, 043201 (2007).
[35] K. Morita et al., J. Phys. Soc. Jpn. 76, 045001 (2007).
[36] K. Morita et al., J. Phys. Soc. Jpn. 73, 2593 (2004).
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