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Maximum likelihood method to correct for missed levels based on the �3(L) statistic
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The �3(L) statistic of random matrix theory is defined as the average of a set of random numbers {δ}, derived
from a spectrum. The distribution p(δ) of these random numbers is used as the basis of a maximum likelihood
method to gauge the fraction x of levels missed in an experimental spectrum. The method is tested on an ensemble
of depleted spectra from the Gaussian orthogonal ensemble (GOE) and accurately returned the correct fraction
of missed levels. Neutron resonance data and acoustic spectra of an aluminum block were analyzed. All results
were compared with an analysis based on an established expression for �3(L) for a depleted GOE spectrum. The
effects of intruder levels are examined and seen to be very similar to those of missed levels. Shell model spectra
were seen to give the same p(δ) as the GOE.
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I. INTRODUCTION

Neutron resonance data provide us with a high-resolution
picture of the eigenvalues of the nuclear Hamiltonian at high
excitation energies. This was the birthplace and testing ground
for random matrix theory (RMT) as a model for quantum
chaos. For a brief history of RMT, see Ref. [1], and for
a review of RMT and nuclear structure, see Ref. [2]. The
correspondence between the fluctuation properties of nuclear
spectra and those of the Gaussian orthogonal ensemble (GOE)
has been verified many times in neutron resonances [3–6] and
proton resonances [7]. Furthermore, shell model calculations
exhibit many of the fluctuation properties of the GOE [8,9]. For
an account of tests of RMT in nuclear physics, see Ref. [10].

The question of the completeness of an experimental
spectrum is important. One needs a gauge of the fraction, x,
of the levels missed in a given experimental spectrum. RMT
has already been used to this end. The fraction of levels not
observed because of the finite resolution and sensitivity of
the detectors will change the distribution of widths from the
Porter-Thomas distribution, which follows from RMT [11].
The nearest neighbor distribution (NND) is another commonly
used statistic. The NND for a pure spectrum follows the Wigner
distribution,

P (s) = π

2
se−πs2/4, (1)

where s = S/D, S being the spacing between adjacent levels
and D being the average spacing. The NND of a spectrum
incomplete by a fraction x is given by

P (s) =
∞∑

k=0

(1 − x)xkP (k; s), (2)

where P (k; s) is the kth nearest neighbor spacing, Ek+i − Ei .
This was first introduced as an ansatz in Ref. [7] and rederived
in Refs. [12] and [13]. Equation (2) was used by Agvaanluvsan
et al. as the basis for a maximum likelihood method (MLM) to
determine x for incomplete spectra [12]. The �3(L) statistic
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(also called the spectral rigidity) introduced by Dyson [14] is
a commonly used statistic. It is defined as a spectral average:

�3(L) =
〈
minA,B

1

L

∫ Ei+L

Ei

dE′ [N (E′) − AE′ − B]2

〉

= 〈δi
3(L)〉, (3)

where N (E) is the cumulative level number, the number of
levels with energy �E [its slope is the level density ρ(E)].
A and B are chosen to minimize δi

3(L). They are recalculated
for each i. A series of evenly spaced levels would make N (E)
a regular staircase, and �3(L) = 1

12 . At the other extreme, a
classically regular system will lead to a quantum mechanical
spectrum with no level repulsion, the fluctuations will be far
greater, and �3(L) = L

15 . The angle brackets mean the average
is to be taken over all positions Ei of the window of length L.

An analysis of neutron resonance data using the �3(L)
statistic and the MLM of Agvaanluvsan et al.was performed in
Refs. [15] and [16] with consistent results. When both methods
were tested on ensembles of depleted GOE spectra, the mean
values of x were correct, but the uncertainties were large, for
realistic spectrum sizes.

In this paper, we present a new method to test experimental
data for missed levels. It is a MLM based on the definition
of the �3(L) statistic. Instead of concentrating on the spectral
average of the random numbers δi

3(L) in Eq. (3), we consider
instead their distribution. If there are D levels in the spectrum,
then, allowing for setting the zero of the energy scale at the
lowest level, there are D − L − 1 values of δi

3(L) for each
value of L. This amounts to a large sample size of random
numbers. In this paper, we use numerical simulation to get an
expression for the distribution of δi

3(L) for depleted spectra
with the fraction missed, x, as a parameter, and base a MLM
on this distribution. The method will return a most likely value
of x for each L.

In Ref. [13], Bohigas and Pato gave an expression for the
�3(L) statistic for incomplete spectra. The fraction of missed
levels x is both a scaling factor and a weighting factor, and
�3(L, x) is the sum of the GOE and Poissonian result:

�3(L, x) = x2 L/x

15
+ (1 − x)2�GOE

3 [L/(1 − x)]. (4)
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The �3(L) statistic of an experimental spectrum can be
compared with this expression and the best x found. We see,
however, that the uncertainty in x is large for this method.

In the next section, we describe the process of making,
unfolding, and depleting GOE spectra and the calculation
of δi

3(L). In Sec. III, we discuss the cumulative distribution
function, N (δ), of δi

3(L) for spectra with depletion x. A
three-parameter fit was sufficient for each x. The parameters
were found for 0.00 � x � 0.30 in steps of 0.01. We then fit
the parameters as functions of x. Now we have N (δ) with x

as a continuous parameter. This is the basis for our MLM. In
Sec. IV, the MLM is developed and tested on ensembles of
depleted GOE spectra. In Sec. V, we test Eq. (4), use it to return
x for depleted GOE spectra, and compare these results with the
MLM. In Sec. VI, the method is applied to neutron resonance
data and ultrasonic spectra measured from an aluminum block.
The results are compared with previous investigations. The
effect of intruder levels on �3(L) and p(δ) is very similar
to missed levels. This issue is addressed in Sec. VII. Recent
developments [17] questioned the validity of using RMT to
model fluctuations of complex spectra. To see if N (δ) could
discriminate between the GOE and more physical models, we
look in Sec. VIII at shell model spectra. In Sec. IX, we make
some concluding remarks.

II. RMT CALCULATIONS

To do our RMT analysis, we need to generate an ensemble
of random matrices, diagonalize them, unfold them, deplete
them, and calculate δi

3(L) for each of them. We give a brief
description of this process here; it is described in detail in
Ref. [15].

The appropriate ensemble for this analysis is the GOE as it
describes real, time-reversal-invariant systems. This ensemble
is the set of random matrices H whose elements are normally
distributed matrix elements, Hij , having

P (Hi �=j )= 1√
2πσ 2

e(−H 2
ij /2σ 2), P (Hii)= 1√

4πσ 2
e(−H 2

ii /4σ 2)

for the off-diagonal and diagonal elements, respectively. The
width of the distribution is arbitrary, and we choose σ = 1.
Each of these matrices is diagonalized. We make an ensem-
ble of 3000 matrices, each of dimension D = 3000. Each
matrix has an approximately semicircular level density, with
ρ(E) = √

4N − E2, for |E| � 2
√

N and ρ(E) = 0 otherwise.
Interesting as this may be, it is not germane to our analysis. The
currency of RMT is fluctuations, and in order to compare GOE
results with experimental data we must remove this long range
(secular) structure from all spectra, including the experimental
data, with a process called unfolding. The basic idea is to
rescale the energy axis to give a uniform level density of one
level per unit energy, on average. To work with smaller spectra,
we just take a section from the large (D = 3000) spectra of
whatever size we want.

In a spectrum with picket fence of levels, spaced 1 unit apart,
like the harmonic oscillator spectrum, N (E) is a staircase with
steps 1 unit high and 1 unit long, and the spectrum is said to be
rigid. An arbitrary spectrum has N (E) = i, Ei � E < Ei+1.

The �3(L) statistic is a measure of fluctuations of N (E) from
a regular staircase, and its definition is the square of the differ-
ence between this stairs and a straight line. In the harmonic os-
cillator case, Eq. (3) can be integrated directly to get �3(L) =
1/12. The situation is messier for an arbitrary spectrum. Using
N (E) = i, Ei � E < Ei+1, in Eq. (3), and performing the
integral between two adjacent levels, we come to

�i
3(L) = 1

L

i+L−1∑
j=i

∫ Ej +1

Ej

dE′ (j − AE′ − B)2

= 1

L
× (C + V A2 + WA + XAB + YB + ZB2),

where C =∑i+L−1
j=i j 2(Ej+1 − Ej ), V = 1

3 (E3
i+L − E3

i ),W =∑i+L−1
j=i −j (E2

j+1 − E2
j ), X = (E2

i+L − E2
i ), Y = ∑i+L−1

j=i−2j (Ej+1 − Ej ), and Z = (Ei+L − Ei). A and B need
to minimize δi

3(L), and this leads to the constraints
∂(�i

3)/∂A = 0 and ∂(�i
3)/∂B = 0. These equations readily

give A and B that minimize �i
3(L) as follows:

A = XY − 2WZ

4V Z − X2
, B = WX − 2V Y

4V Z − X2
.

To generate spectra with specific values of D and x, we
take a section of D

1−x
levels from the middle of an unfolded

GOE spectra, randomly drop a fraction x of them, and
then contract this spectrum by a factor of 1 − x to restore
a level density of 1 level per unit energy. This gives D

levels “detected” from the original spectrum, and a fraction x

“missed.” Note that x is not a continuous parameter. Consider
an experimental run of 124 levels. The true spectrum could
have 125, 126, . . . , 130 levels, there being 1, 2, . . . , 6 levels
missed, in which case x would have values of 0.8%, 1.59%,
2.36%, 3.13%, 3.88%, or 4.62%. This should be kept in mind
when testing various schemes for estimating x.

Now we can make ensembles with a range of x and D.
We restrict our ensembles to 1500 elements each, and chose
D = 1000 and 0.00 � x � 0.30 in steps of 0.01.

III. THE DISTRIBUTION OF δ i
3(L)

Given an unfolded GOE spectrum of size D, where a
fraction x has been missed, �3(L) will be the (spectral) average
of the set of D − L − 1 numbers δi

3(L). We would like to get
the probability density of these numbers as a function of x. In
what follows, we write δ for δi

3(L), dropping all subscripts and
assuming a fixed value for L. The probability density of δi

3(L)
is written p(δ), and the cumulative distribution is writtenN (δ).

We should explicitly state that this analysis assumes that
p(δ) is ergodic, in that the distribution of δ is the same for one
huge matrix as it is from the superposition of many small ones.
It is true that the level spacing distribution p(s) is ergodic.
A histogram of the 3000 spacings from a single D � 3001
spectrum is the same as a histogram of the s = E16 − E15

spacing of 3000 spectra with D � 16, for example. However,
�3(L) is defined as a spectral average, so while it seems
obvious that it is ergodic, it seems prudent to state the
assumption explicitly, given that �3(L) can be very different
from one spectrum to the next; see Ref. [15].
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FIG. 1. (Color online) The cumulative distribution function,
N (δ). Each set of three lines corresponds to, from left to right,
x = 0.00, 0.04, and 0.08. The leftmost set of three lines is for L = 10,
and the rightmost set is for L = 40. The three-parameter fit, Eq. (5)
is plotted in black for each case and is indistinguishable from the
ensemble data (blue).

We proceeded by guessing the functional form of p(δ)
and were surprised to see that p(δ) was a simple function
of log δ for a wide range of L and x, and this motivated us
to parametrize the cumulative distribution function. We used
following parametrization:

N (δ) = 1
2 (1 − Erf[a + b log δ + c(log δ)2]). (5)

This yields, on differentiation,

p(δ) = − 1√
π

exp [−(a + b log δ + c log δ2)
2
]

×
(

b

δ
+ 2 c log δ

δ

)
. (6)

In Fig. 1, we see the ensemble average of N (δ) for L = 10
and 40, with x = 0.00, 0.04, and 0.08. The L = 40 case is more
sensitive to depletion than the L = 10 case, and one can clearly
see that the spread in the x = 0.00, 0.04, and 0.08 lines is
greater. This is reasonable because the bigger the window size,
L, the more likely it is to fall across the site of a missed level.
Consider a spectrum with D = 1000, and x = 0.02; there are
20 sites for missed levels. With L = 10, there are 989 positions
for the window, and there are at most 10 positions, i, where
δi

3(L) will be different from the x = 0.00 case, compared to
40 for the L = 40 case, so low L values give a less sensitive
distribution. We note that there are just three parameters in the
fits, shown in blue in the figure, even so their curves lie on the
ensemble average values. The spread of the averaged values
for each point in the N (δ) graphs was of order 10−3.

The method used to numerically make the N (δ) is best
illustrated by the following example for L = 20 and x = 0.03.
Take a GOE spectra, with D = 3000. Take the middle
100/0.97 = 1031 levels to avoid end effects. Unfold it.
Randomly drop 31 levels. Contract the spectrum by a factor
of (1 − x); now the level density is 1. Calculate the set of
1000 − 20 − 1 = 979 numbers {δ}. Sort them. Do this 1200
times, and get {δ̄} the average of the sorted sets. The standard
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FIG. 2. The parameters a, b, and c of Eq. (5). On the left panels,
the parameters are plotted vs x for fixed values of L. On the right
panels, we have plots of the parameters vs L for fixed x. From data
like this, we extracted aL(x), bL(x), and cL(x).

deviation of the sets was ∼10−3. Now pair δ̄i , the ith element of
{δ̄}, with i/979, to get the set {δ̄i , i/979}. A plot of {δ̄i , i/979}
is a graph of N (δ).

The values of a, b, and c were obtained by fitting Eq. (5)
to {δ̄i , i}. This was done for L = 5 to 90 in steps of 5, and for
x = 0.00 to 0.30 in steps of 0.01. The parameters were smooth
values of x for all L. See Fig. 2. For each value of L, the
parameters were fit to smooth functions of x, aL(x) = a0 +
a 1

2

√
x + a1x + a2x

2, with similar expressions for bL(x) and
cL(x). The values of a0, a 1

2
, a1, a2, . . . , c1, c2 were calculated

for all values of L from 5 to 100. We now have a probability
density for δi

3(L) with x as a continuous parameter:

p(δ, x)=− 1√
π

exp[−(aL(x) + bL(x) log δ + cL(x) log δ2)
2
]

×
(

bL(x)

δ
+ 2 cL(x) log δ

δ

)
. (7)

In Fig. 3, we have some examples of p(δ, x). When the fitted
values, a(x), b(x), and c(x) were used in p(δ, x), the results
were indistinguishable from when those values of a, b, and
c that were got from the fitting procedure were used. Again,
we anticipate from the graph that higher values of L will be
more useful in gauging x. In the next section, we see how these
parameters are used to get x for an unfolded spectrum.

As a test of our machinery, we checked that p(δ) was
independent of x for completely uncorrelated (Poissonian)
spectra, and it was.

IV. THE MAXIMUM LIKELIHOOD METHOD

Now that we have the probability distribution of δi
3(L) pa-

rameterized, Eq. (7), we can use it to find the most likely value
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FIG. 3. (Color online) The effect of depletion on p(δ) is shown
here, where we have plotted the ensemble average of p(δ). The set
of three lines on the left is for δ = δi

3(10), while δ = δi
3(40) is on the

right. Each set of three lines corresponds to x = 0.00, 0.04, and 0.08.
The parameterized p(δ, x), Eq. (7), is plotted in black and is barely
distinguishable from the ensemble average in blue.

of x: Given a set {δi
3(L)} for some L, the most likely value of x

is the one that maximizes the likelihood L = ∏
i pL[δi

3(L), x].
In practice, we work with logL. We tested this method on
an ensemble of 300 spectra, with N = 1000 after depletion
and with values of x = 0.00, 0.01, 0.02, . . . , 0.29, 0.30. The
mean, x̄, and standard deviation, σx , of the 300 values of
x were returned for L. In Fig. 4, we see some representative
examples of logL, and in Fig. 5 we see the results of x̄ for eight
spectra, four with x = 0.04 and four with 0.12. Each set of four
spectra were randomly chosen, but they are representative of
the general behavior of x versus L. In Fig. 6, we see the
ensemble average for x = 0.04, 0.06, . . . , 0.014, 0.016. We
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FIG. 4. The results of the MLM calculation for 10 randomly
chosen depleted members of the GOE with x = 0.00, 0.04, and 0.08.
The left-hand side has L = 20, and the right-hand side has L = 40.
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FIG. 5. The results of the MLM calculation for randomly chosen
spectra with x = 0.04 and 0.12.

used σx as error bars in this plot. The figure suggests that the
most reliable range of L to use has 20 � L � 40, because in
this range, σx settles down to a smaller value (see Fig. 7) and
x̄ is close to the true value of x.

The MLM does not have an error bar for the most likely
value of x it returns for a specific spectrum. In the analysis of an
individual spectrum, one may report a graph of logL versus x

and state its maximum. If the peak in logL is sharp, one would
have more confidence in the results. Agvaanluvsan et al. [12]
used the broadness of the graph of logL versus x to give a
range for x. However, if the spectrum being analyzed is from a
known ensemble, then σx as described previously would be a
reasonable gauge of how close to the true value of x the MLM
gets. Looking at σx averaged over either x or L, we are justified
in using a value of σ = 0.006 in our analysis; see Fig. 7.

Spectrum size is an issue of great practical importance when
applying these results. In the case of neutron resonance data,
the spectra we analyzed had typically 80 to 90 levels, and
we also looked at subsets of them. The acoustic spectra we
examined had ≈250 levels. So regardless of the way we choose
the error bar, we need to state the N dependance of it. Each
spectrum in our test had N = 1000, and this yielded N − L− 1
values of δ. We suggest, based on the behavior of σx , that we
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FIG. 6. (Color online) The results of the MLM calculation for
x = 0.02, 0.04, . . . , 0.18 and 0.20, for all L. σx was used for error bars.
We used this graph as a guide for using σx = 0.006 for 20 � L � 40
for all x.
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FIG. 7. The mean value of σ averaged over L, top panel, and x,
bottom panel. The dashed line in the upper panel is the result for the
analysis based on Eq. (4).

just calculate x for 10 � L � 40, take σx ≈ 0.006, and for

spectra of size N , use σ = 0.006
√

1000
N−L

. This is obviously a
very rough rule of thumb; do not forget that when N = 80 the
lowest values x can have are 1.25%, 2.5%, 3.75%, and 5%,
corresponding to 1, 2, 3, and 4 levels missed. We see that the
drift in the returned value of x for a given spectrum is often
the biggest consideration for extracting x.

V. THE BOHIGAS EXPRESSION FOR �3(L, x)

In this section, we use Eq. (4) to extract x from the depleted
GOE and compare the results with that of our MLM. A
comparison of �3(L) for the depleted GOE with Eq. (4)
gives an excellent agreement. In Fig. 8, we see the results
for x = 0.00, 0.05, 0.10, 0.15, and 0.20. The Bohigas result is
very close to the GOE results in blue. To test Eq. (4) as a tool
for gauging x, we get �3(L) for a depleted spectra and find the
x that minimizes

∑
L[�3(L) − �3(L, x)]2. By repeating this

for 1000 spectra for with x from 0.00 to 0.15 in steps of 0.01,
we got the results are shown in Fig. 9. The mean value of x

was very accurate. The error bars, however, are much bigger
than for the MLM. In Fig. 7 (top panel), the dashed line is the
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FIG. 8. (Color online) A comparison between �3(L) vs L for the
Bohigas expression and the ensemble averages.
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FIG. 9. (Color online) The test results for using the Bohigas
expression to extract x.

σx from this analysis. It is much bigger than σx for our MLM.
In Table I, we include a column of results from this method.

VI. APPLICATION TO NEUTRON RESONANCES
AND ULTRASONIC SPECTRA

In Refs. [15] and [16], the �3(L) statistic and the MLM of
Agvaanuvlusaan et al. was used to to gauge the completeness
of neutron resonance data. The results from both methods
were consistent with each other. The uncertainties in x for
each of these methods was around 0.03. Here we do a new
analysis of some of the same data sets with the new MLM
and report the results. A summary of the data sets is in Table I.
We analyzed neutron resonance data from seven isotopes in all.
The data were taken from the Los Alamos National Laboratory
website.1 Some of the spectra examined did not yield a flat x

versus L graph. In these cases, the average x is meaningless,
and we report that the method is inconclusive. When x versus
L is flat, we report the result of the MLM as x = x̄ ± σx ,
where the average is taken over the range 20 � L � 40, and
σx = 0.006

√
1000/D − 30, where D is the number of levels.

The cumulative level number gives the first indication of
the purity of the data. Kinks in N (E) leading to smaller
slopes would suggest a section of data where levels were
missing. Sometimes data sets were compiled from different
laboratories. The nuclear level density is essentially constant
in the range of energies of neutron resonance data, so abrupt
drops in the level density suggest experimental issues. Using
this as a guideline, some data sets were split into subsets.

A. 158Gd

In panel (a) of Fig. 10, we see the results of the MLM.
There were 93 levels in all, and a drop in ρ(E) at the 60th
level indicated that the lowest 60 levels were a more pure
set than the higher 32 levels. The top dashed line with x =
0.30 is for the higher 32 levels. In our MLM, the maximum
value was x = 0.30. A spectrum with x > 0.30 would ideally

1[http://t2.lanl.gov/cgi-bin/nuclides/endind].
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TABLE I. The results for x, the percent of missing levels in the data.

Isotope NND (%) �3(L)(Bohigas) (%) p(δ) (%) N (no. of levels) Subset

58Ni 0 18 Inconclusive 63 All
152Sm 3 0 0 91 1 → 70
152Sm 3 10 8 ± 2 91 All
158Gd 11 13 12 ± 2 93 All
158Gd 0 0 0 93 1 → 60
158Gd 12 42 >30 93 61 → 93
234U 9 40 Inconclusive 118 All
234U 6 13 Inconclusive 118 1 → 75
234U 7 4 Inconclusive 118 76 → 118
236U 5 20 12 ± 3 81 All
236U 0 5 4 ± 3 81 1 → 69
235U j = 3 3 9 5 ± 1 1436 1 → 381
235U j = 4 2 4 5 ± 1 1732 1 → 569

return a flat line for x versus L at x = 0.30, suggesting in this
case that there were originally at least 47 levels in this range.
The results for the full set (solid line) are x̄ = 0.121 ± 0.024,
which translates into there being 93/(1 − x) = 105 ± 3 levels
initially and 13 ± 3 being missed. This is consistent with the
lower 60 levels being pure, and the upper 32 levels being 0.78
of the full spectrum in that range.

B. 58Ni

Guided by N (E), we took the the full set of 63 levels for
the 58Ni data. A plot of x versus L, shown in Fig. 10(b), raises
serious questions about the reliability of the MLM in this case.
The results are inconclusive.

C. 152Sm

An analysis of the full set of 91 levels gives an x = 0.081 ±
0.024, as seen in shown in Fig. 10(c) by the solid line. This

corresponds to there being 99 ± 3 levels in the full spectrum,
with 8 ± 3 missed. The first 70 levels look pure, so it seems
that the missed levels were in the upper range.

D. 234U

The 118 levels in the full set of resonances yielded higher
values of x as L increased, shown by the solid line in Fig. 10(d).
As in the case of 54Fe and 58Ni, any conclusions are therefore
suspect. There was a kink in N (E) after the 78th level. These
first 78 levels had a monotonic increasing x versus L curve,
while the top 20 levels had a decreasing curve. Little can be
concluded from this.

E. 236U

There were 81 levels in the 236U set. The full set had
x = 0.124 ± 0.027, corresponding to 10 ± 2 levels missed.
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FIG. 10. The results of the MLM
calculation for neutron resonance data.
In panel (a) we have 158Gd. The results
for the full set (solid line) are between
those for the subset containing just the
lowest 60 levels (lower dashed line) and
the subset containing the top 32 levels
(upper line). In panel (b), we have 58Ni.
Nothing can be concluded from this about
x. In panel (c), we see the full spectrum
of 152Sm (solid line) above the lowest 70
levels (lower dashed line. In panel (d), we
have the full 234U data set (solid line),
looking more incomplete that the first 75
levels alone (middle dashed line), while
the levels 76 to 118 (lower dashed line)
look like a complete subset. In panel (e),
we have the full 236U set of 81 levels
looking more incomplete than the lowest
69 levels. Finally, in panel (f), we see the
235U data. The j = 3 subset is the solid
line, and the dashed line is the j = 4
subset. Note the range on the vertical axis.
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Guided by a kink in N (E) at level 70, we analyzed the lowest
69 levels and got x = 0.038 ± 0.030, corresponding to 3 ± 2
levels missed in that range.

F. 235U

This is a spectacular data set, with more than 3100 levels.
Guided by a level density plot, we analyzed the lowest 950
levels. The target is odd, with j = 7

2 , so the neutron resonances
were compound states of the 236U nucleus with j = 3 and 4.
These resonances were labeled with angular momentum, and
we separated the two sequences of levels and analyzed them
separately. The result is shown in Fig. 10(f), where the j = 3
subset is the solid line, with x = 0.053 ± 0.010, corresponding
to 20 ± 4 levels missed. The dashed line is the j = 4 subset.
The mean value of x is 0.029 for the j = 3 set and 0.031
for the j = 4 set, with x = 0.045 ± 0.008, corresponding to
26 ± 5 levels missed. Note the range of L and how flat the
lines are. This result is consistent with the other estimates of
x in Ref. [15].

G. Acoustic data

Here the spectra were resonant frequencies of aluminum
cavities. The full experiment is described in Ref. [18]. The
cavities used in the experiment are made out of aluminum
cubes with a cube side size of d = 20 mm. The symmetry
of the cube is broken by additional features such as an
asymmetrically placed cylindrical well and a removed side
corner. The radius of the well is 5 mm and its depth is
18 mm. Different configurations of the transducers on the
blocks gave different data sets. The experimentalists used
a comparison of �3(L) with depleted GOE results and
concluded that 25% of resonances were missed. Only data
sets 1, 2, and 4 of the six data sets analyzed gave x versus
L curves less than 0.30. These are plotted in Fig. 11. The
MLM results for all the data sets from 1 to 6 respectively
are x = 0.204 ± 0.012, x = 0.221 ± 0.014, x > 0.30, x =
0.234 ± 0.014, x > 0.30, and x > 0.30. The corresponding
results for the Bohigas method are 0.28, 0.20, 0.4, 0.23, 0.29,
and 0.4.
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0.1

0.15

0.2

0.25

L

x

FIG. 11. The results of the MLM calculation for acoustic data for
sets 1, 2, and 4. The other sets had x > 0.3. The mean values for the
interval 20 � L � 40 are 0.20, 0.22, and 0.23 respectively.

VII. INTRUDER LEVELS

In spectroscopy, it is quite possible to falsely label a
background noise peak as a level or to have a level with
a different angular momentum to appear. It is important in
RMT to know how many sequences of levels are present,
(a sequence is a set of energies with the same quantum
numbers). If an intruder from a different sequence is present,
it will not be repelled by the other levels, and will change
the fluctuation properties of the spectra. In neutron resonance
data, s-wave neutrons on an even-A target give a set of spin- 1

2
levels; one could have a spin- 3

2 level in their midst from a
p-wave neutron. An examination of N (δ) was performed for
spectra with a fraction y of intruder levels. An ensemble of
1200 spectra of size (1 − y)D were prepared, with D = 1000,
and were then polluted by adding yD “levels,” which were just
random numbers with a uniform distribution over the range of
the spectrum. The calculational details were much the same
as for depletion. The results were surprisingly similar to those
for depletion. In Fig. 12, lower panel, we see p(δ) for the cases
of x = 0.08 depletion, and y = 0.08 intruders. In both cases,
L = 40. The upper panel shows the parameters in the fit to
Eq. (5) for both cases.

VIII. SHELL MODEL SPECTRA

Recent developments have called into question the validity
of applying RMT to describe the fluctuation properties of com-
plex spectra. In Ref. [17], deviations from the Porter-Thomas
distribution for reduced neutron widths of s-wave resonances
were revealed. The Porter-Thomas distribution is a chi-squared
distribution with 1 degree of freedom. This issue was addressed
in Ref. [19], where the energy dependance of the widths near a
maximum of the neutron strength function was found to differ
from

√
E. In Ref. [20], deviations from the PT distribution

were seen to lead naturally from a careful description of
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FIG. 12. Lower panel p(δ) for spectra with x = 0.08 depletion
(left peak) and y = 0.08 intruders. They are quite close together, and
it is hard to distinguish the effect of missed levels from intruders.
The ensemble average data and the fits are superimposed and
indistinguishable. The upper panel shows the parameters a, b, and c

for in the fit Eq. (7). The solid lines are for intruders and the dashed
lines are for missed levels.
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FIG. 13. The �3(L) and N (δ) for shell model spectra with
J +T = 2+1 (dashed line) and J +T = 2+0 (dotted line) compared
to the GOE result (solid line) for pure GOE spectra.

unstable quantum states with open decay channels. The micro-
scopic physics of reactions not captured in RMT was shown to
lead directly to deviations from the PT distributions [21] where
the continuum shell model [22,23] was employed. It is reason-
able to see if the �3(L) statistic can discriminate between
the GOE and a model that includes more physics. The shell
model with only two-body interactions fits the bill. It allows
us to get large pure spectra and include physical restrictions.
The following calculations were carried out with 12 valence
particles in the sd model space with the USD interaction of
Wildenthal using the OXBASH code. There are 5768 levels with
J+T = 2+1 and 3276 levels with J+T = 2+0 (see Ref. [8]
for more details). In Fig. 13, we see the well-established [8]
result for �3(L) for the shell model; it is well described by
RMT. The N (δ) is well within the bounds set by the variance
from one spectra to another and agrees well with the RMT.

IX. CONCLUSION

A maximum likelihood method was devised to gauge the in-
completeness of experimental spectra when a RMT analysis is
appropriate. The method is based on the definition of the �3(L)

statistic. The distribution of random numbers {δ}, the mean of
which is �3(L), was parameterized. The cumulative distribu-
tion N (δ) was accurately fitted with a simple three-parameter
function of log δ: N (δ) = 1

2 (1 − Erf[a + b log δ + c]). These
parameters a, b, and c were parameterized as functions of x,
for each L, yielding a probability density p(δ, x) for δ with x

as a continuous parameter. Our MLM is based on this p(δ, x).
The method was tested on a depleted GOE and returned

accurate values of x. Experimental data were then analyzed.
The results for some neutron resonance data sets was consistent
with earlier analysis, but occasionally no conclusions could be
drawn about the completeness of the data. The acoustic spectra
of an aluminum block was then analyzed. The results in three
out of six samples were inconclusive, and for the remaining
three, the results were consistent with the conclusions on the
experimentalists.

The expression Eq. (4) was tested and used to gauge x. It
was found to give a good ensemble average for x but the spread
σx was large. The neutron resonance data and the acoustic data
were analyzed with this expression and agreed most of the time
with the MLM results.

The question of intruder levels was addressed, and the
effects on the �3(L) statistic, as well as p(δ, x), were very
similar.

The shell model provides us with a long pure sequence of
pure levels from a system governed by a Hamiltonian distinctly
different and more physical than those of RMT. Nevertheless,
shell model spectra are well described by RMT [8]. We see
that the N (δ) was no exception and could not distinguish the
shell model spectra from the GOE.

ACKNOWLEDGMENTS

We acknowledge the support of the Office of Research
Services of the University of Scranton, Vladimir Zelevinsky,
Jerry Muir and Matt Moelter for useful discussions, and the
Physics Department of Temple University, which generously
accommodated the author for a sabbatical visit. Also, we
are grateful to the anonymous referee who raised the issue
addressed in Sec. VIII.

[1] T. Guhr, A. Mueller-Groeling, and H. A. Weidenmueller, Phys.
Rep. 299, 189 (1998).

[2] H. A. Weidenmüller and G. E. Mitchell, Rev. Mod. Phys. 81,
539 (2009).

[3] H. I. Liou, H. S. Camarda, M. Slagowitz, G. Hacken, F. Rahn,
and J. Rainwater, Phys. Rev. C 5, 974 (1972).

[4] H. I. Liou, G. Hacken, J. Rainwater, and U. N. Singh, Phys. Rev.
C 11, 975 (1972).

[5] A. P. Jain and J. Blons, Nucl. Phys. A 242, 45 (1975).
[6] C. M. Frankle, E. I. Sharapov, Y. P. Popov, J. A. Harvey, N. W.

Hill, and L. W. Weston, Phys. Rev. C 50, 2774 (1994).
[7] W. A. Watson III, E. G. Bilpuch, and G. E. Mitchell, Z. Phys. A

300, 89 (1981).
[8] V. Zelevinsky, B. Brown, N. Frazier, and M. Horoi, Phys. Rep.

276, 85 (1996).

[9] M. Horoi, B. A. Brown, and V. Zelevinsky, Phys. Rev. Lett. 87,
062501 (2001).

[10] G. Mitchell, Physica E 9, 424 (2001).
[11] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and

S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).
[12] U. Agvaanluvsan, G. E. Mitchell, J. F. Shriner Jr., and M. P.

Pato, NIMA 498, 459 (2003).
[13] O. Bohigas and M. P. Pato, Phys. Lett. B 595, 171 (2004).
[14] F. J. Dyson and M. L. Mehta, J. Math. Phys 4, 701

(1963).
[15] D. Mulhall, Z. Huard, and V. Zelevinsky, Phys. Rev. C 76,

064611 (2007).
[16] D. Mulhall, Phys. Rev. C 80, 034612 (2009).
[17] P. E. Koehler, F. Becvar, M. Krticka, J. A. Harvey, and K. H.

Guber, Phys. Rev. Lett. 105, 072502 (2010).

054321-8

http://dx.doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1016/S0370-1573(97)00088-4
http://dx.doi.org/10.1103/RevModPhys.81.539
http://dx.doi.org/10.1103/RevModPhys.81.539
http://dx.doi.org/10.1103/PhysRevC.5.974
http://dx.doi.org/10.1103/PhysRevC.11.462
http://dx.doi.org/10.1103/PhysRevC.11.462
http://dx.doi.org/10.1016/0375-9474(75)90032-9
http://dx.doi.org/10.1103/PhysRevC.50.2774
http://dx.doi.org/10.1007/BF01412619
http://dx.doi.org/10.1007/BF01412619
http://dx.doi.org/10.1016/S0370-1573(96)00007-5
http://dx.doi.org/10.1016/S0370-1573(96)00007-5
http://dx.doi.org/10.1103/PhysRevLett.87.062501
http://dx.doi.org/10.1103/PhysRevLett.87.062501
http://dx.doi.org/10.1016/S1386-9477(00)00239-3
http://dx.doi.org/10.1103/RevModPhys.53.385
http://dx.doi.org/10.1016/S0168-9002(02)02144-7
http://dx.doi.org/10.1016/j.physletb.2004.05.065
http://dx.doi.org/10.1063/1.1704008
http://dx.doi.org/10.1063/1.1704008
http://dx.doi.org/10.1103/PhysRevC.76.064611
http://dx.doi.org/10.1103/PhysRevC.76.064611
http://dx.doi.org/10.1103/PhysRevC.80.034612
http://dx.doi.org/10.1103/PhysRevLett.105.072502


MAXIMUM LIKELIHOOD METHOD TO CORRECT FOR . . . PHYSICAL REVIEW C 83, 054321 (2011)

[18] O. Antoniuk and R. Sprik, J. Sound Vib. 329, 5489 (2010).
[19] H. A. Weidenmüller, Phys. Rev. Lett. 105, 232501 (2010).
[20] G. L. Celardo, N. Auerbach, F. M. Izrailev, and V. G. Zelevinsky,

Phys. Rev. Lett. 106, 042501 (2011).

[21] A. Volya, Phys. Rev. C 83, 044312 (2011).
[22] A. Volya, Phys. Rev. C 79, 044308 (2009).
[23] A. Volya and V. Zelevinsky, Phys. Rev. C 67, 054322

(2003).

054321-9

http://dx.doi.org/10.1016/j.jsv.2010.07.010
http://dx.doi.org/10.1103/PhysRevLett.105.232501
http://dx.doi.org/10.1103/PhysRevLett.106.042501
http://dx.doi.org/10.1103/PhysRevC.83.044312
http://dx.doi.org/10.1103/PhysRevC.79.044308
http://dx.doi.org/10.1103/PhysRevC.67.054322
http://dx.doi.org/10.1103/PhysRevC.67.054322

