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We study cluster formation in strongly deformed states for 28Si and 32S using a macroscopic-microscopic
model. The study is based on calculated total-energy surfaces, which are the sums of deformation-dependent
macroscopic-microscopic potential-energy surfaces and rotational-energy contributions. We analyze the angular-
momentum-dependent total-energy surfaces and identify the normal- and superdeformed states in 28Si and
32S. We show that at sufficiently high angular momenta strongly deformed minima appear. The corresponding
microscopic density distributions show cluster structures that closely resemble the 16O + 12C and 16O + 16O
configurations. At still higher deformations, beyond the minima, valleys develop in the calculated surfaces.
These valleys lead to mass divisions that correspond to the target-projectile configurations for which molecular
resonance states have been observed. We discuss the relation between the one-body deformed minima and the
two-body molecular-resonance states.
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A rich variety of nuclear structure data in the s-d shell
region provides an excellent opportunity to investigate how a
system transitions between one-body-like mean-field and two-
body-like cluster structures [1,2]. Because of recent progress
in experimental techniques, it has been possible to determine
that strongly deformed states exist in 36Ar and 40Ca by the
observation of γ -ray cascades typical of rotational bands [3,4].
These bands are called superdeformed (SD) bands. Such new
data have triggered renewed interest in whether the strongly
deformed states exist in other s-d shell nuclei.

In this connection, the existence of such states in 28Si and
32S has been theoretically suggested [5–8]. Many experimental
searches for and studies of such states have been performed
[9,10]. An important feature of nuclear structure in the s-d
shell region is that the densities of strongly deformed one-
body states often exhibit significant cluster structure [11,12],
similar to the 16O + 16O configuration suggested to exist in
32S [7,13,14]. Recently, the existence of α-cluster states in 32S
was clearly shown in elastic 28Si + α scattering experiments
[10]. However, the existence of the strongly deformed states
and the mechanism of the cluster formations in 28Si and 32S
have not yet been well established.

Another important observation is the molecular resonances
emerging just below the Coulomb barrier in the two-body
entrance channel in both the 16O + 12C and 16O + 16O
reactions, leading to 28Si and 32S, respectively. That is, the
molecular-resonance states would consist of the 16O + 12C and
16O + 16O cluster components, similar to the clusters in the
strongly deformed states in 28Si and 32S. It is thus interesting
to investigate the relation between the one-body deformed
states and the two-body molecular-resonance states and the
association with the cluster formations in the deformed states.

Two different theoretical approaches have been used to
describe the deformed states in the s-d shell nuclei. One is
nuclear structure calculations using one-body wave functions.
Leander and Larsson identified several distinct minima with
exotic shapes using the macroscopic-microscopic model [15].

Minima at high angular momenta were also investigated
based on a cranking model for the rotational inertia [16].
However, the �2 term in their mean-field potential leads to
many unphysical minima at large deformations. Moreover,
strongly necked-in shapes are not possible in the Nilsson
perturbed-spheroid (ε) parametrization.

The SD states and the low-lying excited states have also
been treated in Hartree-Fock-type (HF) self-consistent mean-
field calculations [5,19], often coupled with the generator-
coordinate method (GCM) [20,21]. For 32S, Kimura and
Horiuchi suggested the existence of an SD band containing the
16O + 16O cluster components based on the antisymmetrized
molecular dynamics coupled with GCM [7]. They also showed
that a third rotational band with N = 28, where N is the
principal quantum number of the relative motion between
clusters, in the 16O + 16O configuration connects to the
molecular-resonance states. The existence of the normal-
deformed (ND) state in 28Si and its relation to the 16C +
12O molecular resonances were also investigated [8,22].

The second approach is reaction calculations using a
two-body potential model appropriate to the entrance channel.
Those studies are mainly based on an optical potential that
reproduces well the experimental elastic or inelastic cross
sections [14,23–27]. For 32S, Ohkubo and Yamashita [14]
calculated the SD bands with the deep 16O-16O potential [14].
They identified three rotational bands with N = 24, 26, and
28 and showed that the lowest and the third bands correspond
to the SD band and the molecular resonances, respectively.
Kocak et al. also obtained a similar SD band with N = 24
using the α-α double-folding potential [28].

The aim of this paper is to show cluster formations
in the strongly deformed states for 28Si and 32S. We find
that consideration of rotational contributions to the energy
is essential. In this study, we apply for the first time the
macroscopic-microscopic model, which is very successful in
the description of fusion and fission reactions in heavy-mass
systems [17,29–32] to very light nuclei. The model allows us to
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describe both one-center deformed and two-center cluster-like
configurations with mass asymmetry within the same model
framework. In this approach the clusters are joined by a neck
region with a lower single-particle density. For lighter-mass
systems, such treatments are essential for a unified description
of the whole process because the scission-point shape closely
resembles that of the saddle point, as has been well established
in fusion-fission processes below the Businaro-Gallone point
[18]. We calculate and analyze total-energy surfaces, which are
the sums of a potential-energy surface and a rotational-energy
contribution, which are both functions of five shape degrees of
freedom. We use the immersion technique to identify reaction
channels that we expect correspond to molecular resonances
including various mass asymmetric divisions. We show that in
this model minima with density distributions corresponding to
the cluster configurations of 16O + 12C and 16O + 16O appear
at high angular momenta.

We use the three-quadratic-surface (3QS) parametrization
[31,32] to describe nuclear shapes in a five-dimensional
deformation space. The shape degrees of freedom are a
quadrupole-moment parameter Q2, a neck-related parameter
η, left- and right-fragment deformation parameters, εf1 and
εf2, and a mass-asymmetry parameter αg. The parameter η

describes the curvature of the middle body. The parameter ε

is the Nilsson perturbed-spheroid parameter. Near scission we
have to a very good approximation αg = (M1 − M2)/(M1 +
M2), where M1 and M2 are the masses of the left and
right nascent fragments, respectively. The microscopic single-
particle potential is calculated by folding a Yukawa function
over the shape or “sharp-surface generating volume” [29].

We calculate the adiabatic one-body potential-energy sur-
face in a five-dimensional deformation space for 28Si and 32S
and and analyze their structure using the immersion method.
Details of the model are given in Ref. [17]. The parameters
of the potential-energy model, often referred to as FRLDM
(finite-range liquid-drop model) are those of the latest version,
FRLDM(2002) [33]. We calculate the potential energies at
41 × 15 × 15 × 15 × 35 grid points for Q2, η, εf1, εf2, and αg,
respectively. For αg grid points we use −0.025(0.025)0.825;
the fragment shape grid points are the same as in Ref. [17];
in η the choice is similar. We take into account the shape
dependence of the A0 and Wigner terms in our calculations
[34]. However, in the form introduced in our model the Wigner
energy is zero for the N = Z nuclei we consider here. Near
the ground states, we perform β-constrained calculations,
which describe better one-body shapes for small deviations
from spherical shape. For the purpose of comparing with
calculations in other shape parametrizations we sometimes
give the deformations of our shapes in terms of the β shape
parameters, obtained by expanding the 3QS shapes in spherical
harmonics [30]. We calculate nuclear density distributions
and determine the number of nucleons in the left and right
fragments by integrating the single-particle densities [35].

Figures 1 and 2 show the calculated results for 28Si and
32S as “optimal” one-dimensional potential-energy curves
embedded in the five-dimensional space versus the quadrupole
moment. Nuclear densities at points of special interest are also
given. The calculated potential-energy curves for 28Si and 32S
are quite similar to other calculations [5,7,8,19–21]. At larger
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FIG. 1. (Color online) Potential-energy curves for 28Si versus
the quadrupole moment. The open square and SD denote the
superdeformed minimum. The absolute minimum is denoted by GS.
The solid line denotes the potential versus Q2 near the ground state,
along a trajectory that locally minimizes the energy. The gray (green)
and dotted lines denote the only relatively prominent valleys found
in the one-body potential-energy surface. They correspond to shapes
with asymmetries similar to the 16O + 12C and 24Mg + α reaction
channels. The solid line with superimposed triangles is the ridge
separating these two channels.

Q2, valley-like structures appear in the 5D surface; we show
curves corresponding to the bottom of the only two relatively
prominent, that is, deep and persistent, valleys we identify. The
scission points in each reaction channel are denoted by solid
circles. The one-body ground state connects continuously to
these two-body cluster channels.

For 28Si, we identify two paths: one given by the dotted line,
leading to the 24Mg + α reaction channel, and a second given
by the gray (green) line, leading to 16O + 12C reaction channel.
Those are separated by a potential ridge, shown as a solid
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FIG. 2. (Color online) Potential-energy curve for 32S versus the
quadrupole moment. The gray (green) and dotted lines are valleys
in the one-body potential energy surface corresponding to strongly
necked-in one-body shapes with asymmetries similar to those of the
16O + 16O and 28Si + α reaction channels. The other symbols are the
same as in Fig. 1.
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line with superimposed triangles. The calculated ground-state
shape is oblate with Q2 = −0.59 (e2b). We obtain a flat
potential-energy curve near Q2 = 0.05 (e2b), which is con-
sistent with the HF calculation of Ref. [19]. Although this
flat area corresponds to a much smaller β than the β2 ∼ 0.5
of the ND minimum found in Ref. [8], we label this flat
part at Q2 = 0.05 (e2b) ND. For higher angular momenta it
evolves into a more well-localized minimum. We furthermore
identify the additional energy minimum at Q2 = 1.41 (e2b) at
β = 0.68, denoted by the open square, with the SD minimum
[8]. In spherical shell-model terminology this is interpreted as
a 4p-16h (4h̄ω) state with the intruder single-particle orbital
of 1/2[330] (labeled with the Nilsson asymptotic quantum
numbers �π [Nnz
]) at the Fermi energy for both protons
and neutrons. From our deformed mean-field model point of
view, there are no particle-hole excitations since this is the
lowest possible energy at this deformation. In this sense, our
calculated results and those at Jπ = 0+ of Ref. [8] are quite
similar to each other, both as relates to the shape configurations
at the ground-state, the ND, and the SD minima and to the
single particle configurations (see Figs. 2(a)–2(c), 4(a), and
4(b) in Ref [8]). The optimal potential-energy curves obtained
by [8] for the 24Mg + α and 16O + 12C channels in 28Si are
also quite similar to the results here.

For 32S, we identify two paths, one leading to the 16O +
16O [the gray (green) line] the reaction channel and the
other leading to the 28Si + α (the dotted line) reaction
channel, and the separating ridge (the solid line with the
filled triangles). The calculated ground state is prolate with
Q2 = 0.39 (e2b), corresponding to β2 = 0.24. We also obtain
an additional, almost symmetric, minimum at Q2 = 1.58
(e2b), corresponding to β = 0.72, denoted by an open square.
This minimum is the SD state. Again, in spherical shell-model
terminology this is interpreted as a 4p-12h (4h̄ω) state with the
intruder single-particle orbital 1/2[330] at the Fermi energy
for both protons and neutrons.

We now calculate the total energy versus angular momen-
tum (and Q2) for 28Si and 32S. We calculate the macroscopic
rigid-body moment of inertia for the shapes of interest and ob-
tain the total energy by adding the shape-dependent rotational
energy to the five-dimensional potential-energy surface. The
rotational energy ER is then given by ER = h̄2I (I + 1)/2J⊥,
where I denotes the collective rotational angular momentum
in the intrinsic frame and J⊥ denotes the rotational moment of
inertia. We only consider rotations around the ρ axis, which is
perpendicular to the symmetry axis (z axis) [36]. Even if the
two fragments are well separated, we treat such configurations
as rigid-body rotors. We analyze the total-energy surfaces
obtained at each I , using the immersion method.

Figures 3 and 4 show total-energy curves for three different
angular momenta along one-dimensional “minimal-energy”
paths embedded in the five-dimensional deformation space for
28Si and 32S, respectively. The ND and SD minima are present
for 28Si, and the SD minimum is present for 32S. In Figs. 3
and 4, the ND and SD minima at each I are indicated by open
squares. The dotted lines through these minima are the optimal
pathways from ground-state-like shapes to the 24Mg + α and
28Si + α channels. The other symbols are the same as in Figs. 1
and 2. Nuclear densities at points of special interest are also

 0

 5

 10

 15

 20

 25

 30

 35

–1  0  1  2  3  4  5  6

E
ne

rg
y 

(M
eV

)

Q2 (e2 b)

28Si

I = 8

I = 10

I = 16

ND
SD

Path from GS
24Mg + α

16O + 12C
Separating ridge

Saddle
Minimum

FIG. 3. (Color online) Potential-energy curves versus quadrupole
moment for I = 8, 10, and 16 for 28Si. The shape configuration of
the ND minimum changes to a 16O + 12C cluster-like configuration
at I = 10. The symbols are the same as in Fig. 1.

given. The potential pockets at the ND minima vanish as the
angular momentum increases.

Figure 5 shows the calculated rotational bands in the ND
and SD minima. In Fig. 5, the total energies at the ND and
SD minima are denoted by solid lines with open squares.
For comparison, we plot experimental data as solid squares.
However, experimental band assignments have not been well
confirmed, except for the ND state of 28Si and the α-cluster
states of 32S.

For the ND state of 28Si, the band assignments have been
confirmed by γ -ray measurements [37]. We thus directly
compare our calculated results with those data. In the top
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FIG. 4. (Color online) Potential-energy curves at angular momen-
tum I = 6, 8, and 18 for 32S versus the quadrupole moment. The shape
configuration of the SD minimum changes to a 16O + 16O cluster-like
configuration at I = 8. The symbols are the same as Fig. 2.
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FIG. 5. (Color online) Rotational levels in the ND and SD minima
versus the angular momentum I for 28Si and 32S. The solid line with
open squares denotes the total energies at the ND or SD minima. The
solid squares denote experimental data taken from Refs. [13,39]. We
normalize the calculated bandhead energies to experimental data by
shifting the ND minimum for 28Si by +4.8 MeV and the SD minima
for 28Si and 32S by +2.8 MeV.

panel of Fig. 5, we normalize the calculated bandhead energies
to the lowest levels of the experimental data because our
calculated energies show some discrepancy with respect to
the experimental data. After this normalization, the calculated
level spacings agree well with the data, which suggests that
the calculated deformation of the ND minimum is realistic. In
comparison to other calculations, we find that our calculated
rotational bands of the ND state for 28Si correspond to those
with the lowest N , namely, N = 18 in Refs. [22,27].

The α-cluster states of 32S were recently clearly identified
in 24Mg + α elastic-scattering experiments. However, we
do not identify minima corresponding to those states in our
calculations. The experimentally deduced moment of inertia
for those states is about 2 times as large as our calculated results
of the SD states (see the bottom panel of Fig. 5), indicating
that it is necessary to take into account rotations at smaller
Q2 than in the present calculations in order to reproduce this
experimental result. At such small Q2, triaxial deformations
are important. To access triaxial shapes, a model extension
such as Ref. [17,38] is necessary. After such an extension,
the Jacobi shape transitions in the β-γ deformation space, as
shown in Ref. [9], could be studied.

The rotational bands for the SD states of 28Si and 32S have
not yet been confirmed. Therefore, we are limited to plotting
possible candidates proposed by Refs. [13,39] for those states.
The middle and bottom panels of Fig. 5 show the calculated
results. In Fig. 5, we also perform the same normalization as
for the ND state of 28Si to the experimental results. We consider

that our calculated result for the SD state of 32S corresponds to
that with N = 24 of Refs. [7,14,28]. After the normalizations,
we see that the behaviors of the calculated results for the
SD states of both 28Si and 32S are similar to the experimental
moment of inertia proposed by Refs. [13,39]. However, further
experimental investigations are necessary for establishing the
existence of the SD states and for band assignment.

At high angular momentum, the asymmetry at the shape
configurations of the ND and SD minima for 28Si and 32S
become close to the 16O + 12C and 16O + 16O divisions, res-
pectively. In Figs. 3 and 4, we can clearly see drastic shape
transitions, that is, from densities with one center to two-center
cluster-like configurations. For the ND and SD minima for 28Si
and 32S, the neck formation occurs suddenly at I = 10 and 8,
respectively.

There are two important mechanisms for such clusteriza-
tion: (i) intersection between a high-� level, whose energy
increases with deformation and is mainly localized in the
“equator” region, and a low-� level, whose energy decreases
with deformation (intruder level) and is mainly localized in
the “polar” regions, and (ii) mixing of single-particle levels
with high quantum number. The former can be seen in the
shape transition of the ND minimum for 28Si. At I = 0, the
neutron level at the Fermi surface consists mainly of the
5/2+[202] (98%) state [Fig. 6(a)], which forms the surface of
the middle body part in the total density. At I = 10, a transition
occurs between this last occupied level and the intruder level,
which is an admixture of 1/2+[211] (75.3%) and [220]
(16.4%) and which now becomes the highest occupied level,
as shown in Fig. 6(b). In this case, the wave-function density
shifts from the surface of the middle body into the two nascent
fragments. Mechanism (ii) is at play in the SD minimum for
32S. At I = 0, the neutron single particle at the seventh level
consists of the 1/2−[101] (96.0%) component [Fig. 6(c)]. At
I = 8, the components of [321] are slightly mixed in this
level. The single-particle density of the middle body becomes
low due to 1/2−[101] (93.2%) and [321] (4.3%), as shown
in Fig. 6(d). The component of [321] describes stretching of

28Si n = 7 32S n = 5 28Si n = 5

(b) I = 10
1/2+[211]+[220]

(d) I = 8
1/2 [101]+[321]

(f) I = 10
1/2+[220]+[211]

(a) I = 0
5/2+[202]

(c) I = 0
1/2 [101]

(e) I = 0
1/2+[220]+[211]

FIG. 6. (Color online) Density distributions of neutron single-
particle wave functions for 28Si and 32S. The solid line denotes the
half depth of the mean-field potential. We normalize the color to the
density distribution at the maximum of each plot at I = 0.
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the single-particle densities, and [321] is strongly fragmented
into many of the levels in both 28Si and 32S.

The other interesting behavior of the single-particle wave
function that influences the clusterization is the neck forma-
tion. The neutron single-particle wave function of the fifth level
in 28Si consists of the 1/2+[220] (66.9%) and [211] (26.8%)
components [Fig. 6(e)]. With increasing angular momentum,
the [220] component increases, whereas the [211] component
decreases, which forms the neck part between two fragments.
At I = 10, the wave function is described by 1/2+[220]
(80.3%) and [211] (17%), as shown in Fig. 6(f). This trend
can be also seen in the [220] component for 32S. Although it
seems that the two fragments are well separated at high angular
momentum, they are tightly bonded by the neck formation.

In more elaborate microscopic calculations, the lowest level
J = 0+ would contain components of intrinsic states with
different I . The highest J is limited to what is obtained when
all the spins are aligned, although the potential pocket still
exists at high I . In this respect, the obtained density distribution
at the ND minimum of I = 10 for 28Si is very similar to that at
J = 0+ of Ref. [8]. Consequently, the ND and SD states can
contain cluster components even at J = 0+.

Our calculations show a plausible mechanism for the origin
of the molecular resonances. In the calculations, we can
identify the potential valleys leading to the 24Mg + α and
16O + 12C channels in 28Si and to 28Si + α and 16O + 16O
channels in 32S, as shown in Figs. 1 and 2. Also, in this study
we cannot clearly identify any other valleys and associated
density clusters in the potential surface. Consequently, there
is an interesting correspondence between the valley structures
obtained in our calculations and the observed reaction channels
associated with molecular resonances. Expressed differently,
we could say that, when entrance-channel target/projectile
mass ratios are similar to the one-body density clusters
corresponding to the calculated valleys in the potential-energy
surfaces, we experimentally observe molecular resonances.

As shown in this study, the highly excited SD and ND
states for 28Si and 32S contain significant 16O + 12C and
16O + 16O cluster components, respectively. We expect that
those two states relate to the observed molecular resonances
because their mass asymmetry at high angular momentum are
very close to the target-projectile combinations in the entrance
channel for which molecular resonances are observed. It is
thus interesting to investigate how those states in the one-body
system relate to the molecular resonances in the two-body
reaction channels.

A key question is whether the molecular resonances arise
because of effects in (1) the final stages of the two-body
heavy-ion collision, (2) during formation of the compound
system, that is at the top of the fusion barrier, or (3) after
formation of a single pre-compound system. The molecular
resonances emerge just below the Coulomb barrier in the
two-body reaction channels, indicating that those states exist
in the region of slightly overlapping densities of colliding
two nuclei. It is thus unclear whether those two nuclei are
strongly or weakly coupled to each other, corresponding to
the one-body “sticking” or the two-body “freely rotating”
limits [40], respectively. To investigate those two limits, we
calculate the Coulomb barrier heights of the freely rotating

and sticking limits and investigate the correlation between
those and the molecular-resonance states.

For the freely rotating limit, we calculate the Coulomb-
barrier heights as a function of the orbital angular momentum
I for the 16O + 12C and 16O + 16O reactions. In the calculation,
we use the Yukawa-plus-exponential model, which is the
same framework as used in the present calculations of the
potential-energy surface and is well tested in many two-
body reactions [41,42]. The Coulomb interaction energy is
calculated for two point charges. The centrifugal potential is
h̄2I (I + 1)/2µr2, where µ is the reduced mass and r is the
center-of-mass distance between colliding nuclei. That is, the
moment of inertia in the two-body system J(2bd) is given by
J(2bd) = µr2, corresponding to the rotational energy of two
freely rotating rigid bodies. When the fusion barrier does not
go over a maximum during the approach of the two colliding
heavy ions, that is, it keeps rising until touching, we follow
conventional practice and define the “Coulomb barrier” as the
energy at touching. In the sticking limit, the Coulomb-barrier
heights correspond to that of the saddle point in the calculated
one-body potential-energy surface.

Figure 7 shows the resulting Coulomb-barrier heights
measured relative to two infinitely separated nuclei (the solid
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FIG. 7. (Color online) Heights of the Coulomb barrier versus the
angular momentum in (top) the 16O + 12C and (bottom) the 16O +
16O reactions. The potential energy is given relative to that of the two
infinitely separated nuclei. The solid line with the circles denotes
the calculated heights of the Coulomb barrier. The open squares
denote the energy at the touching point when the potential pocket
in the fusion barrier vanishes. The solid triangles denote the average
energies of experimental data for the molecular-resonance states
at each angular momentum taken from Refs. [14,27]. The dashed
line with the open triangles denotes the heights of the saddle points
leading to the 16O + 12C and 16O + 16O reaction channels in the
calculated potential-energy surface for 28Si and 32S, respectively.
The calculated heights of the saddle points are shifted to fit to the
Coulomb-barrier height at I = 0.
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line with open circles). The energy at the touching point
is denoted by the open squares. The average energies of
experimental data at each � for the molecular-resonance states
tabulated in Refs. [14,27] are denoted by solid triangles. For
comparison, we also plot the height of the saddle points
leading to the 16O + 12C and 16O + 16O reaction channels
in the calculated potential-energy surface for 28Si and 32S
(the dashed line with open triangles). We shift the calculated
height of the saddle points to fit to the Coulomb-barrier height
of the two-body reactions at I = 0 because we focus here
on discussing their moments of inertia, not their absolute
energies.

In Fig. 7, we can clearly see the calculated Coulomb-barrier
heights strongly correlate with the experimental data of the
molecular-resonance states, whereas the slope of the height of
the saddle points differs from those. The moment of inertia
for the molecular-resonance states is well reproduced by the
freely rotating J(2bd), rather than the one-body ridged rotor
J⊥, indicating that the molecular resonances are governed by
effects in the two-body entrance channel.

In the deformed states, the two clusters show the property
of the one-body ridged rotor, as shown in Fig. 5, whereas
in the molecular-resonance states, they can freely rotate. The
former comes from the single-particle wave functions tightly
bonding two clusters, as shown in Figs. 6(b) and 6(f). That
is, the one-body ridged rotor would change to the two-body
freely rotating rotor if such bonding wave functions of the neck
part vanished with the development of two clearly separated
clusters. Such wave functions thus play an important role in
transitioning from the one-body deformed state to the two-
body molecular-resonance states.

In summary, we have investigated cluster formation in the
one-body ND and SD states for 28Si and 32S and its relation
to the molecular-resonance states. Our study is based on total-
energy surfaces calculated in a five-dimensional deformation

space. The total energy is the sum of a potential-energy and
a rotational-energy contribution. The total-energy surfaces are
analyzed as functions of angular momentum. We identified the
ND and SD minima in the potential-energy surface for 28Si and
32S. The obtained deformed minima are quite similar to those
proposed by other theoretical models. The level spacings of
the rotational bands for those deformed minima are in good
agreement with the experimental data. The nuclear densities in
the ND and SD minima become very cluster-like when the an-
gular momentum reaches I = 8 and 10, respectively. We show
how cluster configurations develop due to changing occupation
of specific single-particle levels with increasing deformation
and angular momentum. When we consider the paths from the
one-body ND and SD states to the 12C + 16O and 16O + 16O
channels and change the inertia from that of a one-body rigid
rotor to that of a freely rotating system for the corresponding
two-body reaction channels, we can show that the molecular
resonances are connected to the ND and SD states.
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[34] P. Möller, J. R. Nix, and W. J. Swiatecki, Nucl. Phys. A 492,

349 (1989).

[35] T. Ichikawa, A. Iwamoto, and P. Möller, Phys. Rev. C 79, 014305
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