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The low-lying states of 21
�Ne are studied with antisymmetrized molecular dynamics for hypernuclei. We have

obtained ten rotational bands where the number of bands are increased compared to 20Ne by adding a � hyperon.
Among them, we focus on the Kπ = 0+

1 ⊗ �s and Kπ = 0−
1 ⊗ �s bands. The former has a shell-model-like

structure that has � in an s wave coupled to the ground band of 20Ne. The latter is a cluster state that has a
α + 17

�O dicluster structure. The difference between their structures leads to the binding energy of � particle B�

and reduction of the E2 transition probabilities B(E2).
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I. INTRODUCTION

One of the unique and interesting aspects of hypernuclei
is structure changes caused by hyperons. Experimental and
theoretical studies have revealed a couple of interesting
structure changes in p-shell � hypernuclei [1–9]. For example,
the reduction of the intercluster distance due to the attraction
by a � hyperon has been confirmed through the observation
of E2 transition probabilities B(E2) in 7

�Li [1,5,10,11], that
has developed an α + d + � cluster structure. In sd-shell �

hypernuclei, various structure changes will occur depending
on the structure of the core nuclei, since sd-shell normal
nuclei have various structures in ground and low-energy
states [12–14]. For example, the parity inversion of the 20

�Ne
ground state was predicted [15]. In 21

�Ne, the stabilization
of the unbound α + 16O cluster states and the reduction of
B(E2) due to the shrinkage of the intercluster distance were
discussed [16].

In the last decade, our knowledge of �N interaction has
greatly increased. By both theoretical and experimental efforts,
most of the central part of a �N effective interaction has
been clarified [2,17–23]. This makes it possible to investigate
the structure of various � hypernuclei systematically and
quantitatively by using these �N interactions. Adding to this,
in the study of unstable nuclei, theoretical models without any
assumption on nuclear structure have been developed. As a
typical example of such theoretical models, antisymmetrized
molecular dynamics (AMD) has been successful in describing
various structures of neutron-rich p-sd shell nuclei [24–28].
Therefore, we suggest AMD as a powerful tool for the study of
hypernuclear structure [29] by using effective �N interactions.

In this paper, we have applied an extended version of AMD
for hypernuclei (HyperAMD) to 21

�Ne and investigated its
structure. 20Ne is a typical nucleus having various structures
within a small excitation energy region. The ground band and
Kπ = 0−

1 band built on the 1−
1 state at 5.79 MeV constitute

the parity doublet associated with α + 16O clustering. It is
known that the Kπ = 0−

1 band has the pronounced α + 16O
clustering, while the ground band has the mixing between
the deformed shell structure and α + 16O cluster structure
[12,13,28]. In addition to these, the Kπ = 2−

1 band with a

deformed shell-model-like structure is built on the 2−
1 state

at 4.97 MeV. Therefore, it is of interest to investigate how
a � hyperon will affect and modify their structures. We have
found that a � hyperon in s and p orbits, respectively, generate
five bands each. Among them, in this paper, we focus on the
Kπ = 0+

1 ⊗ �s and Kπ = 0−
1 ⊗ �s bands. The former has a

shell-model-like structure where � in an s wave is coupled to
the ground band of 20Ne. The latter is a cluster state that has
α + 17

�O dicluster structure. The Kπ = 0−
1 ⊗ �s band is bound

due to the “gluelike role” of the � hyperon. The differences in
their structures lead to the difference in the binding energy of
the � hyperon B� and the magnitude of the B(E2) reduction.

This paper is organized as follows. In the next section,
we explain the theoretical framework of HyperAMD. In the
Sec. III, the low-lying states of 21

�Ne and their properties are
discussed. The differences between shell and cluster states are
the focus. The final section summarizes this work.

II. FRAMEWORK

In this study, we have applied an extended version of AMD
for hypernuclei (HyperAMD) to 21

�Ne. In this study, we also
describe the single � hypernuclei; and a �N -�N coupling is
not included in the model space.

A. Wave function

The single � hypernucleus composed of A nucleons and
a � hyperon is described by the wave function that is an
eigenstate of the parity,

�± = P̂ ±�int, (1)

where P̂ ± is the parity projector and the intrinsic wave function
�int is represented by the direct product of the � single-particle
wave function ϕ� and the wave function of A nucleons �N ,

�int = ϕ� ⊗ �N. (2)

The nuclear part is described by a Slater determinant of
nucleon single-particle wave packets,

�N = 1√
A!

det{ψi(rj )}, (3)
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ψi(rj ) = φi(rj )χiηi, (4)

φi(r) =
∏

σ=x,y,z

(
2νσ

π

)1/4

exp{−νσ (r − Zi)
2
σ }, (5)

χi = αiχ↑ + βiχ↓, (6)

ηi = proton or neutron, (7)

where ψi is ith nucleon single-particle wave packet consisting
of spatial φi , spin χi , and isospin ηi parts. The spatial part
φi is represented by a deformed Gaussian. Its centroid Zi is
a complex three-dimensional vector. The width parameters
νσ are real numbers and take independent values for each
direction, but are common to all nucleons. The spin part is
parameterized by the complex parameters αi and βi , and the
isospin part is fixed to a proton or neutron. Zi , νσ , αi , and βi

are the variational parameters of the nuclear part.
To describe various orbits of the � hyperon, the � single-

particle wave function is represented by the superposition of
Gaussian wave packets,

ϕ�(r) =
M∑

m=1

cmϕm(r), ϕm(r) = φm(r)χm, (8)

φm(r) =
∏

σ=x,y,z

(
2νσµ

π

)1/4

exp{−νσµ(r − zm)2
σ }, (9)

χm = amχ↑ + bmχ↓, (10)

µ = m�

mN

, (11)

where m� and mN represent the masses of the � particle
and the nucleon, respectively. Again, each wave packet is
parametrized by the centroid of Gaussian zm, and the spin
direction am and bm. The terms zm, am, bm, and cm are the
variational parameters of the hyperon part.

Those variational parameters of nuclear and hyperon parts
are optimized through the frictional cooling method described
below. The number of basis wave packets M is so chosen that
the variational calculation is sufficiently converged.

B. Hamiltonian and constraints

The Hamiltonian used in this study is given as

Ĥ = T̂N + T̂� − T̂g + V̂NN + V̂�N + V̂Coul. (12)

Here, T̂N , T̂�, and T̂g are the kinetic energies of nucleons,
a � hyperon, and the center-of-mass motion. Since we
have superposed Gaussian wave packets to describe the �

single-particle wave function, it is rather tedious to remove the
spurious center-of-mass kinetic energy exactly. To reduce it,
we keep the center of mass of wave packets at the origin of the
coordinate:

A∑
i=1

Zi +
M∑

m=1

√
µzm = 0. (13)

We expect that the spurious energy is not large in sd-shell
hypernuclei, because the number of nucleons is much larger
than the s- or p-shell hypernuclei.

Our model wave function is designed to describe the low-
momentum phenomena as in the conventional shell model, and

we shall use the low-momentum effective interaction. We have
used the Gogny D1S interaction [30] as an effective nucleon-
nucleon interaction V̂NN , that has been successfully applied
to the stable and unstable normal nuclei. As an effective �N

interaction, we have used the central part of the ND version of
YNG (YNG-ND) interaction [23]. The Coulomb interaction is
approximated by the sum of seven Gaussians.

We have imposed two constraints on the variational cal-
culation. The first is on the nuclear quadrupole deformation
parameter β that is achieved by adding the parabolic potential

〈V̂β〉 = vβ(β − β0)2 (14)

to the total energy. Here, β denotes the quadrupole deformation
of the nuclear wave function �N whose definition is given
in Ref. [25]. The value of vβ is chosen large enough that
the deformation of �N is equal to β0 after the variation.
It is noted that there are no constraints on the nuclear
quadrupole deformation γ and the deformation of the �

single-particle oribtal. They have optimum values after the
variational calculation for each given value of β0.

Another constraint is on the � single-particle orbit by
adding the potential,

V̂s = λ|ϕs〉〈ϕs |, (15)

〈r|ϕs〉 = exp[−µν̄r2], (16)

ν̄ = 3
√

νxνyνz (17)

to the Hamiltonian. Here, ϕs describes the wave function of
a � hyperon in an s orbit as a Gaussian wave packet at the
origin of the coordinate. By applying a sufficiently large value
to λ, this potential forbids the � in an s wave. Therefore, by
switching off and on this potential, we, respectively, obtain
the hypernuclear states where a � hyperon occupies s and p

waves. We shall denote the former state as �s and the latter
one as �p.

The total energy plus constraint potentials,

E′ = 〈�±|Ĥ |�±〉
〈�±|�±〉 + 〈�±|V̂s |�±〉

〈�±|�±〉 + 〈Vβ〉, (18)

is minimized through the frictional cooling method. The
imaginary time development equations of the variational
parameters are given as

dXi

dt
= κ

h̄

∂E′

∂X∗
i

, (19)

Xi = Zi , zi , αi, βi, ai, bi, νi, (20)

where κ is arbitrary negative real number. Finally, we obtain
hypernuclear states with �s and �s(β0), or �p and �p(β0),
for each β0.

C. Angular momentum projection and the generator
coordinate method (GCM)

From the optimized wave function, we project out the
eigenstate of the total angular momentum J ,

�J±
s or p,MK (β0) = P̂ J±

MK�s or p(β0). (21)
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Here, P̂ J±
MK is a total angular momentum and parity projector.

The integrals over three Euler angles included in the P̂ J±
MK are

evaluated by numerical integration.
Finally, we superpose the wave functions �J±

sMK (β0) and
�J±

pMK (β0) which have the same parity and angular momentum
but have different values of the deformation parameter β0

and K (generator coordinate method). Thus, the final wave
function of the system becomes as follows:

�J±
n = c1n�

J±
sMK (β0) + c2n�

J±
sMK ′ (β ′

0)

+ · · · + c′
1n�

J±
pMK (β0) + c′

2n�
J±
pMK ′ (β ′

0) + · · · ,
where quantum numbers other than total angular momen-
tum and parity are represented by n. The coefficients
c1n,c′

1n,c2n,c′
2n,. . . are determined by the following equation:

δ
(〈
�J±

n

∣∣Ĥ ∣∣�J±
n

〉 − εn

〈
�J±

n

∣∣�J±
n

〉) = 0. (22)

The GCM amplitude describes the contributions from the
AMD wave functions having various β to the resulting GCM
ones defined as in Eq. (22). The GCM amplitude is defined as
follows: ∣∣CJ±

n (β0)
∣∣2 = ∣∣〈�J±

n

∣∣�J±
s or p,MK (β0)

〉∣∣2
. (23)

As we shall discuss latter, the GCM amplitude is useful
for analyzing the mixing of wave functions with the other
configurations.

Using the GCM wave functions given in Eq. (22), we
calculate the expectation values of � kinetic energy T� and
�N potential energy V�N . In addition, we define the EN as
the residual energy of the system:

EN = B(21
�Ne(Jπ )) − (T� + V�N ), (24)

describing dominantly the expectation values of the opera-
tors T̂N + V̂NN + V̂Coul in the hypernucleus. Here, B(21

�Ne)
denotes the binding energy of the Jπ state in 21

�Ne.

D. � binding energy

To analyze the dependence of � binding energy on the
core structure, we define the � binding energy B� in a
hypernucleus. According to our calculation, it is found that
the hypernuclear state �J±

s or p is well described as

�J±
s or p 	 [�N (jπ ) ⊗ ϕ�(s or p)]J± . (25)

Thus, we define B� as follows:

B� = B(21
�Ne(Jπ )) − B(20Ne(jπ )). (26)

Here, B(20Ne(jπ )) and B(21
�Ne(Jπ )) represent the binding

energies of the jπ state of 20Ne and of the Jπ state of 21
�Ne,

respectively.

III. RESULTS

A. Energy spectra of 20Ne

The calculated and observed low-lying energy spectrum of
20Ne is presented in Fig. 1. After the GCM calculation, the
AMD describes successfully the ground band (Kπ = 0+

1 ), the
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FIG. 1. Low-lying energy spectra of 20Ne obtained with AMD.
For comparison, corresponding experimental data are also presented.

Kπ = 0+
4 band which is the higher nodal band, the Kπ = 0−

1
band, and the Kπ = 2−

1 band. The Kπ = 0−
1 band is a parity

doublet partner of the ground band with the pronounced
α + 16O cluster structure. The mixing between mean-field
and cluster structures in the ground band has been discussed
[28,31,32]. In Figs. 2(a)–2(c), the intrinsic density distribu-
tions of the band head states of 20Ne are presented. It shows
the prominent α + 16O clustering of the Kπ = 0−

1 band and
the shell-model-like nature of the Kπ = 2−

1 band. The ground
band has mixed nature between the α + 16O cluster and the
(sd)4 shell structure.

B. 21
�Ne hypernucleus

1. Energy spectra of 21
�Ne

In 21
�Ne, � hyperon coupled to 20Ne generates ten bands.

These bands can be classified into two groups. The former
five bands have �s , while the latter five bands have �p.

The energy spectra of 21
�Ne with �s are shown in Fig. 3.

These are five bands corresponding to the Kπ = 0+
1 , 0+

4 , 0−
1 ,

0−
2 , and 2−

1 bands of 20Ne. We call them, respectively, the
0+

1 ⊗ �s (0+
1 band with �s), 0+

4 ⊗ �s , 0−
1 ⊗ �s , 0−

2 ⊗ �s ,
and 2−

1 ⊗ �s bands. In Fig. 3, the experimental 20Ne + � and

11
−01

+

11
−01

+ Λ

21
−

s Λs 21
− Λs

2 fm

2 fm2 fm 2 fm

2 fm 2 fm

(a) (b) (c)

(e)(d) (f)

FIG. 2. (Color online) (a)–(c) Density distributions of the band
head states of the Kπ = 0+

1 ,Kπ = 0−
1 and Kπ = 2−

1 bands in 20Ne.
(d)–(f) Corresponding states with �s in 21

�Ne. The solid lines show the
nucleon density, while the color plot shows the density distribution
of the � hyperon. The closed circles show the centroids of nucleon
wave packets.
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FIG. 3. Calculated low-lying energy spectra of 21
�Ne with a �s are presented with that of 20Ne.

α + 17
�O threshold energies are also presented. The α + 17

�O
threshold is estimated by assuming that B� of 17

�O is equal to
that of 16

�O.
As seen in Fig. 3, �s bounds two bands: the 0+

1 ⊗ �s

and 0−
1 ⊗ �s bands. It should be noted that the unbound 1−

1
state in 20Ne goes below the α threshold and becomes bound.
This is due to the attraction of the �N force. The binding of
the 1−

1 state by a � hyperon is also predicted in Ref. [16]. The
2−

1 ⊗ �s band will also be bound, because the 2−
1 is in the

bound state in experiments while that obtained with AMD is
unbound. The 0−

2 ⊗ �s band is obtained as the solution of the
GCM calculation. The corresponding band does not exist in
20Ne. We think that this is due to the gluelike role of the �

particle. It is also pointed out by Yamada et al. [16].

The hypernuclear states with �p are shown in Fig. 4.
We have obtained five bands: 0+

1 ⊗ �p(0+
1 band with �p),

0+
4 ⊗ �p, 0−

1 ⊗ �p, 0−
2 ⊗ �p, and 2−

1 ⊗ �p. The band heads
of the 0+

1 ⊗ �p and 0−
1 ⊗ �p bands lie below the 20Ne + �

threshold, but they are above the α + 17
�O threshold. The pres-

ence of 0+
1 ⊗ �p and 0−

1 ⊗ �p bands have also been predicted
by Ref. [16], and our calculation is consistent with its result.

2. Difference between shell and cluster bands in B�

and parity coupling

Here, we compare the � binding energies of the band head
states of the 0+

1 ⊗ �s and 0−
1 ⊗ �s bands. As mentioned above,

the mean-field-like and α + 16O structures are mixed in the
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FIG. 4. Calculated low-lying energy spectra of 21
�Ne with a �p are presented with that of 20Ne.
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TABLE I. Calculated energy E, excitation energy Ex , and �

binding energy B� for the band head states of the 0+
1 ⊗ �s and

0−
1 ⊗ �s bands are listed in MeV. The definition of B� is given in

Eq. (26). For comparison, theoretical and experimental E and Ex

values of the 0+
1 and 1−

1 states in 20Ne are also presented.

Band E Ex B�

21
�Ne(HyperAMD) (0+

1 ⊗ �s) −176.5 0.0 16.9
21
�Ne(HyperAMD) (0−

1 ⊗ �s) −169.2 7.3 15.9
20Ne(AMD) (Kπ = 0+

1 ) −159.6 0.0 –
20Ne(AMD) (Kπ = 0−

1 ) −153.3 6.3 –
20Ne(expt.) (Kπ = 0+

1 ) −160.6 0.0 –
20Ne(expt.) (Kπ = 0−

1 ) −154.9 5.8 –

Kπ = 0+
1 band, while the Kπ = 0−

1 band has a pronounced
α + 16O cluster structure. In Table I, the total energy E,
excitation energy Ex , and � binding energy B� are listed.
It shows that the � binding energy of the 0+

1 ⊗ �s (ground)
state is larger than that of the 0−

1 ⊗ �s band head state. In
Figs. 2(d)–2(f), the density distributions of the band head states
of the Kπ = 0+

1 ⊗ �s and Kπ = 0−
1 ⊗ �s bands of 21

�Ne are
presented. It is clearly seen that the � hyperon coupled to
the Kπ = 0−

1 band head state of 20Ne is localized around the
16O cluster. This is because the single-particle potential of �s

is not parity symmetric due to the α + 16O clustering and is
deeper around the 16O cluster. Indeed, B� of 17

�O may be more
than 12 MeV, while that of 5

�He is 2.6 MeV. On the other
hand, the � hyperon coupled to the Kπ = 0+

1 band head state
locates at the center of the 20Ne nucleus and interacts with all
nucleons. Therefore, the �s in the 0+

1 ⊗ �s band head state is
more deeply bound than that in the 0−

1 ⊗ �s band head state.

Since the � hyperon in the 0−
1 ⊗ �s band locates around

the 16O cluster, it is not an eigenstate of parity of the single-
particle state of �s . Thus, the p-orbit component of the �

hyperon should contribute to the 0−
1 ⊗ �s state. Such mixed

nature was called “parity coupling” in Ref. [16] for 21
�Ne or

“intershell coupling” in Ref. [33]. It was argued that parity
coupling could occur because the energy difference between
the positive and negative parity states in the core nucleus is
similar to that between the s and p orbits of the � hyperon [21].
However, in the present result, the parity coupling is due to the
asymmetry of α + 16O clustering. The Kπ = 0+

1 ⊗ �p has a
mixed configuration between the Kπ = 0+

1 ⊗ �p and 0−
1 ⊗ �s

bands. We show the GCM amplitude of the (1/2)− state, which
is the band head state of the 0−

1 ⊗ �s , in Fig. 5. The GCM
amplitude is defined in Eq. (23), describing contributions from
intrinsic wave functions to the GCM wave function. It shows
that the contribution from the 0+

1 ⊗ �p configuration is about
10%, while that from the 0−

1 ⊗ �s configuration is about 90%
at maximum. The opposite trend appears in the 0−

1 ⊗ �s band.
Another interesting feature due to the parity coupling is the

reduction of the level spacing. In Table III, the nuclear RMS
radii for each state of 20Ne and 21

�Ne are listed. It shows that
the RMS radii decrease for the Kπ = 0−

1 ⊗ �s band of 21
�Ne

compared to the corresponding states of 20Ne. However, as
shown in Fig. 3, the level spacing between the ((1/2)−, (3/2)−)
and ((5/2)−, (7/2)−) doublets of the 0−

1 ⊗ �s band becomes
smaller compared to that between 1−

1 and 3− states of 20Ne.
The parity coupling also causes the mixing of the nucleon part
between the Kπ = 0+

1 and Kπ = 0−
1 bands in the 0−

1 ⊗ �s

band. Since the Kπ = 0+
1 band has a narrower level spacing,

the level spacing of the 0−
1 ⊗ �s band decreases by this

mixing.

TABLE II. Intraband B(E2) values (e2 fm4) for 20Ne and 21
�Ne obtained by using AMD and compared with the α + 16O +� cluster

model [16]. cB(E2) represents the corrected B(E2) values explained in the Appendix.

AMD Yamada et al. [16]
20Ne 21

�Ne Changes 20Ne 21
�Ne Changes

Kπ = 0+
1 B(E2) 0+

1 ⊗ �s B(E2) cB(E2) (%) Kπ = 0+
1 B(E2) B(E2) (%)

2+ → 0+ 72.2 (3/2)+ → (1/2)+ 63.7 63.7 −11.8 2+ → 0+ 53.1 40.4 −23.9
(5/2)+ → (1/2)+ 63.9 63.9 −11.5

4+ → 2+ 86.9 (7/2)+ → (3/2)+ 64.3 71.4 −17.8 4+ → 2+ 67.2 52.0 −22.6
(9/2)+ → (5/2)+ 75.7 75.7 −13.0

6+ → 4+ 55.1 (11/2)+ → (7/2)+ 40.3 41.9 −23.9 6+ → 4+ 55.1 42.1 −23.6
(13/2)+ → (9/2)+ 48.0 48.0 −12.9

8+ → 6+ 17.0 (15/2)+ → (11/2)+ 15.9 16.2 −4.6 8+ → 6+ 29.0 23.0 −20.7
(17/2)+ → (13/2)+ 17.1 17.1 0.8

AMD Yamada et al. [16]
20Ne 21

�Ne Changes 20Ne 21
�Ne Changes

Kπ = 0−
1 B(E2) 0−

1 ⊗ �s B(E2) cB(E2) (%) Kπ = 0−
1 B(E2) B(E2) (%)

3− → 1− 221.2 (5/2)− → (1/2)− 139.2 179.0 −19.1 3+ → 1+ 160.0 125.3 −21.7
(7/2)− → (3/2)− 178.5 178.5 −19.3

5− → 3− 249.3 (9/2)− → (5/2)− 184.2 195.4 −21.6 5+ → 3+ 181.5 139.0 −23.4
(11/2)− → (7/2)− 189.3 189.3 −24.1

7− → 5− 240.3 (13/2)− → (9/2)− 164.3 166.7 −30.6 7+ → 5+ 183.5 131.2 −28.5
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FIG. 5. GCM amplitude for the band head state (1/2)− of the
0−

1 ⊗ �s band. The definition of a GCM amplitude is given in Eq. (23).
The solid line represents the contribution from the 0−

1 ⊗ �s band as a
function of nuclear deformation parameter β. The dashed line shows
that from the 0+

1 ⊗ �p band.

3. Difference in B(E2) reduction

The difference in structure changes between the 0+
1 ⊗ �s

and 0−
1 ⊗ �s bands of 21

�Ne is clearly seen in the intraband

TABLE III. RMS radii (fm) for the Kπ = 0+
1 , Kπ = 0−

1 , and
Kπ = 2−

1 bands of 20Ne and its counterparts with �s obtained by the
present calculation. �rRMS is defined as a subtraction of RMS radii:
�rRMS = rRMS(21

�Ne) − rRMS(20Ne) for each corresponding state.

20Ne 21
�Ne �rRMS

Kπ = 0+
1 rRMS 0+

1 ⊗ �s rRMS

0+ 2.97 (1/2)+ 2.92 −0.05
2+ 2.96 (3/2)+ 2.91 −0.05

(5/2)+ 2.91 −0.05
4+ 2.93 (7/2)+ 2.87 −0.06

(9/2)+ 2.88 −0.04
6+ 2.87 (11/2)+ 2.81 −0.06
8+ 2.82 (15/2)+ 2.77 −0.04

20Ne 21
�Ne �rRMS

Kπ = 0−
1 rRMS 0−

1 ⊗ �s rRMS

1− 3.27 (1/2)− 3.15 −0.11
(3/2)− 3.15 −0.11

3− 3.24 (5/2)− 3.13 −0.11
(7/2)− 3.14 −0.10

5− 3.23 (9/2)− 3.11 −0.12
(11/2)− 3.11 −0.13

7− 3.23 (13/2)− 3.06 −0.17
20Ne 21

�Ne �rRMS

Kπ = 2−
1 rRMS 2−

1 ⊗ �s rRMS

2− 2.98 (3/2)− 2.93 −0.05
3− 2.97 (5/2)− 2.93 −0.04
4− 2.96 (7/2)− 2.91 −0.05
5− 2.95 (9/2)− 2.90 −0.05
6− 2.94 (11/2)− 2.89 −0.05

B(E2) reduction. To compare B(E2) values of 21
�Ne with

those of 20Ne, we corrected them under the assumption that a
� hyperon occupies the s orbit for each hypernuclear state in
the 0+

1 ⊗ �s and 0−
1 ⊗ �s bands (see the Appendix). Both the

bare and corrected B(E2) values for the 0+
1 ⊗ �s and 0−

1 ⊗ �s

bands are presented in Table II. For comparison, B(E2) values
predicted by the cluster model calculation [16] are also listed
in Table II.

A � hyperon causes B(E2) reduction in the 0−
1 ⊗ �s and

the 0+
1 ⊗ �s bands. Indeed, Table II shows that the corrected

B(E2) values clearly decrease by adding a � hyperon in both
the 0+

1 ⊗ �s and the 0−
1 ⊗ �s bands. The B(E2) reductions

predicted by Yamada et al. [16] are more than 20% for those
bands. However, in the present study, the corrected B(E2)
values for the 0+

1 ⊗ �s band decrease less than 20%, while
those for the 0−

1 ⊗ �s band are almost 20%, as shown in
Table II. We consider the difference in the B(E2) reduction
mainly comes from the difference in the reduction of RMS
radii between the 0+

1 ⊗ �s and the 0−
1 ⊗ �s bands. The nuclear

RMS radii for the Kπ = 0+
1 , Kπ = 0−

1 , and Kπ = 2−
1 bands

of 20Ne and for the corresponding bands with �s are listed in
Table III. The RMS radii for the Kπ = 0−

1 band change more
than those of the Kπ = 0+

1 band. This is due to the difference
in the clustering of these bands. Since the Kπ = 0−

1 band has
well developed α + 16O cluster structure, a � hyperon reduces
the intercluster distance, and it leads to the larger reduction of
B(E2) in the Kπ = 0−

1 band.

4. Level spacing of the ground band

The level spacing of the 0+
1 ⊗ �s band becomes smaller

compared to that of the Kπ = 0+
1 band of 20Ne. We consider

that it is due to the mixed nature of the Kπ = 0+
1 band of 20Ne.

In the Kπ = 0+
1 band of 20Ne, it has been discussed that the

α + 16O cluster structure is broken at large angular momentum
values [28,34]. In Fig. 6, the energy surfaces as a function of
the nuclear deformation parameter β for the 0+ and 8+ states of
the 20Ne ground band and for its counterparts, the (1/2)+ and
(15/2)+states of the 21

�Ne ground band, are presented. The β at
the energy minimum of each energy surface becomes smaller
as angular momentum becomes larger. This is an indication of
the brokenness of an α + 16O clustering.

We present the energy components for the (1/2)+ and
(15/2)+ states of the ground band of 21

�Ne in Table IV. It
shows that the 8+ state gains the �N potential energy V�N

TABLE IV. Energy E, nuclear energy EN , expectation values of
� kinetic energy T�, and �N potential energy V�N for the (1/2)+ and
(15/2)+ states of the 0+

1 ⊗ �s band are presented. For comparison,
E and EN for the 0+ and 8+ states of 20Ne are also presented.

21
�Ne(0+

1 ⊗ �s) 20Ne(Kπ = 0+
1 )

(1/2)+ (15/2)+ 0+ 8+

E −176.48 −170.08 −159.60 −152.40
EN −159.37 −152.19 −159.60 −152.40
T� 7.72 8.06 – –
V�N −24.83 −25.96 – –
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FIG. 6. Energy surface as function of nuclear deformation pa-
rameter β for the 0+

1 (solid line) and the 8+ (dashed line) states of the
20Ne ground band and the corresponding states with �s, (1/2)+ and
(15/2)+, of 21

�Ne ground band are presented. The squares on each
surface represent its minimum points. Note that the energy surfaces
of the (1/2)+ and the (15/2)+ states are shifted by 14 and 17 MeV,
respectively.

more than the 0+ state, and then, the level spacing between
the (1/2)+ and (15/2)+ states becomes smaller than that
between 0+ and 8+ states. Here, as shown in Table III, the
mean-field-like states at large momentum are more compact
than the low-lying cluster states. Indeed, the RMS radius of
the (15/2)+ state is smaller than that of the (1/2)+ state.
Thus, �N potential energy increases in the (15/2)+ state.
Such a difference between the shell-model-like and cluster
structures is predicted for 12

�C [35]. The same trend is seen
in the Kπ = 0−

1 ⊗ �s band head states with well developed
α + 16O clustering and in the Kπ = 2−

1 ⊗ �s band with a
deformed shell-model-like structure.

IV. SUMMARY

In this paper, we have applied HyperAMD to a 21
�Ne

hypernucleus and investigated its structure. A �s and �p create
five bands each and, thus, create a total of ten bands having not
only an α + 16O cluster but also a shell-model-like structure.
Especially, the 0+

1 ⊗ �s , 0−
1 ⊗ �s , and 2−

1 ⊗ �s bands are
expected to bound.

The band head state of the 0+
1 ⊗ �s band is the more deeply

bound than that of the well-developed α + 16O cluster band
0−

1 ⊗ �s . This is because the � hyperon locates around the
16O cluster in the α + 16O state and bounds shallowly. At
the same time, this shows the parity coupling between s and
p orbits of the � hyperon. Indeed, the contribution from the
later band is about 10% in the 0−

1 ⊗ �s band.
The intraband B(E2) reduction by a � hyperon depends on

the structure of the core states. The intraband B(E2) reduction
in the 0−

1 ⊗ �s band of 21
�Ne is larger than that in the 0+

1 ⊗ �s

band. This is mainly due to the reduction of the intercluster
distance between α and 16O clusters in the Kπ = 0−

1 band.

Other changes due to the coexistence of the cluster and
shell-model-like aspects are found. The level spacing of the
0+

1 ⊗ �s bands is smaller compared to the ground band in
20Ne, while the nuclear RMS radii decrease for each state.
It reflects the brokenness of the α + 16O cluster at large
angular momentum values. A �s coupled to the larger angular
momentum states is more bound than that coupled to the lower
angular momentum states with the α + 16O cluster structure.

APPENDIX: CORRECTION OF B(E2) VALUES

We consider that the initial (final) state with angular
momentum Ji (Jf ) of a � hypernulceus consists of a core
state with angular momentum jC

i (jC
f ) and a � hyperon with

j� = 1/2. Thus,

|Ji Mi〉 =
∑

mC
i ,m�

i

C
Ji ,Mi

mC
i ,m�

i

∣∣jC
i mC

i

〉 ⊗ ∣∣j�
i m�

i

〉
,

|Jf Mf 〉 =
∑

mC
f ,m�

f

C
Jf ,Mf

mC
f ,m�

f

∣∣jC
f mC

f

〉 ⊗ ∣∣j�
f m�

f

〉
,

where C
j3,m3
m1,m2 = 〈j3m3|j1m1, j2m2〉 is a Clebsch-Gorden co-

efficient. The B(E2) of a � hypernucleus is calculated by the
following:

B(E2, Ji → Jf )

=
∑
Mf

|〈Jf Mf |Ô(E2)|Ji Mi〉|2

=
∑
Mf

∣∣∣∣∣
∑

mC
f ,m�

f

∑
mC

i ,m�
i

C
Jf ,Mf

mC
f ,m�

f

C
Ji ,Mi

mC
i ,m�

i

〈
jC
f mC

f

∣∣Ô(E2)
∣∣jC

i mC
i

〉∣∣∣∣∣
2

× δm�
f ,m�

i
.

By using the Wigner-Enckart theorem, we obtain

〈
jC
f mC

f

∣∣Ô(E2)
∣∣jC

i mC
i

〉 = C
jC
f ,mC

f

mC
i ,mE2

〈
jC
f

∣∣|Ô(E2)|∣∣jC
i

〉
,

where 〈jC
f ||Ô(E2)||jC

i 〉 just depends on jC
i and jC

f . Finally,
the B(E2) is given as

B(E2, Ji → Jf ) = C
∣∣〈jC

f

∣∣|Ô(E2)|∣∣jC
i

〉∣∣2
,

where

C =
∑
Mf

⎛
⎝ ∑

mC
f ,m�

∑
mC

i ,m�

C
Jf ,Mf

mC
f ,m�C

Ji ,Mi

mC
i ,m�C

jC
f ,mC

f

mC
i ,mE2

⎞
⎠

2

,

m�
i = m�

f = m�.

Finally, the corrected B(E2) value cB(E2) is obtained as

cB(E2, jC
i → jC

f ) = 2jC
f + 1

2jC
i + 1

∣∣〈jC
f

∣∣|Ô(E2)|∣∣jC
i

〉∣∣2

= 2jC
f + 1

2jC
i + 1

B(E2, Ji → Jf )

C
.
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