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Superdeformed oblate superheavy nuclei
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We study stability of superdeformed oblate (SDO) superheavy Z � 120 nuclei predicted by systematic
microscopic-macroscopic calculations in 12D deformation space and confirmed by the Hartree-Fock calculations
with the SLy6 force. We include into consideration high-K isomers that very likely form at the SDO shape.
Although half-lives T1/2 � 10−5 s are calculated or estimated for even-even spin-zero systems, decay hindrances
known for high-K isomers suggest that some SDO superheavy nuclei may be detectable by the present
experimental technique.
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I. INTRODUCTION

The question of what is the largest possible atomic number
Zmax of an atomic nucleus is still unsettled. The recent
experiments on heavy-ion fusion in Dubna claim Zmax � 118
[1], with a partial confirmation of hot-fusion cross sections
coming from GSI [2] and LBL Berkeley [3]. Predictions on
the stability of superheavy nuclei are based either on the
Hartree-Fock plus BCS (HFBCS) or HFB studies with some
effective interaction chosen out of the existing set or on the
more phenomenological microscopic-macroscopic method,
more tested in the extensive multidimensional fission barrier
studies. Although these models differ quantitatively, they
consistently predict prolate deformed superheavy nuclei with
Z = 100–112, which is confirmed experimentally for nuclei
around 254No [4] and spherical or oblate deformed systems
with Z � 114 and N = 174–184 (see, e.g., Refs. [5,6]).
In the present work we show that microscopic-macroscopic
calculations predict superdeformed oblate (SDO) nuclei, with
characteristic quadrupole deformations −0.4 � β20 � −0.5
(spheroids with the axis ratio ≈3:2), for Z � 120. Let us notice
that such oblate deformations would be larger than any known
through experiment at present.

To the best of our knowledge, the first theoretical hint about
such huge oblate deformation came from the Woods-Saxon
(WS) results in Ref. [5]. Unfortunately, in the same work [5],
prolate well-deformed ground states (g.s.) were obtained for
nuclei Z � 120, N � 166 in the self-consistent calculations
with the Skyrme forces SLy7 and SkP, contradicting the
WS results. Still other g.s. shapes of the nuclei in question
were found in the later HFB study with the Skyrme SLy4
model [6]; for example, the self-consistently predicted shape
of the nucleus Z = 122 and N = 166 was slightly oblate
(β2 � −0.12) in Ref. [6] and prolate (β2 � 0.2) in Ref. [5].

In our present study we use nine more deformations than in
the WS calculations of Ref. [5], including both triaxiality and
reflection asymmetry. Therefore, we can extend discussion of
the exotic oblate-deformed superheavy nuclei here. Relying on
the calculated energy surfaces, nuclear masses, and cranking
mass parameters, we calculate or estimate half-lives for
selected even-even SDO systems. Then we consider an idea,
advanced, for example, in Ref. [7], of extra stable high-K shape
isomers, also in odd systems, whose existence at the SDO

shape is very likely. Expected decay hindrances point to the
possibility that some of these exotic-shaped superheavy nuclei,
far from the conventionally expected “island of stability,” live
long enough to be detected. The additionally performed HF-
BCS calculations with the Skyrme SLy6 force also predict the
SDO minima in Z � 120, N � 166 nuclei. Thus, there is no
fundamental contradiction between microscopic-macroscopic
and self-consistent predictions of SDO.

II. METHOD OF CALCULATION

Within the microscopic-macroscopic method, energy of
a deformed nucleus is calculated as a sum of two parts:
the macroscopic one, being a smooth function of Z, N

and deformation, and the fluctuating microscopic one, which
is based on some phenomenological single-particle (s.p.)
potential. A deformed Woods-Saxon potential model used
here is defined in terms of the nuclear surface, as exposed in
Ref. [8]. We admit shapes defined by the following equation
of the nuclear surface:

R(θ, ϕ) = c({β})R0

{
1 +

∑
λ>1

βλ0Yλ0(θ, ϕ)

+
∑

λ>1,µ>0,even

βλµcY
c
λµ(θ, ϕ)

}
, (1)

where c({β}) is the volume-fixing factor. The real-valued
spherical harmonics Y c

λµ, with even µ > 0, are defined in terms

of the usual ones as Y c
λµ = (Yλµ + Yλ−µ)/

√
2. In other words,

we consider shapes with two symmetry planes. The np = 450
lowest proton levels and nn = 550 lowest neutron levels from
Nmax = 19 lowest shells of the deformed harmonic oscillator
were taken into account in the diagonalization procedure.
We have determined the s.p. spectra for every investigated
nucleus, so that no scaling to a central nucleus was needed.
The Strutinsky smoothing was performed with the sixth-order
polynomial and the smoothing parameter equal to 1.2h̄ω0. For
the macroscopic part we used the Yukawa plus exponential
model [9].

All parameters used in the present work, determining the
s.p. potential, the pairing strength, and the macroscopic energy,
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are equal to those used previously in the calculations of
masses [10] and fission barriers [11] of heaviest nuclei. We
took the “universal set” of potential parameters and the pairing
strengths Gn = (17.67 − 13.11 · I )/A for neutrons and Gp =
(13.40 + 44.89 · I )/A for protons [I = (N − Z)/A]. These
pairing constants have been adjusted to odd-even mass differ-
ences for nuclei beyond lead which could be calculated from
the known masses of atomic nuclei in 2001 [12]. As always
within this model, N neutron and Z proton s.p. levels have been
included when solving BCS equations. Systematic calculations
have shown that this microscopic-macroscopic model leads
to a very good agreement with experimental masses in the
superheavy region: The root-mean-square deviation for masses
of 238 nuclei Z � 84, N � 126 [13] equals 0.37 MeV [14].

We used a rich variety of shapes, with possible nonaxiality
and mass asymmetry, to reliably determine energy landscapes
of the heaviest nuclei. A deformation set included both
traditional quadrupole deformations β and γ , where β20 =
β cos γ and β22c = −β sin γ (for γ = n × 60◦, with n integer,
a quadrupole shape is axially symmetric); three hexadecapole
distortions β40, β42c, and β44c; the higher-rank even axial
multipoles β60 and β80; and the following odd-multipole
deformations β30, β32c, β50, β52c, and β70—altogether 12
parameters. The range of deformation parameters covered a
region of shapes up to, and little behind, the fission barrier,
where the shape parametrization (1) may be hoped sufficient.

Energy landscapes were obtained by a multidimensional
energy minimization on a map of equidistant mesh points
(β cos γ, β sin γ ) with respect to ten other deformations. We
used a rather large mesh spacing of 0.05 to make time-
consuming calculations feasible. A subsequent interpolation
served to visualize results. To check the results we monitored
the continuity of the resulting ten deformation parameters
with respect to β cos γ and β sin γ and their stability with
respect to the choice of their starting values. To assess the
latter, we repeated the minimization for the whole map for
selected nuclei by choosing random starting values. We have
found that the results agreed with the ones obtained previ-
ously. Additional minimizations have been done to further
verify the found minima, in particular, the axially symmetric
minima were reproduced by the minimization over the axially
symmetric deformations βλ0.

III. RESULTS

Equilibria and SDO minima; fission barriers. Quadrupole
deformations β20 of the ground state (global) minima, cal-
culated for ∼300 even-even nuclei are shown in Fig. 1. In
addition to spherical and well- or weakly deformed prolate
and oblate equilibrium shapes, there is a region of SDO
nuclei for Z � 120, N � 168, of particular interest here.
SDO global minima occur also for large N = 190,192 and
Z = 118–122 (one such minimum for N > 184, resulting
from microscopic-macroscopic 3D calculations, was shown
in Ref. [15]). Although some weakly deformed minima have
nonaxial distortions, energies of Z = 120 isotopes plotted vs
β20 for axially symmetric shapes in Fig. 2 fairly illustrate the
shape competition and coexistence in the Z � 120 region.

FIG. 1. (Color online) Calculated ground-state quadrupole defor-
mations β20.

The secondary SDO minima exist there for 168 � N � 172
and N � 184. They appear also in Z � 118 nuclei. Typically,
they lie ≈2 MeV above the g.s. This has an effect on the α

decay of the SDO Z = 120 isotopes (see below). In the whole
Z � 114 region, the deepest minima, spherical or oblate, occur
for N = 174–184; for Z = 124,126 they are predominantly
oblate. In general, one can conclude that g.s. shapes of heaviest
nuclei obtained here qualitatively agree with the previous
microscopic-macroscopic results [5,16], as well as with some
self-consistent results (see, e.g.,Refs. [6,17]). This conclusion
should be treated only as a general remark, especially for
very heavy (Z � 118) systems. On the borders of β stability
theoretical evaluations of g.s. deformations, if available, can
differ qualitatively and quantitatively.

Energy maps in the (β cos γ , β sin γ ) plane are necessary
to appreciate fission barriers (Fig. 3). The conspicuous result
of our calculations is that triaxial saddles are found in many
of the studied nuclei. They may lower the axial fission barrier
by up to 2.5 MeV. This lowering increases with N and is
larger for bigger Z. The role of triaxiallity on static fission
barriers has been shown before in many publications (see, e.g.,
Refs. [5,6,11,18–23] and recently in Ref. [24]). The odd-
multipole deformations do not change the barriers as much,
but they lower some oblate minima and modify the energy
maps around and beyond the saddles.

Crucial for stability is that barriers diminish with N

decreasing below 174–176 and with Z approaching 126. The
first feature is common also to the self-consistent HFBCS
results (e.g., Ref. [25]), while the second is very distinctive for
the microscopic-macroscopic model used here [11]. Hence,
the largest barriers of ≈3.4 MeV predicted for SDO nuclei
286120 and 288122 are rather small as compared to the
5.6 MeV barrier for 296120 [11]. The barriers for N � 190
SDO nuclei are still smaller, so we do not consider them
further. As the α-decay rates increase with Z, we concentrate
on the SDO nuclei around Z ≈ 120 and N ≈ 166.

Other models. To convince ourselves that the SDO minima
are not a strange twist of the particular model we have looked
for minima in the interesting nuclei by using (1) the same
microscopic model and another version of the macroscopic
energy, the LSD liquid drop model of Ref. [26], (2) the self-
consistent HFBCS method with the Skyrme force SLy6 [27]
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FIG. 2. (Color online) Energy relative to the spherical macroscopic contribution, E(β20) − Emacr(sphere), for the Z = 120 isotopic chain;
each point results from the minimization over βλ0, λ = 3–8.

and the state-dependent pairing induced by the δ interaction
with the strengths Vn = 316 MeV fm3 for neutrons and Vp =
322 MeV fm3 for protons. The HF equations were solved
on the 3D spatial mesh and the symmetry of solutions was
the same as in the microscopic-macroscopic model, allowing
for both triaxial and reflection-asymmetric shapes (for other
details of the HFBCS calculations, see Ref. [28]).

Both additional calculations support the prediction of the
global SDO minima. These minima are even by ≈1 MeV
deeper with the LSD variant of the macroscopic energy. In the
HFBCS calculations, the energy competition between prolate,
oblate, and SDO minima and fission barriers come out similar

FIG. 3. (Color online) Energy surface of 288122, normalized as in
Fig. 2. Crosses mark the saddles.

as in the microscopic-macroscopic study. In particular, for Z =
120, the SDO minima are the lowest ones for N = 164, 166
while for Z = 118 they are excited by about 2–2.5 MeV. More-
over, the fission barrier height in 286120 is again about 3 MeV.

Stability against fission. We checked fission half-lives Tsf

by calculating WKB action with cranking mass parameters
for selected nuclei. We assumed the zero-point energy of
0.5 MeV. To handle fission paths in 12D deformation space we
calculate, instead of the mass parameter tensor, the effective
mass parameter along a prescribed 12D path. Technically,
this is done by replacing analytic derivatives with respect to
deformations by the finite differences [29].

Two possible classes of fission paths and barriers along
them may be read from Fig. 3. The barriers along the axial
saddle (at β ≈ 0.3, γ = 0) are longer and have thinner peaks.
They can compete with the triaxial path only when there
is a deep normal oblate minimum, that is, for N = 166 or
N = 168. Triaxial barriers and the related WKB action change
smoothly from isotope to isotope. At present, we did not
attempt a minimization over paths in the 12D space; we
checked WKB actions along a few chosen short trajectories
along the barrier. These are known to provide the smallest
action from the previous studies [18,30]. The smallest action
we found along triaxial, nearly straight paths. They give
half-lives 10−6 s for 286120 and 10−5 s for 288122. Because
these barriers are rather short and simple, we estimate an error
from the path being nonoptimal of about 1 order of magnitude
on the basis of calculated actions and our experience.

Stability against α decay. From the calculated masses and
the improved formula a la Viola-Seaborg [31], we obtain for
the g.s. → g.s. transitions log10(T α

1/2[s]) = −9.1 for 286120,
and longer Tα for the lighter Z = 120 isotopes (Fig. 4). This
follows from the dependence of Qα values on the neutron
number (see Fig. 5). These SDO → prolate transitions (Fig. 6)
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FIG. 4. (Color online) Calculated log10(T α
1/2[s]) values for g.s. to

g.s. (the lower line) and g.s to SDO (the upper line) α decays of
Z = 120 neutron-deficient nuclei.

must be strongly hindered by a very different structure of both
configurations, in particular, the occupation of intruder states
at SDO shape (see below). If the hindrance would be complete,
only SDO → SDO transitions would remain. As already
mentioned, SDO configurations in the Z = 118 daughters are
excited by ≈2 MeV (2.5 MeV in HFBCS). This leads to a
considerable decrease of Qα (see Fig. 5) and consequently
increase in half-life: log10(T α

1/2[s]) becomes equal to −5.5 for
286120 and Tα are shorter for lighter isotopes (see Fig. 4).
Clearly, this result holds as long as the configuration hindrance
factors are smaller than 10−3.6.

Kisomers at SDO deformation; odd systems. With half-
lives T1/2 < 10−5 s—the present limit for detection of syn-
thesized superheavy nuclei—superheavy SDO systems might
be considered merely as a theoretical curiosity. A fascinating
possibility for their longer life-times is related to K isomerism
(see Refs. [7,32]). Indeed, high-K configurations at the SDO
shape are very likely (see Fig. 7). Owing to large deformation,
the neutron k17/2 and proton j15/2 intruder states with large

FIG. 5. (Color online) Calculated Qα values for g.s. to g.s. (upper
line) and g.s. to SDO (lower line) α decays of Z = 120 neutron-
deficient nuclei.

FIG. 6. (Color online) Mechanism of the α-decay hindrance of
the SDO 286120; energy normalized as in Fig. 2.

angular momentum projections on the symmetry axis 	

are close to the Fermi level for Z = 120, N = 166. Of
unique structure and parity, they provide identity to high-K
2(4)-quasiparticle configurations. Candidates for low-lying K

isomers are the so called “optimal” configurations [33], with
singly occupied large-	 orbitals close to the Fermi level.
In 286120, the candidates are the proton (13/2−,7/2+)10−
and neutron (15/2+,9/2−)12− configurations. The possible
low-lying or ground states in odd nuclei are the neutron
15/2+ state in 285120 and the proton 13/2− state in 285119; the
low-lying 14− state could be expected in the odd-odd 284119.
Detailed predictions would require energy minimization at
fixed configuration with blocking.

In assessing stability of high-K isomers or odd nuclei
we rely on estimates and analogies with well established
experimental facts, as we cannot precisely calculate their
decay rates. Let us notice that the considered SDO nuclei are
proton-unstable, but in view of the large Coulomb barrier the
related lifetimes may not concern us, at least for even-Z nuclei.
Indeed, one can find in Fig. 21 of Ref. [5], that the one-proton
emission half-life for 286120 is predicted to be larger than 1000
years; it becomes 1/100–1/10 s for 290124; half-lifes for odd-Z
are much smaller, for example, 10−5–10−4 s for 285119. Owing
to centrifugal barrier, the half-life will be larger than for l = 0,
which was assumed in Ref. [5]. One can also notice that the
odd-Z, high-K states are protected by the centrifugal barrier
if the high-	 protons are blocked.

Fission hindrance. As is well known, Tsf for odd and odd-
odd heavy and superheavy nuclei are by 3–5 orders longer
than for their even-even neighbors. Similar increase was found
for high-K isomers, with respect to (prolate) shape isomers
on which they are built, in even 240–244Cm [34]. For SDO
superheavy K isomers two factors combine to increase fission
half-life: (1) The axial fission path is closed by the conservation
of the K quantum number and (2) triaxial barriers increase
owing to a decrease in pairing caused by the blocking of two
neutrons or protons. Additional hindrance of fission is expected
for configurations involving blocked high-	 intruder states.

In typical nuclei, the moment of inertia at the saddle is
larger than at the g.s., so the fission barrier for higher spins
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FIG. 7. (Color online) Calculated s.p. energies vs projection of the angular momentum on the symmetry axis in 286120 at the SDO g.s.:
β20 = −0.449, β40 = 0.054, β60 = 0.017, β80 = −0.017.

is lower than for the g.s. Considering the effect of the saddle
deformation on the fission barrier at high spins for SDO nuclei
we prefer to rely on our HFBCS results, as the Woods-Saxon
moments of inertia have to be renormalized owing to too-
large radii [35]. The geometrical moments of inertia from the
HFBCS calculation in 288120 are J⊥ = 71 b, J‖ = 109 b at
the SDO shape (the subscript refers to the relative orientation
to the rotation and symmetry axes), and J b

⊥ = 107 b at the
triaxial barrier (i.e., the larger one of the two). The actual
moment of inertia at the barrier is reduced by pairing to f bJ b

⊥,
with f b substantially smaller than 1. Without pairing, J‖ is
an average moment of inertia of yrast noncollective high-K
states [33]. As J‖ > f bJ b

⊥ and pairing at SDO g.s. is weaker
than at the barrier, we infer that there should be no decrease
with K in the fission barrier for SDO K-isomers.

α-decay hindrance. Although this seems the least certain
of our arguments, K-isomerism may substantially increase α

half-lives: The high-K isomer in 270Ds has a longer (partial)
half-life Tα = 6.0+8.2

−2.2 ms than the g.s., Tα(g.s.) = 100+140
−40 µs

[36]. For SDO nuclei, an additional hindrance may result
from a difference between the parent and daughter high-K
configuration, or, for the same configuration, from its extra
excitation in the daughter, leading to a smaller Qα .

Stability against β decay. The β+-decay rates λβ for
neutron-deficient candidates for the SDO K isomers can be
estimated by neglecting the emitted electron energy mec

2 in
the decay energy: Qβ = [M(A,Z) − M(A,Z − 1) − me]c2.
Then one has λβ ∼ |M|2G2

F Q5
β , where |M| is the transition

matrix element and GF is the Fermi constant. Even for a
perfect overlap, |M|2 ∼ 1, using our calculated masses we
obtain half-lives Tβ = ln2/λβ of the order of 0.1–1 s for even
and odd SDO nuclei, consistent with the results by Möller
et al. [37]. Because for high-K isomers |M| is reduced, their
β+ decay is even slower.

Although the production of SDO nuclei is another subject,
one may notice here that the SDO shape is much closer to the

sticking-point configuration of the prolate and spherical heavy
ions in the side collision than the sphere.

IV. CONCLUSIONS

Summarizing, within both microscopic-macroscopic and
Skyrme HF methods, one obtains SDO shapes of the ground
or low excited states of superheavy Z � 120 nuclei. Although
even-even, spin-zero nuclei decay by a quick ∼10−5–10−6 s
fission or α decay, longer half-lives are expected for high-K
isomers which very likely exist in some even or odd systems.
In this work we connected the predictions of the SDO stability,
the idea of both K and shape isomerism and the estimates of
their influence on half-lives. Through calculations or estimates
it follows, somewhat paradoxically, that such extremely
exotic configurations may live long enough to be detected.
Especially the retardation of the α decay of the Z = 120
SDO configuration and the unique interplay of axial vs triaxial
fission paths (including values of cranking mass parameters)
provide important hints. The very fact that superdeformed
oblate minima occur in WS and self-consistent calculations
and their geometrical sense point to their universality, as a
transitional form between (close to) spherical and toroidal
configurations for still heavier hypothetical high-Z systems.
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[20] J. Dechargé, J. F. Berger, M. Girod, and K. Dietrich, Nucl. Phys.
A 716, 55 (2003).

[21] L. Bonneau, P. Quentin, and D. Samsoen, Eur. Phys. J. A 21,
391 (2004).

[22] A. Dobrowolski, K. Pomorski, and J. Bartel, Phys. Rev. C 75,
024613 (2007).

[23] M. Kowal and A. Sobiczewski, Int. J. Mod. Phys. E 4, 914
(2009).

[24] P. Jachimowicz, M. Kowal, and A. Sobiczewski, Acta Phys. Pol.
B 41, 1927 (2010).

[25] A. Staszczak, J. Dobaczewski, and W. Nazarewicz, Int. J. Mod.
Phys. E 15, 302 (2006).

[26] K. Pomorski, J. Dudek, Phys. Rev. C 67, 044316 (2003).
[27] E. Chabanat et al., Nucl. Phys. A 635, 231 (1998).
[28] J. Skalski, Phys. Rev. C 76, 044603 (2007).
[29] M. Kowal and J. Skalski, Phys. Rev. C 82, 054303 (2010).
[30] R. Smolańczuk, J. Skalski, and A. Sobiczewski, Phys. Rev. C

52, 1871 (1995).
[31] G. Royer, K. Zbiri, and C. Bonilla, Nucl. Phys. A 730, 355

(2004).
[32] F. R. Xu, E. G. Zhao, R. Wyss, and P. M. Walker, Phys. Rev.

Lett. 92, 252501 (2004).
[33] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New

York, 1975), Vol. 2.
[34] H. C. Britt, S. C. Burnett, B. H. Erkkila, J. E. Lynn, and

W. E. Stein, Phys. Rev. C 4, 1444 (1971); G. Sletten, V. Metag,
and E. Liukkonen, Phys. Lett. B 60, 153 (1976).

[35] W. Nazarewicz, R. Wyss, and A. Johnson, Nucl. Phys. A 503,
285 (1989).

[36] S. Hofmann et al., Eur. Phys. J. A 10, 5 (2001).
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