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A recently developed three-dimensional approach (without partial-wave decomposition) is considered to
investigate solutions of Faddeev-Yakubovsky integral equations in momentum space for three- and four-body
bound states, with the inclusion of three-body forces. In the calculations of the binding energies, spin-dependent
nucleon-nucleon (NN) potential models [soft-core potential S3, Malfliet-Tjon (MT) I-III, Yamaguchi-type
potentials (YS), and P5.5-model of Gibson-Lehman (P55GL)] are considered along with the scalar two-meson
exchange three-body potential. The presently reported results agree well with the ones obtained by other
techniques, demonstrating the advantage of an approach in which the formalism is much more simplified and
easy to manage for direct computation.
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I. INTRODUCTION

In recent years, calculations of three- and four-body bound
and scattering states based on the Faddeev-Yakubovsky (FY)
scheme are performed in a three-dimensional (3D) approach,
which avoids truncation problems and the necessity of compli-
cated recoupling algebra that accompanies calculations based
on partial-wave (PW) decomposition [1–9]. Instead, in the
3D approach, the equations and amplitudes are formulated
directly as functions of momentum-vector variables. This is a
straightforward procedure that is convenient for obtaining final
observables such as the total energy. For a PW observable, one
can easily project the final state onto the specific required
partial-wave channel.

For three-nucleon (3N) and four-nucleon (4N) bound states,
the FY equations with two- and three-nucleon interactions have
been recently formulated in a realistic 3D approach [10]. The
formalism, according to the number of spin-isospin states that
are taken into account, leads to a finite number of coupled
three-dimensional integral equations to be solved. It has
been shown that considering the continuous-angle variables
instead of the discrete-angular momentum quantum numbers
in the evaluation of the transition and permutation operators,
coordinate transformations, as well as the three-nucleon forces
(3NFs), leads to less complicated expressions in comparison
with the PW representation. However, it should be mentioned
that, with respect to the PW representation, the present
formalism with the smaller number of equations leads to higher
dimensionality of integral equations. In other words, the price
for the smaller number of equations in the 3D representation is
the higher dimensionality of the integral equations. It should be
clear that by switching off the spin-isospin quantum numbers,
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one can easily reach the bosonic type of three-dimensional FY
integral equations which are solved in Refs. [11–14].

In view of the above, we can observe that one real advantage
in using a non-PW approach rather than PW-based methods
lies in a simplified computational algorithm, which is obtained
in a straightforward manner from the original equations. For
interacting systems with two and three particles, the procedure
was already shown to be quite reliable and easy to be imple-
mented. The advantage of the 3D approach is more evident in
the formulation of 4N interacting systems, where it completely
avoids the extremely complicated algebra of coupling of
spin-angular momentum quantum numbers. However, it is
clear that this advantage of the 3D approach, when dealing with
the formalism and the corresponding computations, comes at
the expense of possible numerical precision when considering
more than two Jacobi momentum vector variables. In such
a case, by working with the non-PW approach, after the
momentum-variable discretization, one may have to deal with
matrices larger than the ones that occur in the case of PW-based
calculations, making the latter procedure preferable.

By considering previous numerical comparisons between
3D and PW-based results, we should note the perfect agree-
ment between the obtained full-wave function of the three-
nucleon system, as well as the corresponding momentum
distribution functions [11]. In view of these results, in the case
of a four-nucleon interacting system, the numerical accuracy
obtained by the 3D approach is expected to be about the
same as the accuracy verified in PW-based calculations. This
agreement should show up in the analysis of the corresponding
observables, which is partially done by considering bound-
state solutions of three- and four-nucleon systems with 3NFs
in the present approach.

The 3D approach has been shown to be efficient in solving
the Faddeev equations for the 3N scattering calculations,
especially at intermediate and higher energies [15]. Also, the
recent proton-deuteron elastic and breakup calculations show
that the 3D approach has the potential to provide a more
rigorous treatment of Coulomb effects [16].
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In the case of continuum problems, as for example
when obtaining scattering observables, where partial-wave
summation can be problematic, the 3D approach is expected
to be particularly more efficient than a method using PW
decomposition. Clearly, the intrinsic limitations of the PW-
based calculations are not only due to the complexity of
deriving the necessary equations, but also due to the limitations
in computer resources requiring a very large number of
angular-momentum states in order to achieve convergence
for the scattering observables. By increasing the energy, the
number of PW channels strongly proliferates and consequently
leads to more numerical difficulties with respect to accuracy
and storage requirements. However, as shown in Ref. [15],
relativistic three-body scattering calculations at energies up
to 1-GeV laboratory kinetic energy have been done success-
fully by using direct vector-variable calculations, avoiding
PW decomposition. Since the 3D approach does not use
partial wave decomposition, carrying all the PW channels
automatically, the same numerical effort is spent in observable
calculations at higher or lower energies. Essentially, the 3D
technique is not only shown to be a viable alternative to
the well-established PW-based calculations at low-energy
regions, but it also appears to be a necessary approach
at higher energies where the PW approach is no longer
feasible.

One should also note that channel-independent observables,
such as the total differential cross section, can be obtained
using the 3D formalism and, consequently, be compared to
experimental data. Since experimental data are not always
available, one needs to extract a channel-dependent observable
from this 3D approach, such as the NN phase shifts. To achieve
this aim, one can easily project the obtained final state onto the
specific PW channel, as was done by Fachruddin, leading to
very accurate results in excellent agreement with established
PW results [17].

It is useful to mention a recent alternative 3D representation
for 3N bound states where the spin-isospin couplings are
not explicitly carried out [18]. The unique aspect of this
formalism is the evaluation of NN t matrices, the 3NFs, and
the Faddeev components as products of scalar functions with
scalar products of spin operators and momentum vectors. The
spin operators have been removed and the final formalism
leads to scalar functions of momentum vectors only.

In the present paper, our purpose is to calculate FY
bound-state solutions using nucleon-nucleon potential models
with three-nucleon forces, following the non-PW 3D ap-
proach as shown in Ref. [10]. We report results obtained
for three- and four-nucleon binding energies by employing
spin-isospin-dependent NN potential models along with a
scalar two-meson exchange 3NF. The main goal of the present
work is to demonstrate advantages of the 3D approach in
few-body systems by testing the 3D representation of the FY
integral equations with several potential models not previously
considered in 3D approach studies.

The current paper is organized as follows: In Sec. II,
we briefly review the coupled three-dimensional FY integral
equations for the 4N bound state. In Sec. III, we present
our numerical results for three- and four-nucleon binding
energies and compare them to the results obtained from
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FIG. 1. (Color online) Definition of the 3 + 1 and 2 + 2 type of
Jacobi coordinates of a 4N system.

other techniques. Finally, our summary and conclusions are
in Sec. IV.

II. A BRIEF REVIEW OF FY EQUATIONS
IN THREE DIMENSIONS

In the FY formalism, the bound state of four nucleons in
the presence of 3NFs is described by the following coupled
equations [7]:

|ψ1〉=G0tP [(1−P34)|ψ1〉+|ψ2〉]+ (1 + G0t)G0V
3

123|�〉,
|ψ2〉 = G0t P̃ [(1 − P34)|ψ1〉 + |ψ2〉], (1)

where the Yakubovsky components |ψ1〉 and |ψ2〉 stand for
3 + 1 (K type or 1 2 3, 4) and 2 + 2 (H type or 1 2, 3 4)
partitions of the four nucleons, respectively. G0 is the free
4N propagator, the operator t is the NN transition matrix,
and P,P34, and P̃ are permutation operators. The quantity
V 3

123 defines a part of the 3NF in the cluster (1 2 3), which is
symmetric under the exchange of particles 1 and 2. As shown
in Fig. 1, for non-PW momentum space representation of the
coupled Yakubovsky components [i.e., Eq. (1)], two different
sets of basis states are needed,

|u; α〉 ≡ ∣∣u1, u2, u3; αS
1234 αT

1234

〉 ≡ ∣∣u1, u2, u3;

× ((
s12

1
2

)
s123

1
2

)
SMS

((
t12

1
2

)
t123

1
2

)
T MT

〉
,

|v; β〉 ≡ ∣∣v1, v2, v3; βS
1234 βT

1234

〉
≡ |v1, v2, v3; (s12 s34)S MS (t12 t34)T MT 〉, (2)

where these basis states are complete in the 4N Hilbert space,

∑∫ A

ξ

|A; ξ 〉 〈A; ξ | = 1,
∑∫ A

ξ

≡
∑

ξ

∫
D3A

≡
∑

ξ

∫
d3A1

∫
d3A2

∫
d3A3, (3)

where A indicates each one of the u and v vector sets and ξ

indicates α and β quantum number sets. Representation of the
coupled equations (1) in the introduced basis states, Eq. (2),
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leads to two sets of coupled integral equations:

〈u ; α |ψ1〉 =
∑∫ u′

α′

∑∫ u′′

α′′
〈u ; α |G0t | u′ ; α′ 〉〈u′ ; α′ |P | u′′ ; α′′〉

( ∑∫ u′′′

α′′′
〈u′′ ; α′′|1 − P34| u′′′ ; α′′′ 〉 〈 u′′′ ; α′′′ |ψ1〉

+
∑∫ v′

β ′
〈 u′′ ; α′′ | v′ ; β ′ 〉 〈 v′ ; β ′ |ψ2〉

)
+

∑∫ u′

α′

∑∫ u′′

α′′
〈 u ; α |(1 + G0t)G0| u′ ; α′ 〉 〈 u′ ; α′ |V (3)

123| u′′ ; α′′ 〉〈 u′′ ; α′′ |�〉,

〈v ; β |ψ2〉 =
∑∫ v′

β ′

∑∫ v′′

β ′′
〈v ; β |G0t | v′ ; β ′ 〉 〈v′ ; β ′ |P̃ | v′′ ; β ′′〉

×
( ∑∫ u′

α′

∑∫ u′′

α′′
〈v′′ ; β ′′ | u′ ; α′〉 〈u′ ; α′ |1 + P34| u′′ ; α′′〉 〈u′′ ; α′′ |ψ1〉 + 〈v′′ ; β ′′ |ψ2〉

)
. (4)

To evaluate the above coupled integral equations, it is
necessary to evaluate the matrix elements of two-body t

matrices, permutation operators, as well as the coordinate
transformations. These have been evaluated in detail in
Ref. [10]. It is useful to mention that one needs the free
4N basis states |A; γ 〉, where the spin-isospin parts γ are
given as |γ 〉 ≡ |γS γT 〉 ≡ |ms1 ms2 ms3 ms4 mt1 mt2 mt3 mt4〉. In

changing the 4N basis states (i.e., |α〉 and |β 〉) to the
free 4N basis states |γ 〉, it is necessary to calculate the
usual Clebsch-Gordan coefficients 〈γ |α〉 = gγα ≡ gS

γα gT
γα

and 〈γ |β〉 = gγβ ≡ gS
γβ gT

γβ (see Ref. [10]). After the above-
mentioned operators and coordinate transformations are car-
ried out, the coupled Yakubovsky equations can be obtained
explicitly:

〈u1, u2, u3; α|ψ1〉 = 1

E − u2
1

m
− 3u2

2
4m

− 2u2
3

3m

[ ∫
d3u′

2

∑
γ ′,γ ′′′

gαγ ′′′ δm′′′
s4

m′
s4
δm′′′

s3
m′

s1
δm′′′

t4
m′

t4
δm′′′

t3
m′

t1
a

〈
u1; m′′′

s1
m′′′

s2
m′′′

t1
m′′′

t2
|t(ε)|−1

2
u2

− u′
2; m′

s2
m′

s3
m′

t2
m′

t3

〉
a

{ ∑
α′′

gγ ′α′′

〈
u2 + 1

2
u′

2, u′
2, u3; α′′ |ψ1

〉

−
∑
α′′

gγ ′
1243α

′′

〈
u2 + 1

2
u′

2,
1

3
u′

2 + 8

9
u3, u′

2 − 1

3
u3; α′′|ψ1

〉

+
∑
β ′

gγ ′β ′

〈
u2 + 1

2
u′

2, −u′
2 − 2

3
u3,

1

2
u′

2 − 2

3
u3; β ′|ψ2

〉 }

+
{ 〈

u1, u2, u3; α
∣∣V (3)

123

∣∣�〉 + 1

2

∑
γ ′,γ ′′,α′′′

gαγ ′ gγ ′′α′′′

∫
d3u′

1

δm′
s3

m′′
s3
δm′

s4
m′′

s4
δm′

t3
m′′

t3
δm′

t4
m′′

t4

E − u2
1′
m

− 3u2
2

4m
− 2u2

3
3m

× a

〈
u1; m′

s1
m′

s2
m′

t1
m′

t2
|t(ε)|u′

1; m′′
s1
m′′

s2
m′′

t1
m′′

t1

〉
a

〈
u′

1, u2, u3; α′′′ ∣∣V (3)
123

∣∣�〉} ]
,

〈v1, v2, v3; β |ψ2〉 = 1

E − v2
1

m
− v2

2
2m

− v2
3

m

∫
d3v′

3

∑
γ ′,γ ′′′

gβγ ′′′ δm′′′
s3

m′
s1

δm′′′
s4

m′
s2

δm′′′
t3

m′
t1

δm′′′
t4

m′
t2

× a

〈
v1; m′′′

s1
m′′′

s2
m′′′

t1
m′′′

t2
|t(ε∗)|v′

3; m′
s3
m′

s4
m′

t3
m′

t4

〉
a

{∑
α′

gγ ′α′

〈
v3,

2

3
v2 + 2

3
v′

3,
1

2
v2 − v′

3; α′|ψ1

〉

−
∑
α′

gγ ′
1243α

′

〈
v3,

2

3
v2 − 2

3
v′

3,
1

2
v2 + v′

3; α′|ψ1

〉
+

∑
β ′

gγ ′β ′ 〈v3, −v2, v′
3; β ′|ψ2〉

}
, (5)

where a〈|t(ε)|〉a and a〈|t(ε∗)|〉a are antisymmetrized NN t

matrices. This spin-isospin 3D formalism can be simplified
to the bosonic case by switching off the spin-isospin quantum
numbers (see Refs. [13,14]).
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TABLE I. List of parameters of the NN potentials used in this work. Each potential contains two parts, V0 and V1, where the indices 0 and 1
denote the spin of the 2N subsystem. Each part is written as a sum of a few terms; each is expressed as Vsi f [µsi, r(p, p′)], where f (µsi, r) =
exp(−µsi r

2) for a Gauss-type potential, f (µsi, r) = exp(−µsi r)/r for a Yukawa-type potential, and f (µsi, p, p′)−1 = ξ2
i

m

(p p′)2i−2

(p2+µ2
si)i (p′2+µ2

si)i
for

separable potentials. The potential strengths Vsi are in MeV for S3, in fm−3 for YS and P5.5GL, and dimensionless for MT I-III. The range
parameters, exchanged masses for MT I-III, µsi are in fm−2 for S3 and in fm−1 for others. For separable potentials ξ1 = 1.0000 and ξ2 = 2.9499.

Potential Type i V0i µ0i V1i µ1i

S3 Gauss 1 1000.0 3.00 1000.0 3.00
2 −326.7 1.05 −166.0 0.80
3 43.0 0.60 23.0 0.40

YS Separable
YS I 1 −0.1490 1.165 −0.4160 1.450
YS II 1 −0.1430 1.150 −0.3815 1.406
YS III 1 −0.1323 1.130 −0.3815 1.406
YS IV 1 −0.1323 1.130 −0.3628 1.406
MT I-III Yukawa 1 7.39 3.110 7.39 3.110

2 −2.64 −1.555 −3.22 −1.555
P5.5GL Separable 1 0.13230 1.130 −0.18752 1.2766

2 −0.18752 1.7610

III. NUMERICAL RESULTS FOR THE THREE- AND
FOUR-NUCLEON BINDING ENERGIES

In this section, we present numerical results for the
three- and four-nucleon binding energies. The details of the
numerical algorithm for solving the coupled three-dimensional
integral equations can be found in Refs. [10,13,14].

A. Results for N N potential models

In order to check our proposed 3D formulation for the three-
and four-nucleon bound states, we apply the formalism to the
following spin-dependent NN potential models: soft-core po-
tential S3 [19], Yamaguchi-type potentials (YS) [20], Malfliet-
Tjon (MT) I-III [21] and P5.5-model of Gibson-Lehman
(P55GL) [22]. We are aware that realistic NN potentials have
already been used even for nuclei with A > 4, but the main
goal of the present work is the test of the 3D representation of
the FY equations for more realistic potentials than have been
used before in such four-body calculations. The parameters of
the above potentials are given in Table I.

Our results will be compared to several techniques: the
variational method (VAR) [23], the Hyperspherical Harmonics
expansion (HH) [24–27], several types of approximations for
the subsystem kernels of the four-body problem by operators
of finite rank (SKFR) [28–32], the integrodifferential equation
approaches (IDEA) and the S-wave projected integrodiffer-
ential equation (SIDE) [33,34], the Coupled-Rearrangement-
Channel (CRC) [35], the differential Faddeev-Yakubovsky
(DFY) [1,36], the FY (PW) [3], and the coupled two-
dimensional integral equations (2DI) [20]. Our results for the
triton and α-particle binding energies are shown in Tables II–V
in comparison to the results of other techniques. Table II
collects the binding energies for the S3 potential, Table III
for the YS-type potentials, Table IV for the MT I-III potential,
and Table V for the P5.5GL potential.

As shown in Table II, our result for the α-particle binding
energy for the spin-dependent (spin-averaged) S3 potential

with value −28.8 (−25.7) MeV is in good agreement with the
results of the HHE, SIDE, and DFY techniques and especially
with the FY result in PW decomposition. Also, our result for
the triton binding energy with values −8.20 and −6.41 MeV,
corresponding to spin-dependent and spin-averaged versions
of this potential, respectively, are in excellent agreement with
the FY results in PW decomposition. It should be pointed out
that the results with the spin-averaged version of the potentials
differ from previous results where the original version of
the potentials was used. The difference between the obtained
results of the original and averaged versions of the potentials
is to be expected and it is quite natural.

The calculated triton and α-particle binding energies for
separable, spin-dependent Yamaguchi-type potentials with
different methods are listed in Table III. Our results for the

TABLE II. Triton and α-particle binding energies for the S3
potential (in MeV).

Method Et Eα

VAR [23] −26.47

HHE [25] −26.01

SIDE [33] −8.20 −27.93

CRC [35] −28.74

DFY [1] −28.79

FY(PW) [3] −8.20 −28.80

FY(3D) −8.20 −28.8

SIDEav [33] −25.38

DFYav [1] −25.50

HHEav [24] −25.97

DFYav [36] −25.68

FY(PW)av [3] −6.41 −25.69

FY(3D)av −6.41 −25.7

Expt. −8.48 −28.30
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TABLE III. α-particle binding energy for YS-type potentials (in MeV). The numbers in parentheses correspond to triton binding energies.

Method YS I YS II YS III YS IV

FY(PW) [3] −45.87(−11.05)
SKFR [31] −45.73
SKFR [29] −45.59
SKFR [30] −45.32
2DI [20] −45.7(−11.05) −44.2(−10.71) −42.3 (−10.13) −37.7 (−8.48)
FY (3D) −45.9(−11.05) −44.4(−10.70) −42.4 (−10.13) −37.8 (−8.47)
Expt. −28.30(−8.48)

α-particle (triton) binding energy for YS I, II, III, and IV with
values −45.9 (−11.05), −44.4 (−10.70), −42.4 (−10.13),
and −37.8 (−8.47) MeV, respectively, are in excellent agree-
ment with the 2DI results.

As demonstrated in Table IV, the calculation of the α-
particle binding energy by using the spin-dependent and spin-
averaged version of the MT I-III potential in the FY (PW)
scheme converges to values of −30.29 and −28.83 MeV,
while the triton binding energy converges to values −8.54
and −7.55 MeV, correspondingly. As shown in this table,
our calculations for spin-dependent versions of this potential
yields the values −8.54 and −30.3 MeV for triton and α-
particle binding energies, correspondingly, which are in good
agreement with the FY (PW) results. Also, our results for the
triton and α-particle binding energies with the spin-averaged
version of this potential with values −7.57 and −28.8 MeV
are also in excellent agreement with the corresponding FY
(PW) results.

In Table V, we present the triton and α-particle binding
energies for the P5.5GL potential calculated with the SKFR
and FY methods. Our results for triton and α-particle binding
energies with values −8.04 and −28.9 MeV are in excellent
agreement with the corresponding PW results. In the next
section, we present our results for binding energies with the
inclusion of 3NFs.

TABLE IV. Triton and α-particle binding energies for the MT
I-III potential (in MeV).

Method Et Eα

SKFR [32] −29.6
SKFR [28] −30.36
SIDE [33] −8.54 −29.74
DFY [1] −8.54 −30.31
IDEA [34] −8.86 −30.20
HH [27] −30.33
EIHH [26] −8.72 −30.71
DFY(PW) [1] −30.312
FY(PW) [3] −8.54 −30.29
FY(3D) −8.54 −30.3
FY(PW)av [3] −7.55 −28.83
FY(3D)av −7.55 −28.8
Expt. −8.48 −28.30

B. Results for N N with 3N potential models

In our calculations with a 3NF, we use a model of the
3NF that is based on multimeson exchanges. We study two
different types of 3NFs, a purely attractive and a superposition
of attractive and repulsive (MT 3-I and MT 3-II, respectively)
(Ref. [12]). The parameters of these 3NFs are chosen so that
the correction due to the triton binding energy calculated with
the modified MT II-II NN potential is small, and they lead
to binding energies near to the experimental triton binding
energy.

As shown in Table VI, our results for the α-particle (triton)
binding energies with the addition of the MT 3-I and MT
3-II 3NFs, with the averaged version of MT I-III used as
the NN potential, are −35.7 (−8.68) and −34.5 (−8.45) MeV,
respectively. Unfortunately, we could not compare these results
for binding energies with other calculations, but we have
listed our recent results with different combinations of MT
V NN potential and previously mentioned 3N potential models
(i.e., MT 3-I and MT 3-II) [14]. As one can see from the
comparison of our results with and without 3NFs (while MT
I-IIIave is used as the NN potential model) with the previously
calculated binding energies (while MT V is used as the NN
potential model) the MT I-IIIav NN potential model provide
more reasonable results in comparison to MT-V for triton and
α-particle binding energies.

All these numbers are not meant to provide insight into
the physics of three and four interacting nucleons, but have
the purpose of demonstrating the high accuracy of numerical
results that can be obtained by considering the present non-PW
approach, in comparison with other methods. The advantage
of the method is its simplified and straightforward formalism,
which is appropriate to treat typical nuclear forces consisting
of attractive and repulsive (short-range) parts. The results
presented indicate that the 3D approach leads not only to
numerical results with the same accuracy of PW-based meth-
ods, but also to integral equations with much less analytical

TABLE V. Triton binding energy for the P5.5GL potential in MeV.
The numbers in parentheses are α-particle binding energies.

Method Et

SKFR [29] −29.10
FY(PW) [3] −28.87(−8.04)
FY(3D) −28.9(−8.04)
Expt. −28.30(−8.48)
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TABLE VI. Triton and α-particle binding energies with and
without 3NFs (in MeV).

Potential Et Eα

MT I-IIIav −7.55 −28.8
MT I-IIIav+MT 3-I −8.68 −35.7
MT I-IIIav+MT 3-II −8.45 −34.5
MT V [13] −7.74 −31.3
MT V+MT 3-I [14] −8.92 −38.8
MT V+MT 3-II [14] −8.70 −37.5
Expt. −8.48 −28.30

and algebraic complexity in comparison to corresponding
equations formulated in PW-based methods. In a 3D case,
there are only a finite number of coupled three-dimensional
integral equations to be solved, whereas, in the PW case, after
truncation, there are a finite number of coupled equations
with kernels containing relatively complicated geometrical
expressions.

IV. SUMMARY AND OUTLOOK

In the present paper, we solve the FY three-dimensional
integral equations for spin-dependent and spin-averaged NN
potential models (i.e., S3, MT I-III, YS type, and P5.5GL) and
the scalar two-meson exchange three-body interaction. These
potentials provide reasonable results for binding energies in
comparison to the potential models that have been used in
previous works. Our results for these potential models are in
good agreement with the corresponding previous values when
considering VAR, HHE, SKFR, SIDE, and DFY techniques.
In particular, they are matched with PW calculations in the FY
scheme.

This non-PW approach, by working directly with
momentum-vector variables, is shown to be a good, efficient
alternative to other methods to treat three- and four-nucleon
bound-state calculations. Recently, following this approach,
the coupled FY equations have been formulated, with and
without 3NFs, as a function of vector Jacobi momenta,
where the formalism is given in terms of the magnitudes
of the momenta and the angles between them. It has been
demonstrated that the three-dimensional FY integral equations
can be handled in a straightforward and numerically reliable

fashion. In comparison to commonly used angular-momentum
decompositions, this direct approach leads to a finite number of
coupled equations with kernels containing greatly simplified
expressions.

It should be clear that this approach is more efficient
for scattering problems, especially in the energy regions
where the PW-based calculations have slow convergence. The
formulation of 3N scattering and 3H photodisintegration in
a realistic 3D approach has been done successfully [37,38]
and the calculation is underway. Molecular, atomic, and
nuclear or subnuclear physics are but a few examples of
various fields of physics where quantum-mechanical few-body
problems play an important role. Since the 3D approach is
general, it can be applied to any system, from molecules to
elementary particles. Another valuable application of this non-
PW approach is in few-body atomic bound states with realistic
potentials.

We should also mention a renormalization group approach
that we have considered when solving integral equations for
the nucleon-nucleon interaction [39]. In leading order, by using
the one-pion exchange potential plus a Dirac-δ function, this
is considered a nonperturbative renormalization procedure,
relying on a subtracted kernel where a scaling parameter is
introduced. The role of the scaling parameter is similar to
the cut-off momentum parameter, but with a big advantage in
view of its flexibility. Since the approach is renormalization-
group invariant, one can arbitrarily move the reference scale
without affecting the relevant physical results. An extension
of this approach is being investigated [40], where a recursive
subtraction procedure is applied to the scattering matrix so-
lution with next-leading-order and next-to-next-leading-order
two-pion exchange interactions. Also, we are considering the
application of the present 3D approach for the NN interac-
tion in the renormalization group scheme that was used in
Ref. [39].
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Phys. 120, 887 (2008); S. Bayegan, M. R. Hadizadeh, and
M. Harzchi, Phys. Rev. C 77, 064005 (2008); M. R. Hadizadeh
and S. Bayegan, Mod. Phys. Lett. A 24, 816 (2009).

[11] Ch. Elster, W. Schadow, A. Nogga, and W. Glöckle, Few-Body
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[39] T. Frederico, V. S. Timóteo, and L. Tomio, Nucl. Phys. A 653,

209 (1999); T. Frederico, A. Delfino, and L. Tomio, Phys. Lett.
B 481, 143 (2000); 621, 109 (2005).
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