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Formation of fragments in heavy-ion collisions using a modified clusterization method
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We study the formation and stability of the fragments by extending the minimum spanning tree method (MST)
for clusterization. In this extension, each fragment is subjected to a binding-energy check calculated using the
modified Bethe-Weizsäcker formula. Earlier, a constant binding-energy cut of 4 MeV/nucleon was imposed.
Our results for 197Au + 197Au collisions are compared with ALADiN data and also with the calculations based
on the simulated annealing technique. We shall show that the present modified version improves the agreement
compared to the MST method.
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Multifragmentation has been of central interest in the last
two decades. The primary cause of this intense investigation
is the rich information associated with the production and
emission of fragments [1,2]. A large number of sophisticated
experiments have been performed during the last two decades
to detect the fragments and to look for their associated
properties [2,3]. An equal number of attempts are also reported
in the literature on the theoretical front [1,4–6].

On the theoretical front, dynamical approaches such as
quantum molecular dynamics (QMD) [1] and Boltzmann-
Uehling-Uhlenbeck (BUU) [7] follow the time evolution of
the reactions from the initial to the final stage. One, however,
needs secondary algorithms to identify the fragments. One
has always struggled for a proper algorithm for identifying
these fragments. Early attempts consist of identifying the
fragments based on their spatial correlations. This approach
is often dubbed as the minimum spanning tree (MST)
algorithm [1,4,5]. This approach has been quite successful
in explaining the fragmentation, especially at low incident
energies [8]. One of the major problems with the MST method
is that it does not guarantee the production of proper bound
fragments. As a result, more sophisticated algorithms such
as the early cluster recognition algorithm (ECRA) [9] and
the simulated annealing clusterization algorithm (SACA) [6]
were developed. These methods, although promising, are very
complicated and can not be used as freely as the MST method.
In addition, procedural steps such as cooling parameters,
iterative procedure, and the choice of the minima can lead
to an entirely different configuration of the fragments [6]. In
mildly excited or in asymmetric reactions, the minimum is
not sharp, therefore, the utility and scope of these algorithms
is limited. To avoid the creation of spurious fragments, the
MST method was improved by constraining the fragments
to an average binding energy of 4 MeV/nucleon. Here, we
further improve this method by subjecting each fragment to its
corresponding binding energy. This will further enhance the
predictive power of the MST method by discarding spurious
fragments. For this paper, we generate the phase space using
the quantum molecular dynamics model [1].

In our calculations, reactions are followed until saturation
time which, in this study, is between 200 and 300 fm/c
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and fragments are then identified. In the MST method, two
nucleons share the same fragment if their spatial distance is
less than or equal to 4 fm, i.e., |rα − rβ | � 4 fm. In earlier
work [5], one of us and co-workers imposed a binding-energy
cut of 4 MeV/nucleon for all fragments with mass A � 3. Any
cluster that failed to fulfill the condition was treated as a group
of free nucleons. This version was labeled as MSTB(1.1). The
condition of 4 MeV/nucleon is a rather crude approximation,
and fragments may not be realistic. In this paper, we extend
this method by imposing a microscopic binding-energy check.

One of the earlier attempts to reproduce the gross features of
nuclear binding energies was made by Weizsäcker et al. [10].
The Bethe-Weizsäcker (BW) mass formula for the binding
energy of a nucleus reads as [11]
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Here, Nf and Nz
f stand for the fragment size and proton

number of a fragment. The various terms involved in this mass
formula are the volume, surface, Coulomb, asymmetry, and
pairing terms. The strength of different parameters is av =
15.79 MeV, as = 18.34 MeV, ac = 0.71 MeV, and asym =
23.21 MeV, respectively [11]. δ corresponds to the pairing
term.

This formula reproduces the binding energy of stable
nuclei but faces a serious problem for light nuclei along the
drip line and for nuclei with rich neutron or proton content.
The inadequacy of BW mass formula for lighter nuclei was
removed by Samanta et al. [11] by modifying its asymmetry
and pairing terms. This modified formula was dubbed as the
modified Bethe-Weizsäcker mass (BWM) formula [11]. In the
BWM formula, the binding energy of a fragment is defined
as [11]
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The strength of various parameters now reads as av =
15.777 MeV, as = 18.34 MeV, ac = 0.71 MeV, and asym =
23.21 MeV, respectively. The pairing term δnew is given by

δnew = +apN
−1/2
f (1 − e−Nf /30) for even Nz

f − even Nn
f , (3)

δnew = −apN
−1/2
f (1 − e−Nf /30) for odd Nz

f − odd Nn
f , (4)

δnew = 0 for odd Nf nuclei, (5)

with ap = 12 MeV. We extend the MSTB(1.1) method by
subjecting each cluster to the above binding-energy criteria.
This version of implementation is labeled as MSTB(2.1).
Note that, in contrast to the restructured aggregation model
(RAM), we do not reshape the fragments [12]. Since fragments
at the final stage (i.e., after 200–300 fm/c) are cold, the
above binding-energy criteria are justified [6]. Summarizing,
if a MST cluster does not fulfill the stability criterium, a
new cluster is built by taking off a single nucleon, which is
then considered as a free particle. This procedure is repeated
for each nucleon of the original MST cluster, and the most
bound configuration is chosen. If all considered configurations

FIG. 1. (Color online) The time evolution of different fragments
in the central reaction of 197Au + 197Au at 600 MeV/nucleon.
Here we display (a) the heaviest fragment (Amax) and (e) mul-
tiplicity of free nucleons, (b) light charged particles (LCPs) 2 �
A � 4, (c) medium mass fragments (MMFs) 3 � A � 14, (d)
intermediate mass fragments (IMFs) 5 � A � 65, as well as (f)
fragments with masses 5 � A � 9, (g) 6 � A � 8, and (h) 9 �
A � 12. The results obtained with the MST, MSTB(1.1), and
MSTB(2.1) methods are shown, respectively, by solid, dashed, and
dotted lines. We also display the results with SACA(2.1) (dashed-
dotted line). The shaded area is for the time zone between 200–
300 fm/c.

contain clusters with a total energy higher than the one given
by the mass formula, all nucleons of the MST cluster are
considered as free.

We also note that, using the lattice gas model (LGM), the
energy-based cluster recognization algorithm has also been
applied for nuclear fragmentation [13].

For this analysis, we use a soft equation of state along
with an energy-dependent nucleon-nucleon cross section. For
details, the reader is referred to Ref. [1]. We shall here
concentrate on the 197Au + 197Au reaction from low to
relativistic energies.

In Fig. 1, we display the time evolution of the heaviest
fragment (Amax), free nucleons, light charged particles (LCPs)
2 � A � 4, medium mass fragments (MMFs) 3 � A � 14,
intermediate mass fragments (IMFs) 5 � A � 65 as well as
fragments with masses 5 � A � 9, 6 � A � 8, and 9 � A �
12 detected in the MST, MSTB(1.1), and MSTB(2.1) versions.
For comparison, we also display the results with the simulated
annealing clusterization algorithm [SACA(2.1)] that searches
for the most bound configuration [6]. It is worth mentioning

FIG. 2. (Color online) The multiplicity of (a) IMF’s and (b)
charge of heaviest fragment as a function of impact parameter for the
reaction of 197Au + 197Au at 400 MeV/nucleon. The mean values
in the MST and MSTB(1.1) methods at 250 fm/c are represented
by symbols, whereas error bars in the MST and MSTB(1.1)
methods denote the values at times between 200–300 fm/c. The
corresponding values in the MSTB(2.1) method are denoted by
gray shade. The results of SACA(2.1) are also shown by open
squares. The experimental data points have been extracted from
Ref. [2].
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that in the SACA(2.1) algorithm, physical configuration is
supposed to occur at a time of minima in the Amax, which is
often around 60 fm/c. This minima, however, is not always
sharp. Therefore, results can vary in many cases. Since the
MST method does not consider the binding-energy check,
Amax detected at high density shows 394 nucleons that decay
afterwards. In fact, this is not properly bound as is evident
from the MSTB(2.1) method. Even a constant binding-energy
check of 4 MeV/nucleon does not yield proper results. The
present modified version MSTB(2.1) yields results closer to the
SACA(2.1) method and are, therefore, close to the reality. We
noted from Fig. 1 that Amax and multiplicities of LCPs, MMFs,
and IMFs are reduced from 8.6, 46.7, 14.0, and 3.2 formed
in the MST method to 5.8, 30.0, 9.2, and 1.3, respectively,
at 250 fm/c, once the realistic microbinding-energy check
is employed. We notice reasonable differences with different
versions of the MST method at 200–300 fm/c.

FIG. 3. (Color online) The heaviest bound charge as a function of
the system mass for central collisions and at center-of-mass energy of
(a) 8, (b) 10, and (c) 20 MeV/nucleon. The mean values in the MST
and MSTB(1.1) methods at 250 fm/c are represented by symbols,
whereas error bars in the MST and MSTB(1.1) methods denote the
values at time between 200–300 fm/c. The corresponding values in
the MSTB(2.1) method are denoted by gray shade. The results of
SACA(2.1) are also shown by open squares. The experimental data
points have been extracted from Ref. [14].

We display in Fig. 2 the multiplicity of intermediate
mass fragments and mean charge of the heaviest fragment
(Zmax) as a function of impact parameter for the fragments
detected in the forward hemisphere as per ALADiN setup.
The error bars in the theoretical results indicate variation
in the multiplicity [in the MST and MSTB(1.1) methods]
between 200–300 fm/c. The corresponding values in the
MSTB(2.1) method are shown by the shaded portion. We
also display the results of the ALADiN experimental setup
[2] and SACA(2.1) for comparison. We see that the proper
binding-energy check [i.e., MSTB(2.1) method] improves the
agreement with ALADiN experimental data compared to MST
and MSTB(1.1) methods. Although the multiplicity of IMFs
is not reproduced by the new implementation, the 〈Zmax〉 is
very well reproduced by MSTB(2.1). Similar results were also
obtained at 600 MeV/nucleon. The underestimation of IMFs is
not surprising since it is well known that even the MST method
does not reproduce the trend. The MSTB(2.1) method will not
create additional fragments; rather, it refines the fragments.

In Fig. 3, we display the comparison of heaviest bound
charge Zmax obtained at center-of-mass energy of 8, 10, and
20 MeV/nucleon for the reactions of Ar + KCl, Ar + Ni,
Ni + Ni, Rb + Rb, Xe + Sn, Ho + Ho, and Au + Au using
MST, MSTB(1.1), MSTB(2.1), and SACA(2.1) methods.
Again, we see that this implementation yields results close
to the experimental data even at the lower tail of incident
energies, where fragmentation is a rare phenomena [14].

In Fig. 4, we display the charge yields of fragments obtained
in the reaction of 197Au + 197Au at incident energy of 150
and 250 MeV/nucleon average over central and semicentral
collisions. Very interestingly, we see that the MSTB(2.1) gives
results as good as SACA(2.1) and, thus, is able to explain the
data nicely [15].

FIG. 4. (Color online) The charge distribution for 197Au + 197Au
at (a), (b) 150 and (c), (d) 250 MeV/nucleon average over (a), (c)
central and (b), (d) semicentral collisions. The mean values in the
MSTB(2.1) method at 200–300 fm/c are denoted by gray shade.
The results of SACA(2.1) are also shown by open squares. The
experimental data points are extracted from Ref. [15].
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FIG. 5. (Color online) The rapidity distribution of LCPs (dN/dY )
at freeze-out time (250 fm/c) for the reaction of 197Au + 197Au
at 600 MeV/nucleon and (a) b = 0, (c) 1, (b) 2, and (d) 4 fm.
The results obtained with the MST, MSTB(1.1), MSTB(2.1), and
SACA(2.1) methods are shown, respectively, by solid, dashed, dotted,
and dashed-dotted lines.

In Fig. 5, we display the rapidity distribution (dN/dY ) of
LCPs as a function of scaled rapidity (Y/Ybeam) for the same
reactions of 197Au + 197Au at b = 0–4 fm. The rapidity for the
j th nucleon is defined as

Y (i) = 1

2
ln

E(j ) + pz(j )

E(j ) − pz(j )
. (6)

Here, E(j ) and pz(j ) are, respectively, the total energy
(nucleon) and longitudinal momentum per nucleon for the
j th nucleon. Clearly, we see that a proper binding-energy
cut leads to a rapidity distribution, which is closer to the

most bound structure formed by SACA(2.1). We see that, in
all the cases, the rapidity is much smaller compared to the
MST method. We have also tested the gain factor, a quantity
that measures the interaction of fragments with surroundings.
This implementation is found to have far fewer interactions,
indicating that fragments are realistic.

From the above analysis, it is clear that present implemen-
tation of the MST method is promising as it avoids creation
and detection of spurious fragments and, in many cases, yields
results close to the SACA method and to experimental data.
It is worth mentioning that all methods should converge to
the same result after the reaction has finished. This reaction
time for such calculations is as large as 1000 fm/c [4]. At the
same time, semiclassical models such as the QMD model does
not keep nuclei stable for such a long time. One has tried to
identify the fragments at earlier time steps. The complicated
methods SACA(2.1) and ECRA depend on the set of cooling
parameters, iterative procedure, identification of minima, etc.,
and therefore, output of clusters can vary drastically if one
plays with these parameters. On the other hand, the MST
method does not have any such parameter; therefore, we
attempted to improve this method by employing the proper
binding-energy check. Our implementation gives reasonable
bound fragments, and therefore can be of help in clusterizing
the phase space.

Summarizing, by using the quantum molecular dynamics
model, we studied the formation and stability of the fragments
formed in heavy-ion collisions. The minimum spanning tree
method is improved by imposing a realistic microscopic
binding-energy cut for each fragment. The results were
compared with experimental data of ALADiN and also with
the yields obtained with most bound calculations based on the
simulated annealing technique (2.1). Our analysis reveals that
the present modification improves the predictive power of the
MST method in many cases.
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[12] S. Leray, C. Ngô, M. E. Spina, B. Remaud, and F. Sebille, Nucl.

Phys. A 511, 414 (1990).
[13] A. Coniglio, H. E. Stanley, and W. Klein, Phys. Rev. Lett. 42, 518

(1979); F. Gulminelli and Ph. Chomaz, ibid. 82, 1402 (1999);
S. K. Samaddar and S. Das Gupta, Phys. Rev. C 61, 034610
(2000).

[14] B. Borderie and M. F. Rivet, Prog. Part. Nucl. Phys. 61, 551
(2008).

[15] B. Heide and H. W. Barz, Nucl. Phys. A 588, 918 (1995).

047601-4

http://dx.doi.org/10.1016/0370-1573(91)90094-3
http://dx.doi.org/10.1103/PhysRevC.48.610
http://dx.doi.org/10.1016/0375-9474(96)00239-4
http://dx.doi.org/10.1016/S0375-9474(99)00097-4
http://dx.doi.org/10.1103/PhysRevC.54.276
http://dx.doi.org/10.1103/PhysRevC.54.276
http://dx.doi.org/10.1016/0370-2693(94)01632-M
http://dx.doi.org/10.1016/0370-2693(94)01632-M
http://dx.doi.org/10.1103/PhysRevC.58.2858
http://dx.doi.org/10.1088/0954-3899/27/10/310
http://dx.doi.org/10.1088/0954-3899/27/10/310
http://dx.doi.org/10.1016/S0375-9474(97)00175-9
http://dx.doi.org/10.1016/S0375-9474(97)00175-9
http://dx.doi.org/10.1006/jcph.2000.6534
http://dx.doi.org/10.1006/jcph.2000.6534
http://dx.doi.org/10.1088/0954-3899/37/1/015105
http://dx.doi.org/10.1088/0954-3899/37/1/015105
http://dx.doi.org/10.1016/0146-6410(93)90005-Z
http://dx.doi.org/10.1103/PhysRevC.56.2109
http://dx.doi.org/10.1016/0370-2693(93)91158-J
http://dx.doi.org/10.1103/PhysRevC.65.037301
http://dx.doi.org/10.1103/PhysRevC.69.049804
http://dx.doi.org/10.1103/PhysRevC.69.049804
http://dx.doi.org/10.1016/0375-9474(90)90167-K
http://dx.doi.org/10.1016/0375-9474(90)90167-K
http://dx.doi.org/10.1103/PhysRevLett.42.518
http://dx.doi.org/10.1103/PhysRevLett.42.518
http://dx.doi.org/10.1103/PhysRevLett.82.1402
http://dx.doi.org/10.1103/PhysRevC.61.034610
http://dx.doi.org/10.1103/PhysRevC.61.034610
http://dx.doi.org/10.1016/j.ppnp.2008.01.003
http://dx.doi.org/10.1016/j.ppnp.2008.01.003
http://dx.doi.org/10.1016/0375-9474(95)00131-J

