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The Feynman-Metropolis-Teller treatment of compressed atoms is extended to the relativistic regimes. Each
atomic configuration is confined by a Wigner-Seitz cell and is characterized by a positive electron Fermi
energy. The nonrelativistic treatment assumes a pointlike nucleus and infinite values of the electron Fermi
energy can be attained. In the relativistic treatment there exists a limiting configuration, reached when the
Wigner-Seitz cell radius equals the radius of the nucleus, with a maximum value of the electron Fermi energy
(EF

e )max, here expressed analytically in the ultrarelativistic approximation. The corrections given by the relativistic
Thomas-Fermi-Dirac exchange term are also evaluated and shown to be generally small and negligible in the
relativistic high-density regime. The dependence of the relativistic electron Fermi energies by compression for
selected nuclei are compared and contrasted to the nonrelativistic ones and to the ones obtained in the uniform
approximation. The relativistic Feynman-Metropolis-Teller approach here presented overcomes some difficulties
in the Salpeter approximation generally adopted for compressed matter in physics and astrophysics. The treatment
is then extrapolated to compressed nuclear matter cores of stellar dimensions with A � (mPlanck/mn)3 ∼ 1057 or
Mcore ∼ M�. A new family of equilibrium configurations exists for selected values of the electron Fermi energy
varying in the range 0 < EF

e � (EF
e )max. Such configurations fulfill global but not local charge neutrality. They

have electric fields on the core surface, increasing for decreasing values of the electron Fermi energy reaching
values much larger than the critical value Ec = m2

ec
3/(eh̄) for EF

e = 0. We compare and contrast our results with
the ones of Thomas-Fermi model in strange stars.
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I. INTRODUCTION

In a classic article Baym, Bethe, and Pethick [1] presented
the problem of matching, in a neutron star, a liquid core,
composed of Nn neutrons, Np protons, and Ne electrons,
to the crust, taking into account the electrodynamical and
surface tension effects. After discussing the different aspects
of the problem they concluded: The details of this picture
require further elaboration; this is a situation for which
the Thomas-Fermi method is useful. This statement may at
first appear surprising: The Thomas-Fermi model has been
extensively applied in atomic physics (see, e.g., Gombás [2],
March [3], and Lundqvist and March [4]) and has been applied
extensively in atomic physics in its relativistic form (see, e.g.,
Ferreirinho, Ruffini, and Stella [5] and Ruffini and Stella [6])
as well as in the study of atoms with heavy nuclei in the
classic works of Migdal, Popov, and Voskresenskii [7,8].
Similarly there have been considerations of the relativistic
Thomas-Fermi model for quark stars pointing out the existence
of critical electric fields on their surfaces (see, e.g., Alcock,
Farhi, and Olinto [9] and Usov [10]). Similar results have
also been obtained by Alford et al. [11] in the transition at
very high densities, from the normal nuclear matter phase
in the core to the color-flavor-locked phase of quark matter
in the inner core of hybrid stars. No example exists of the
application of the electromagnetic Thomas-Fermi model for
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neutron stars. This problem can indeed be approached with
merit by studying the simplified but rigorous concept of a
nuclear matter core of stellar dimensions which fulfills the
relativistic Thomas-Fermi equation as discussed by Ruffini
et al. [12], Popov et al. [13] and Popov [14]. As we will see
this work leads to the prediction of the existence of a critical
electric field at the interface between the core and the crust of
a neutron star.

In Ruffini et al. [12] and Popov et al. [13] it is described
a degenerate system of Nn neutrons, Np protons, and Ne

electrons constrained to a constant density distribution for
the protons and it is solved the corresponding relativistic
Thomas-Fermi equation and derived for the neutrons the
distribution following the implementation of the β equilibrium
condition. This generalizes the works of Popov [7,8,15,16]
and Greiner [17,18] by eliminating the constraint Np ≈ A/2,
clearly not valid for heavy nuclei, and enforcing the condition
of β equilibrium self-consistently in a new relativistic Thomas-
Fermi equation. Using then the existence of scaling laws we
have extended in Popov et al. [13] the results from heavy nuclei
to the case of nuclear matter cores of stellar dimensions. In
both these treatments we had assumed the Fermi energy of the
electrons EF

e = 0. The aim of this article is to proceed with
this dual approach and to consider first the case of compressed
atoms and then, using the existence of scaling laws, the
compressed nuclear matter cores of stellar dimensions with
a positive value of their electron Fermi energies.

It is well known that Salpeter has been among the first to
study the behavior of matter under extremely high pressures
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by considering a Wigner-Seitz cell of radius RWS [19].
Salpeter assumed as a starting point the nucleus pointlike
and a uniform distribution of electrons within a Wigner-Seitz
cell and then considered corrections to the above model
due to the inhomogeneity of electron distribution. The first
correction corresponds to the inclusion of the lattice energy
EC = −(9N2

pα)/(10RWS), which results from the pointlike
nucleus-electron Coulomb interaction and from the electron-
electron Coulomb interaction inside the cell of radius RWS.
The second correction is given by a series expansion of the
electron Fermi energy about the average electron density
ne of the uniform approximation. The electron density is
then assumed equals to ne[1 + ε(r)] with ε(r) considered as
infinitesimal. The Coulomb potential energy is assumed to be
the one of the pointlike nucleus with the uniform distribution
of electrons of density ne thus the correction given by ε(r) is
neglected on the Coulomb potential. The electron distribution
is then calculated at first order by expanding the relativistic
electron kinetic energy about its value given by the uniform
approximation, considering as infinitesimal the ratio eV/EF

e

between the Coulomb potential energy eV and the electron
Fermi energy EF

e = √
[cP F

e (r)]2 + m2
ec

4 − mec
2 − eV . The

inclusion of each additional Coulomb correction results in a
decrease of the pressure of the cell PS in comparison to the
uniform one (see Rueda et al. [20] for details).

It is quite difficult to assess the self-consistency of all
the recalled different approximations adopted by Salpeter. In
order to validate and to see the possible limits of the Salpeter
approach, we consider the relativistic generalization of the
Feynman-Metropolis-Teller treatment [21] which takes into
account all electromagnetic and special relativistic contri-
butions automatically and globally. We show explicitly how
this new treatment leads in the case of atoms to electron
distributions that markedly differ from the ones often adopted
in the literature of constant electron density distributions. At
the same time it allows us to overcome some of the difficulties
in current treatments. Similarly, the pointlike description of
the nucleus often adopted in literature is confirmed to be
unacceptable in the framework of a relativistic treatment.

In Sec. II we first recall the nonrelativistic treatment of the
compressed atom by Feynman-Metropolis-Teller. In Sec. III
we generalize that treatment to the relativistic regime by
integrating the relativistic Thomas-Fermi equation, imposing
also the condition of β equilibrium. In Sec. IV we first compare
the new treatment with the one corresponding to a uniform
electron distribution often used in the literature and to the
Salpeter treatment. We also compare and contrast the results
of the relativistic and the nonrelativistic treatment.

In Sec. V, using the same scaling laws adopted by Ruffini
et al. [12] and Popov et al. [13], we turn to the case of
nuclear matter cores of stellar dimensions with mass numbers
A ≈ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M�, where mn is the
neutron mass and mPlanck = (h̄c/G)1/2 is the Planck mass.
Such a configuration presents global but not local charge
neutrality. Analytic solutions for the ultrarelativistic limit are
obtained. In particular we find: (i) explicit analytic expressions
for the electrostatic field and the Coulomb potential energy;
(ii) an entire range of possible Fermi energies for the electrons
between zero and a maximum value (EF

e )max, reached when

RWS = Rc, which can be expressed analytically; and (iii) the
explicit analytic expression of the ratio between the proton
number Np and the mass number A when RWS = Rc.

We then turn in Sec. VI to the study of the compressional
energy of the nuclear matter cores of stellar dimensions
for selected values of the electron Fermi energy. We show
that the solution with EF

e = 0 presents the largest value of
the electrodynamical structure. We finally summarize the
conclusions in Sec. VII.

II. THE THOMAS-FERMI MODEL FOR COMPRESSED
ATOMS: THE FEYNMAN-METROPOLIS-TELLER

TREATMENT

A. The classical Thomas-Fermi model

The Thomas-Fermi model assumes that the electrons of an
atom constitute a fully degenerate gas of fermions confined
in a spherical region by the Coulomb potential of a pointlike
nucleus of charge +eNp [22,23]. Feynman, Metropolis, and
Teller have shown that this model can be used to derive the
equation of state of matter at high pressures by considering a
Thomas-Fermi model confined in a Wigner-Seitz cell of radius
RWS [21].

We recall that the condition of equilibrium of the electrons
in an atom, in the nonrelativistic limit, is expressed by(

P F
e

)2

2me

− eV = EF
e , (1)

where me is the electron mass, V is the electrostatic potential,
and EF

e is their constant Fermi energy.
The electrostatic potential fulfills, for r > 0, the Poisson

equation

∇2V = 4πene, (2)

where the electron number density ne is related to the Fermi
momentum P F

e by

ne =
(
P F

e

)3

3π2h̄3 . (3)

For neutral atoms and ions ne vanishes at the boundary so the
electron Fermi energy is, respectively, zero or negative. In the
case of compressed atoms ne does not vanish at the boundary
while the Coulomb potential energy eV does. Consequently
EF

e is positive.
Defining

eV (r) + EF
e = e2Np

φ(r)

r
, (4)

and introducing the new dimensionless radial coordinate η as

r = bη with b = (3π )2/3

27/3

1

N
1/3
p

h̄2

mee2
= σ

N
1/3
p

rBohr, (5)

where σ = (3π )2/3/27/3 ≈ 0.88, rBohr = h̄2/(mee
2) is the

Bohr radius, we obtain the following expression for the
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electron number density

ne(η) = Np

4πb3

[
φ(η)

η

]3/2

, (6)

and then Eq. (2) can be written in the form

d2φ(η)

dη2
= φ(η)3/2

η1/2
, (7)

which is the classic Thomas-Fermi equation [23]. A first
boundary condition for this equation follows from the pointlike
structure of the nucleus

φ(0) = 1. (8)

A second boundary condition comes from the conservation of
the number of electrons Ne = ∫ RWS

0 4πne(r)r2dr

1 − Ne

Np

= φ(η0) − η0φ
′(η0), (9)

where η0 = RWS/b defines the radius RWS of the Wigner-Seitz
cell.

In the case of compressed atoms Ne = Np so the Coulomb
potential energy eV vanishes at the boundary RWS. As a result,
using Eqs. (1) and (3), the Fermi energy of electrons satisfies
the universal relation

σrBohr

e2

EF
e

N
4/3
p

= φ(η0)

η0
, (10)

while the Wigner-Seitz cell radius RWS satisfies the universal
relation

RWS

σrBohrN
−1/3
p

= η0. (11)

Therefore in the classic treatment η0 can approach zero
and consequently the range of the possible values of the
Fermi energy extends from zero to infinity. The results are
summarized in Figs. 1 and 2.

B. The Thomas-Fermi-Dirac model

Dirac has introduced modifications to the original Thomas-
Fermi theory to include effects of the exchange interaction
[24]. In this case the condition of equilibrium of the electrons
in the atom is generalized as follows:

(
P F

e

)2

2me

− eV − e2

πh̄
P F

e = EF
e . (12)

The electron number density is now connected to the
Coulomb potential energy by

ne = 1

3π5

1

r3
Bohr

[
1 +

√
1 + 2π2

rBohr

e2

(
eV + EF

e

)]3

. (13)
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FIG. 1. Physically relevant solutions of the Thomas-Fermi equa-
tion (7) with the boundary conditions (8) and (9). Curve 1 refers to
a neutral compressed atom. Curve 2 refers to a neutral free atom.
Curve 3 refers to a positive ion. The dotted straight line is the tangent
to curve 1 at the point [η0, φ(η0)] corresponding to overall charge
neutrality [see Eq. (9)].

Defining

1

2π2

e2

rBohr
+ eV (r) + EF

e = e2Np

χ (r)

r
, (14)

the Eq. (2) can be written in dimensionless form as

d2φ(η)

dη2
= η

[
d +

(
φ(η)

η

)1/2
]3

, (15)

where d = [3/(32π2)]1/3(1/Np)2/3. The boundary condition
for Eq. (15) are φ(0) = 1 and η0φ

′(η0) = φ(η0).
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FIG. 2. The electron Fermi energy EF
e , in units of

e2N 4/3
p /(σrBohr), is plotted as a function of the Wigner-Seitz cell

radius RWS, in units of σrBohrN
−1/3
p [see Eqs. (10) and (11)]. Points

refer to the numerical integrations of the Thomas-Fermi equation (7)
performed originally by Feynman, Metropolis, and Teller in Ref. [21].
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III. THE RELATIVISTIC GENERALIZATION OF THE
FEYNMAN-METROPOLIS-TELLER TREATMENT

A. The relativistic Thomas-Fermi model for atoms

In the relativistic generalization of the Thomas-Fermi
equation the pointlike approximation of the nucleus must be
abandoned [5,6] since the relativistic equilibrium condition

EF
e =

√
(P F

e c)2 + m2
ec

4 − mec
2 − eV (r), (16)

which generalizes the Eq. (1), would lead to a nonintegrable
expression for the electron density near the origin. Conse-
quently we adopt an extended nucleus. Traditionally the radius
of an extended nucleus is given by the phenomenological
relation Rc = r0A

1/3, where A is the number of nucleons and
r0 = 1.2 × 10−13 cm. Further, it is possible to show from the
extremization of the semiempirical Weizsacker mass formula
that the relation between A and Np is given by (see, e.g.,
Segrè [25] and Ferreirinho, Ruffini, and Stella [5])

Np ≈
[

2

A
+ 2aC

aA

1

A1/3

]−1

≈
[

2

A
+ 3

200

1

A1/3

]−1

, (17)

where aC ≈ 0.71 MeV, aA ≈ 93.15 MeV are the Coulomb and
the asymmetry coefficients respectively. In the limit of small
A Eq. (17) gives

Np ≈ A

2
. (18)

In Ref. [13] we have relaxed the condition Np ≈ A/2 adopted,
e.g., in Refs. [8,17] as well as the condition Np ≈ [2/A +
3/(200A1/3)]−1 adopted, e.g., in Refs. [5,6] by imposing
explicitly the β decay equilibrium among neutron, protons,
and electrons.

In particular, following the previous treatments (see, e.g.,
Ref. [13]), we have assumed a constant distribution of protons
confined in a radius Rc defined by

Rc = 	
h̄

mπc
N1/3

p , (19)

where mπ is the pion mass and 	 is a parameter such
that 	 ≈ 1 (	 < 1) corresponds to nuclear (supranuclear)
densities when applied to ordinary nuclei. Consequently, the
proton density can be written as

np(r) = Np

4
3πR3

c

θ (Rc − r) = 3

4π

m3
πc3

h̄3

1

	3
θ (Rc − r), (20)

where θ (x) is the Heaviside function which by definition is
given by

θ (x) =
{

0, x < 0,

1, x > 0.
(21)

The electron density is given by

ne(r) =
(
P F

e

)3

3π2h̄3 = 1

3π2h̄3c3
[e2V 2(r) + 2mec

2eV (r)]3/2,

(22)

where V is the Coulomb potential.

The overall Coulomb potential satisfies the Poisson equa-
tion

∇2V (r) = −4πe[np(r) − ne(r)], (23)

with the boundary conditions V (∞) = 0 (due to global charge
neutrality) and finiteness of V (0).

Using Eqs. (4) and (5) and replacing the particle densities
(20) and (22) into the Poisson equation (23) we obtain the
relativistic Thomas-Fermi equation

d2φ(η)

dη2
= −3η

η3
c

θ (ηc − η) + φ3/2

η1/2

[
1 +

(
Np

N crit
p

)4/3
φ

η

]3/2

,

(24)

where φ(0) = 0, φ(∞) = 0, and ηc = Rc/b. The critical
number of protons N crit

p is defined by

N crit
p =

√
3π

4
α−3/2, (25)

where, as usual, α = e2/(h̄c).
It is interesting that by introducing the new dimensionless

variable

x = r

λπ

= b

λπ

η, (26)

and the function

χ = αNpφ, (27)

where λπ = h̄/(mπc), Eq. (24) assumes a canonical form, the
master relativistic Thomas-Fermi equation (see Ruffini [26])

1

3x

d2χ (x)

dx2
= − α

	3
θ (xc − x) + 4α

9π

[
χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

,

(28)

where xc = Rc/λπ with the boundary conditions χ (0) = 0,
χ (∞) = 0. The neutron density nn(r), related to the neutron
Fermi momentum P F

n = (3π2h̄3nn)1/3, is determined, as in the
previous case [13], by imposing the condition of β equilibrium

EF
n =

√(
P F

n c
)2 + m2

nc
4 − mnc

2

=
√(

P F
p c

)2 + m2
pc4 − mpc2 + eV (r), (29)

which in turn is related to the proton density np and the electron
density by Eqs. (22) and (23). Integrating numerically these
equations we have obtained a new generalized relation between
A and Np for any value of A. In the limit of small A this result
agrees with the phenomenological relations given by Eqs. (17)
and (18), as is clearly shown in Fig. 3.

B. The relativistic Thomas-Fermi model for compressed atoms

We turn now to the case of compressed atoms in which the
electron Fermi energy is positive. The relativistic generaliza-
tion of the equilibrium condition (1) now reads

EF
e =

√(
P F

e c
)2 + m2

ec
4 − mec

2 − eV (r) > 0 . (30)
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FIG. 3. The A-Np relation at nuclear density (solid line) obtained
from first principles compared with the phenomenological expres-
sions given by Np ≈ A/2 (dashed line) and Eq. (17) (dotted line).
The asymptotic value, for A → (mPlanck/mn)3, is Np ≈ 0.0046A.

Adopting an extended-nucleus with a radius given by Eq. (19)
and a proton density given by Eq. (20) the Poisson equa-
tion (23), with the following electron density

ne(r) =
(
P F

e

)3

3π2h̄3 = 1

3π2h̄3c3
[e2V̂ 2(r) + 2mec

2eV̂ (r)]3/2,

(31)

gives again the master relativistic Thomas-Fermi equation (28)
where χ/r = eV̂ (r)/(ch̄) and eV̂ = eV + EF

e .
In this case Eq. (28) has to be integrated with the boundary

conditions χ (0) = 0, χ (xWS) = xWSχ
′(xWS), xWS = RWS/λπ .

Using Eqs. (4), (26), and (27) we obtain the electron Fermi
energy in the form

EF
e = mπc2 χ (xWS)

xWS
. (32)

The neutron density nn(r), related to the neutron Fermi
momentum P F

n = (3π2h̄3nn)1/3, is determined by imposing
the condition of β equilibrium

EF
n =

√(
P F

n c
)2 + m2

nc
4 − mnc

2

=
√(

P F
p c

)2 + m2
pc4 − mpc2 + eV (r) + EF

e . (33)

Using this approach, it is then possible to determine the
β equilibrium nuclide as a function of the density of the
system. In fact, electrons and protons can be converted to
neutrons in inverse β decay p + e− → n + νe if the con-

dition EF
n <

√
(P F

p c)2 + m2
pc4 − mpc2 + eV (r) + EF

e holds.

The condition of equilibrium (33) is crucial, for exam-
ple, in the construction of a self-consistent equation of
state of high-energy-density matter present in white dwarfs
and neutron star crusts [20]. In the case of zero electron
Fermi energy the generalized A − Np relation of Fig. 3 is
obtained.

C. The relativistic Thomas-Fermi-Dirac model
for compressed atoms

We now take into account the exchange corrections to the
relativistic Thomas-Fermi equation (28). In this case we have
(see Ref. [8], for instance)

EF
e =

√(
cP F

e

)2 + m2
ec

4 − mec
2 − eV − α

π
cP F

e = const.

(34)

Introducing the function χ (r) as before

EF
e + eV = eV̂ = h̄c

χ

r
, (35)

we obtain the electron number density

ne = 1

3π2h̄3c3

{
γ (mec

2 + eV̂ ) + [(eV̂ )2 + 2mec
2eV̂ ]1/2

×
[

(1 + γ 2)(mec
2 + eV̂ )2 − m2

ec
4

(mec2 + eV̂ )2 − m2
ec

4

]1/2}3

, (36)

where γ = (α/π )/(1 − α2/π2).
If we take the approximation 1 + γ 2 ≈ 1 the above equation

becomes

ne = 1

3π2h̄3c3
{γ (mec

2+eV̂ )+[(eV̂ )2 + 2mec
2eV̂ ]1/2}3 .

(37)

The second term on the right-hand-side of Eq. (37) has the
same form of the electron density given by the relativistic
Thomas-Fermi approach without the exchange correction (31)
and therefore the first term shows the explicit contribution of
the exchange term to the electron density.

Using the full expression of the electron density given
by Eq. (36) we obtain the relativistic Thomas-Fermi-Dirac
equation

1

3x

d2χ (x)

dx2

= − α

	3
θ (xc − x)

+ 4α

9π

{
γ

(
me

mπ

+ χ

x

)
+

[(χ

x

)2
+ 2

me

mπ

χ

x

]1/2

×
[

(1 + γ 2)(me/mπ + χ/x)2 − (me/mπ )2

(me/mπ + χ/x)2 − (me/mπ )2

]1/2
}3

,

(38)

which by applying the approximation 1 + γ 2 ≈ 1 becomes

1

3x

d2χ (x)

dx2
= − α

	3
θ (xc − x) + 4α

9π

{
γ

(
me

mπ

+ χ

x

)

+
[(

χ

x

)2

+ 2
me

mπ

χ

x

]1/2}3

. (39)

The boundary conditions for Eq. (38) are χ (0) = 0 and
χ (xWS) = xWSχ

′(xWS). The neutron density can be obtained
as before by using the β equilibrium condition (33) with the
electron Fermi energy given by Eq. (34).
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FIG. 4. The electron Fermi energy in units of mπc2N 4/3
p is plotted

for helium, carbon, and iron, as a function of the ratio RWS/Rc in
the relativistic Feynman-Metropolis-Teller (FMT) treatment with and
without the exchange effects. Here RWS denotes the Wigner-Seitz cell
radius and Rc is the nucleus radius as given by Eq. (19). It is clear that
the exchange terms are appreciable only in the low-density region and
are negligible as RWS → Rc.

In Fig. 4 we show the results of the numerical integration
of the relativistic Thomas-Fermi equation (28) and of the
relativistic Thomas-Fermi-Dirac equation (38) for helium,
carbon, and iron. In particular, we show the electron Fermi
energy multiplied by N

−4/3
p as a function of the ratio RWS/Rc

between the Wigner-Seitz cell radius RWS and the nucleus
radius Rc given by Eq. (19).

The effects of the exchange term are appreciable only in the
low-density (low compression) region, i.e., when RWS 	 Rc

(see Fig. 4). We can then conclude in total generality that the
correction given by the Thomas-Fermi-Dirac exchange term
is small in the nonrelativistic low-compression (low-density)
regime and negligible in the relativistic high-compression
(high-density) regime.

IV. COMPARISON AND CONTRAST WITH
APPROXIMATE TREATMENTS

There exists in the literature a variety of semiqualitative
approximations adopted in order to describe the electron
component of a compressed atom (see, e.g., Bürvenich,
Mishustin, and Greiner [27] for applications of the uniform
approximation and, e.g., Chabrier and Potekhin [28], Potekhin,
Chabrier, and Rogers [29], Douchin and Haensel [30], and
Haensel and Zdunik [31–33] for applications of the Salpeter
approximate treatment).

We shall see how the relativistic treatment of the Thomas-
Fermi equation affects the current analysis of compressed
atoms in the literature by introducing qualitative and quan-
titative differences which deserve attention.

A. Relativistic FMT treatment versus relativistic uniform
approximation

One of the most used approximations in the treatment of the
electron distribution in compressed atoms is the one in which,

for a given nuclear charge +eNp, the Wigner-Seitz cell radius
RWS is defined by

Np = 4π

3
R3

WSne, (40)

where ne = (P F
e )3/(3π2h̄3). The Eq. (40) ensures the global

neutrality of the Wigner-Seitz cell of radius RWS assuming a
uniform distribution of electrons inside the cell.

We shall first compare the Feynman-Metropolis-Teller
treatment, previously introduced, with the uniform approx-
imation for the electron distribution. In view of the results
of the preceding section, hereafter we shall consider the
nonrelativistic and the relativistic formulation of the Feynman-
Metropolis-Teller treatment with no Thomas-Fermi-Dirac
exchange correction.

In Fig. 5 we have plotted the electron number density
obtained from Eq. (31) where the Coulomb potential is related
to the function χ , which is obtained from numerical integration
of the relativistic Thomas-Fermi equation (28) for different
compressions for helium and iron. We have normalized the
electron density to the average electron number density n0 =
3Ne/(4πR3

WS) = 3Np/(4πR3
WS) as given by Eq. (40).

We can see in Fig. 5 how our treatment, based on
the numerical integration of the relativistic Thomas-Fermi
equation (28) and imposing the condition of β equilibrium
(33), leads to electron density distributions that differ markedly
from the constant electron density approximation.

From Eqs. (30) and (40) and taking into account the global
neutrality condition of the Wigner-Seitz cell eV (RWS) = 0,
the electron Fermi energy in the uniform approximation can
be written as

EF
e �

[
− me

mπ

+
√(

me

mπ

)2

+
(

9π

4

)2/3
N

2/3
p

x2
WS

]
mπc2.

(41)

We show in Fig. 6 the electron Fermi energy as a
function of the average electron density n0 = 3Ne/(4πR3

WS) =
3Np/(4πR3

WS) in units of the nuclear density nnuc =
3A/(4π	3Npλ3

π ). For selected compositions we show the
results for the relativistic Feynman-Metropolis-Teller treat-
ment, based on the numerical integration of the relativistic
Thomas-Fermi equation (28) and for the relativistic uniform
approximation.

As clearly shown in Fig. 5 and summarized in Fig. 6 the
relativistic treatment leads to results strongly dependent at low
compression from the nuclear composition. The corresponding
value of the electron Fermi energy derived from a uniform
approximation overevaluates the true electron Fermi energy
(see Fig. 6). In the limit of high compression the relativistic
curves asymptotically approach the uniform one (see also
Fig. 5).

The uniform approximation becomes exact in the limit
when the electron Fermi energy acquires its maximum value
as given by

(EF
e )max �

[
− me

mπ

+
√(

me

mπ

)2

+
(

3π2

2

)2/3(
Np

A

)2/3]
mπc2,

(42)
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FIG. 5. The electron number density ne in units of the average electron number density n0 = 3Ne/(4πR3
WS) is plotted as a function of

the dimensionless radial coordinate x = r/λπ for the selected compressions xWS = 9.7 (upper panels), xWS = 3 × 103 (middle panels) and
xWS = 104 (bottom panels), in both the relativistic Feynman-Metropolis-Teller approach and the uniform approximation respectively for helium
(panels on the left) and iron (panels on the right).

which is attained when RWS coincides with the nuclear radius
Rc. Here, the maximum electron Fermi energy (42) is obtained
by replacing in Eq. (41) the value of the normalized Wigner-
Seitz cell radius xWS = xc = Rc/λπ ≈ [(3/2)π ]1/3A1/3.

B. Relativistic FMT treatment vs. Salpeter approximate
treatment

Corrections to the uniform distribution were also studied
by Salpeter [19] and his approximations are largely applied in
physics (see, e.g., Chabrier and Potekhin [28] and Potekhin,

Chabrier, and Rogers [29]) and astrophysics (see, e.g., Douchin
and Haensel [30] and Haensel and Zdunik [31–33]).

Keeping the pointlike nucleus assumption, Salpeter [19]
studied the corrections to the above models due to the inho-
mogeneity of the electron distribution inside the Wigner-Seitz
cell. He expressed an analytic formula for the total energy of a
Wigner-Seitz cell based on Coulomb corrections to the uniform
distribution of electrons. The first correction corresponds to
the inclusion of the lattice energy EC = −(9N2

pα)/(10RWS),
which results from the pointlike nucleus-electron Coulomb
interaction and from the electron-electron Coulomb interaction
inside the cell of radius Rws. The second correction is given
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FIG. 6. The electron Fermi energy EF
e in units of the pion

rest energy is plotted as a function of the average electron den-
sity n0 = 3Ne/(4πR3

WS) in units of the nuclear density nnuc =
3A/(4π	3Npλ3

π ) for a uniform approximation (solid line) compared
and contrasted to the ones obtained considering the relativistic
Feynman-Metropolis-Teller approach. The arrow and the dot indicate
the value of the maximum electron Fermi energy as given by Eq. (42),
consistent with the finite size of the nucleus.

by a series expansion of the electron Fermi energy about the
average electron density ne given by Eq. (40) the uniform
approximation ne = 3Np/(4πR3

WS). The electron density is
then assumed to be equal to ne[1 + ε(r)] with ε(r) considered
as infinitesimal. The Coulomb potential energy is assumed to
be the one of the pointlike nuclei with the uniform distribution
of electrons of density ne, thus the correction given by ε(r) is
neglected on the Coulomb potential. The electron distribution
is then calculated at first order by expanding the relativistic
electron kinetic energy

εk =
√[

cP F
e (r)

]2 + m2
ec

4 − mec
2

=
√

(3π2ne)2/3[1 + ε(r)]2/3 + m2
ec

4 − mec
2, (43)

about its value given by the uniform approximation

εunif
k =

√
(3π2ne)2/3 + m2

ec
4 − mec

2, (44)

considering as infinitesimal the ratio eV/EF
e between the

Coulomb potential energy eV and the electron Fermi energy
EF

e = √
[cP F

e (r)]2 + m2
ec

4 − mec
2 − eV . The effect of the

Dirac electron-exchange correction [24] on the equation of
state was also considered by Salpeter [19]. However, adopting
the general approach of Migdal et al. [8], these effects are
negligible in the relativistic regime (see Sec. III C).

The inclusion of each additional Coulomb correction results
in a decreasing of the pressure of the cell PS (see Ref. [20] for
details). However, despite the fact that it is very interesting in
identifying piecewise contributions to the total pressure, the
validity of the Salpeter approach needs verification through
a more general treatment. For instance, the failure of the
Salpeter formulas can be seen at densities of the order of ∼102–
103 g cm−3 for nuclei with large Np, as in the case of iron,
where the pressure becomes negative (see Table I). Therefore,
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RWS/( λ πNp
-1/3 )
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 Rel. FMT treatment for C 
Rel. FMT treatment for Fe 

FIG. 7. The electron Fermi energies in units of mπc2N 4/3
p for

helium, carbon, and iron are plotted as a function of the ratio
RWS/(λπN−1/3

p ) respectively in the nonrelativistic and in the relativis-
tic Feynman-Metropolis-Teller (FMT) treatment. The dimensionless
quantities have been chosen in order to obtain a universal curve
in the nonrelativistic treatment following Eqs. (10) and (11). The
relativistic treatment leads to results where the electron Fermi energy
is dependent on the nuclear composition and systematically smaller
than the nonrelativistic ones. The electron Fermi energy can attain
arbitrary large values, in the nonrelativistic treatment, as the pointlike
nucleus is approached.

the problem of solving the relativistic Thomas-Fermi equation
within the Feynman-Metropolis-Teller approach becomes a
necessity, since this approach gives all the possible Coulomb
and relativistic contributions automatically and correctly.

C. Relativistic FMT treatment versus nonrelativistic
FMT treatment

We now compare and contrast the Fermi energy, given by
Eq. (32), of a compressed atom in the nonrelativistic and the
relativistic limit (see Fig. 7). There are the following major
differences:

(i) The electron Fermi energy in the relativistic treatment
is strongly dependent on the nuclear composition, while the
nonrelativistic treatment presents a universal behavior in the
units of Fig. 7. In the limit of low densities the relativistic
curves approach the universal nonrelativistic curve. In the
nonrelativistic treatment the ratio EF

e /(mπc2N
4/3
p ) does not

depend on the number of protons Np if the Wigner-Seitz cell
radius RWS is multiplied by N

1/3
p [see Eqs. (10) and (11)]. This

universality is lost in the relativistic treatment since there is no
way to eliminate the dependence of the electron Fermi energy
on the nuclear composition (see Eq. (28) and [5]).

(ii) The relativistic treatment leads to values of the electron
Fermi energy consistently smaller than the ones of the
nonrelativistic treatment.

(iii) While in the nonrelativistic treatment the electron
Fermi energy can reach, by compression, infinite values as
RWS → 0, in the relativistic treatment it reaches a perfectly
finite value given by Eq. (42) attained when RWS coincides
with the nuclear radius Rc.
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It is clear then, from above considerations, the relativistic
treatment of the Thomas-Fermi equation introduces significant
differences from the current approximations in the literature:
(a) the uniform electron distribution [27], (b) the approximate
perturbative solutions departing from the uniform distribution
[19], and (c) the nonrelativistic treatment [21]. We have
recently applied these results of the relativistic Feynman-
Metropolis-Teller treatment of a compressed atom to the study
of white dwarfs and their consequences on the determination
of their masses, radii, and critical mass [20].

V. APPLICATION TO NUCLEAR MATTER CORES OF
STELLAR DIMENSIONS

We turn now to nuclear matter cores of stellar dimensions
of A � (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M�.

Following the treatment presented in Popov et al. [13],
we use the existence of scaling laws and proceed to the
ultrarelativistic limit of Eqs. (20), (28), (31), and (33).
For positive values of the electron Fermi energy EF

e , we
introduce the new function φ = 41/3(9π )−1/3χ	/x and the
new variable x̂ = kx, where k = (12/π )1/6 √

α	−1, as well
as the variable ξ = x̂ − x̂c in order to describe better
the region around the core radius.

Equation (28) becomes

d2φ̂(ξ )

dξ 2
= −θ (−ξ ) + φ̂(ξ )3, (45)

where φ̂(ξ ) = φ(ξ + x̂c) and the curvature term 2φ̂′(ξ )/(ξ +
x̂c) has been neglected.

The Coulomb potential energy is given by

eV (ξ ) =
(

9π

4

)1/3 1

	
mπc2φ̂(ξ ) − EF

e , (46)

corresponding to the electric field

E(ξ ) = −
(

35π

4

)1/6 √
α

	2

m2
πc3

eh̄
φ̂′(ξ ) (47)

and the electron number-density

ne(ξ ) = 1

3π2h̄3c3

(
9π

4

)
1

	3
(mπc2)3φ̂3(ξ ). (48)

In the core center we must have ne = np. From Eqs. (20) and
(48) we then have ξ = −x̂c, φ̂(−x̂c) = 1.

In order to consider a compressed nuclear density core
of stellar dimensions, we then introduce a Wigner-Seitz cell
determining the outer boundary of the electron distribution
which, in the new radial coordinate ξ is characterized by ξWS.
In view of the global charge neutrality of the system the electric
field goes to zero at ξ = ξWS. This implies, from Eq. (47), that
φ̂′(ξWS) = 0.

We now turn to the determination of the Fermi energy of
the electrons in this compressed core. The function φ̂ and its
first derivative φ̂′ must be continuous at the surface ξ = 0 of
the nuclear density core. This boundary-value problem can be

solved analytically and indeed Eq. (45) has the first integral,

2[φ̂′(ξ )]2 =
{

φ̂4(ξ ) − 4φ̂(ξ ) + 3, ξ < 0,

φ̂4(ξ ) − φ4(ξWS), ξ > 0,
(49)

with boundary conditions at ξ = 0:

φ̂(0) = φ̂4(ξWS) + 3

4
, φ̂′(0) = −

√
φ̂4(0) − φ̂4(ξWS)

2
.

(50)

Having fulfilled the continuity condition we integrate Eq. (49),
obtaining for ξ � 0

φ̂(ξ ) = 1 − 3[1 + 2−1/2 sinh(a −
√

3ξ )]−1, (51)

where the integration constant a has the value

sinh(a) =
√

2

[
11 + φ̂4(ξWS)

1 − φ̂4(ξWS)

]
. (52)

In the interval 0 � ξ � ξWS, the field φ̂(ξ ) is implicitly given
by

F

[
arccos

φ̂(ξWS)

φ̂(ξ )
,

1√
2

]
= φ̂(ξWS)(ξ − ξWS), (53)

where F (ϕ, k) is the elliptic function of the first kind
and F (0, k) ≡ 0. For F (ϕ, k) = u, the inverse function ϕ =
F−1(u, k) = am(u, k) is the well-known Jacobi amplitude. In
terms of it, we can express the solution (53) for ξ > 0 as,

φ̂(ξ ) = φ̂(ξWS)

(
cos

{
am

[
φ̂(ξWS)(ξ − ξWS),

1√
2

]})−1

.

(54)

In the present case of EF
e > 0 the ultrarelativistic ap-

proximation is indeed always valid up to ξ = ξWS for high
compression factors, i.e., for RWS � Rc. In the case of EF

e =
0, ξWS → ∞, there is a breakdown of the ultrarelativistic
approximation when ξ → ξWS. Details are given in Figs. 8, 9,
and 10.

We can now estimate two crucial quantities of the solutions:
the Coulomb potential at the center of the configuration and
the electric field at the surface of the core:

eV (0) �
(

9π

4

)1/3 1

	
mπc2 − EF

e , (55)

Emax � 2.4

√
α

	2

(
mπ

me

)2

Ec|φ̂′(0)| , (56)

where Ec = m2
ec

3/(eh̄) is the critical electric field for vacuum
polarization. These functions depend on the value φ̂(ξWS)
via Eqs. (49)–(53). At the boundary ξ = ξWS, due to the
global charge neutrality, both the electric field E(ξWS) and
the Coulomb potential eV (ξWS) vanish. From Eq. (46), we
determine the value of φ̂(ξ ) at ξ = ξWS

φ̂(ξWS) = 	

(
4

9π

)1/3
EF

e

mπc2
, (57)
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FIG. 8. The electron Coulomb potential energies, in units of the
pion rest energy in a nuclear matter core of stellar dimensions with
A � 1057 or Mcore ∼ M� and Rc ≈ 106 cm, are plotted as a function
of the dimensionless variable ξ for different values of the electron
Fermi energy, also in units of the pion rest energy. The solid line
corresponds to null electron Fermi energy. By increasing the value
of the electron Fermi energy the electron Coulomb potential energy
depth is reduced.

as a function of the electron Fermi energies EF
e . From the above

Eq. (57), one can see that there exists a solution, characterized
by the value of electron Fermi energy

(EF
e )max

mπc2
= 1

	

(
9π

4

)1/3

, (58)

such that φ̂(ξWS) = 1. From Eq. (53) and ξ = 0, we also have

ξWS[φ̂(ξWS)] =
{

1

φ̂(0)
F

[
arccos

(
4 − 3

φ̂(0)

)
,

1√
2

]}
.

(59)
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FIG. 9. Solutions of the ultrarelativistic Thomas-Fermi equation
(45) for different values of the Wigner-Seitz cell radius RWS and,
correspondingly, of the electron Fermi energy in units of the pion rest
energy as in Fig. 8, near the core surface. The solid line corresponds
to null electron Fermi energy.
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FIG. 10. The electric field in units of the critical field for vacuum
polarization Ec = m2

ec
3/(eh̄) is plotted as a function of the coordinate

ξ for different values of the electron Fermi energy in units of the pion
rest energy. The solid line corresponds to the case of null electron
Fermi energy. When the value of the electron Fermi energy increases
there is a reduction of the peak of the electric field.

For φ̂(ξWS) = 1, from Eq. (50) follows φ̂(0) = 1 hence
Eq. (59) becomes

ξWS[φ̂(0)] = F

[
0,

1√
2

]
. (60)

It is well known that if the inverse Jacobi amplitude
F [0, 1/

√
2] is zero, then

ξWS[φ̂(ξWS] = φ̂(0) = 1) = 0. (61)

Indeed from φ̂(ξWS) = 1 follows φ̂(0) = 1 and ξWS = 0.
When ξWS = 0 from Eq. (50) follows φ̂′(0) = 0 and, using
Eq. (56), Emax = 0. In other words, for the value of EF

e

fulfilling Eq. (57), no electric field exists on the boundary of
the core and from Eq. (48) and Eqs. (19) and (20) it follows that
indeed this is the solution fulfilling both global Ne = Np and
local ne = np charge neutrality. In this special case, starting
from Eq. (33) and A = Np + Nn, we obtain

(
EF

e

)3/2
max =

9π
4 (h̄c)3 A

R3
c

− (
EF

e

)3
max

23/2
[(

9π
4 (h̄c)3 A

R3
c

− (
EF

e

)3
max

)2/3 + m2
nc

4
]3/4 .

(62)

In the ultrarelativistic approximation (EF
e )3

max/
9π
4 (h̄c)3 A

R3
c

� 1
so Eq. (62) can be approximated to

(
EF

e

)
max = 21/3 mn

mπ

γ

[
−1 +

√
1 + β

2γ 3

]2/3

mπc2, (63)

where

β = 9π

4

(
h̄

mnc

)3
A

R3
c

, γ =
√

1 + β2/3. (64)
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The corresponding limiting value to the Np/A ratio is
obtained as follows:

Np

A
= 2γ 3

β

[
−1 +

√
1 + β

2γ 3

]2

. (65)

Inserting Eqs. (63) and (64) into Eq. (65) one obtains the
ultrarelativistic limit of Eq. (42), since the electron Fermi
energy, in view of the scaling laws introduced in Ref. [13],
is independent of the value of A and depends only on the
density of the core.

The Np independence in the limiting case of maximum
electron Fermi energy attained when RWS = Rc, in which
the ultrarelativistic treatment approaches the uniform one,
and the Np dependence for smaller compressions RWS > Rc

can be understood as follows. Let see the solution to the
ultrarelativistic equation (45) for small ξ > 0. Analogously
to the Feynman-Metropolis-Teller approach to the nonrela-
tivistic Thomas-Fermi equation, we solve the ultrarelativistic
equation (45) for small ξ . Expanding φ̂(ξ ) about ξ = 0 in a
semiconvergent power series

φ̂(ξ )

φ̂(0)
= 1 +

∞∑
n=2

anξ
n/2 (66)

and substituting it into the ultrarelativistic equation (45), we
have

∞∑
k=3

ak

k(k − 2)

4
ξ (k−4)/2 = φ2(0) exp

[
3 ln

(
1 +

∞∑
n=2

anξ
n/2

)]
.

(67)

This leads to a recursive determination of the coefficients:

a3 = 0, a4 = φ2(0)/2, a5 = 0,

a6 = φ2(0)a2/2, a7 = 0, a8 = φ2(0)
(
1 − a2

2

)/
8, . . . ,

(68)

with a2 = φ̂′(0)/φ̂(0) determined by the initial slope, namely
the boundary condition φ̂′(0) and φ̂(0) in Eq. (50):

φ̂(0) = φ̂4(ξWS) + 3

4
, φ̂′(0) = −

√
φ̂4(0) − φ̂4(ξWS)

2
.

(69)

Thus the series solution (66) is uniquely determined by the
boundary value φ̂(ξWS) at the Wigner-Seitz cell radius.

Now we consider the solution up to the leading orders

φ̂(ξ ) = φ̂(0) + φ̂′(0)ξ + 1
2 φ̂3(0)ξ 2 + 1

2 φ̂3(0)a2ξ
3

+ 1
8 φ̂3(0)

(
1 − a2

2

)
ξ 4 + · · · . (70)

Using Eq. (70), the electron Fermi energy (57) becomes

EF
e = (

EF
e

)
max

[
1 + a2ξ

WS + 1
2 φ̂2(0)(ξWS)2 + 1

2 φ̂2(0)a2(ξWS)3

+ 1
8 φ̂2(0)

(
1 − a2

2

)
(ξWS)4 + · · · ]φ̂(0), (71)

where (EF
e )max = (9π/4)1/3	−1 is the maximum Fermi en-

ergy which is attained when the Wigner-Seitz cell radius
equals the nucleus radius Rc [see Eq. (58)]. For φ̂(ξWS) < 1,
we approximately have φ̂(0) = 3/4, φ̂′(0) = −(3/4)2/

√
2 and

 0.01

 0.1
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FIG. 11. The Fermi energy of electrons in units of the pion rest
energy is plotted for different Wigner-Seitz cell dimensions (i.e., for
different compressions) ξWS in the ultrarelativistic approximation. In
the limit ξWS → 0 the electron Fermi energy approaches asymptoti-
cally the value (EF

e )max given by Eq. (63).

the initial slope a2 = φ̂′(0)/φ̂(0) = −(3/4)/
√

2. Therefore
Eq. (71) becomes

EF
e ≈ (

EF
e

)
max

[
1 − 3

4
√

2
ξWS + 1

2

(
3

4

)2

(ξWS)2

− 1

23/2

(
3

4

)3

(ξWS)3 + 1

8

(
3

4

)2 (
41

32

)
(ξWS)4 + · · ·

]
.

(72)

By the definition of the coordinate ξ , we know all terms
except the first term in the square bracket depend on the
values of Np. In the limit of maximum compression when the
electron Fermi energy acquires its maximum value, namely
when ξWS = 0, the electron Fermi energy (72) is the same
as the one obtained from the uniform approximation which
is independent of Np. For smaller compressions, namely for
ξWS > 0, the electron Fermi energy deviates from the one
given by the uniform approximation, becoming Np dependent.

In Fig. 11 we plot the Fermi energy of electrons, in units
of the pion rest energy as a function of the dimensionless
parameter ξWS and, as ξWS → 0, the limiting value given by
Eq. (63) is clearly displayed.

In Alcock, Farhi, and Olinto [9], in order to study the elec-
trodynamical properties of strange stars, the ultrarelativistic
Thomas-Fermi equation was numerically solved in the case of
bare strange stars as well as in the case of strange stars with a
crust (see, e.g., curves (a) and (b) in Fig. 6 of Ref. [9]). Figure 6
of Ref. [9] plots what they called the Coulomb potential energy,
which we will denote as VAlcock. The potential VAlcock was
plotted for different values of the electron Fermi momentum
at the edge of the crust. Actually, such a potential VAlcock is not
the Coulomb potential eV but it coincides with our function
eV̂ = eV + EF

e ; that is, the potential VAlcock corresponds to
the Coulomb potential shifted by the the Fermi energy of the
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electrons. We then have from Eq. (46)

eV̂ (ξ ) =
(

9π

4

)1/3 1

	
mπc2φ̂(ξ ) = VAlcock. (73)

This explains why in Ref. [9], for different values of the
Fermi momentum at the crust, the depth of the potential
VAlcock remains unchanged. Instead, the correct behavior of
the Coulomb potential differs markedly and, indeed, its depth
decreases with increasing of compression, as can be seen in
Fig. 8.

VI. COMPRESSIONAL ENERGY OF NUCLEAR MATTER
CORES OF STELLAR DIMENSIONS

We turn now to the compressional energy of these family of
compressed nuclear matter cores of stellar dimensions, each
characterized by a different Fermi energy of the electrons. The
kinematic energy spectra of complete degenerate electrons,
protons, and neutrons are

εi(p) =
√

(pc)2 + m2
i c

4, p � P F
i , i = e, p, n. (74)

So the compressional energy of the system is given by

E = EB + Ee + Eem, EB = Ep + En, (75)

Ei = 2
∫

i

d3rd3p

(2πh̄)3
εi(p), i = e, p, n, Eem =

∫
E2

8π
d3r.

(76)

Using the analytic solution (54) we calculate the energy
difference between two systems, I and II ,

	E = E
[
EF

e (II )
] − E

[
EF

e (I )
]
, (77)

with EF
e (II ) > EF

e (I ) � 0 at fixed A and Rc.
We first consider the infinitesimal variation of the total

energy δEtot with respect to the infinitesimal variation of the
electron Fermi energy δEF

e

δE =
[

∂E
∂Np

]
V WS

[
∂Np

∂EF
e

]
δEF

e +
[

∂E
∂V WS

]
Np

[
∂V WS

∂EF
e

]
δEF

e .

(78)

For the first term of this relation we have[
∂E
∂Np

]
V WS

=
[

∂Ep

∂Np

+ ∂En

∂Np

+ ∂Ee

∂Np

+ ∂Eem

∂Np

]
V WS

�
[
EF

p − EF
n + EF

e + ∂Eem

∂Np

]
V WS

, (79)

where the general definition of chemical potential ∂εi/∂ni =
∂Ei/∂Ni is used (i = e, p, n) neglecting the mass defect mn −
mp − me. Further using the condition of the β equilibrium
(33) we have [

∂E
∂Np

]
V WS

=
[
∂Eem

∂Np

]
V WS

. (80)

For the second term of the Eq. (78) we have[
∂E

∂V WS

]
Np

=
[

∂Ep

∂V WS
+ ∂En

∂V WS
+ ∂Ee

∂V WS
+ ∂Eem

∂V WS

]
Np

=
[

∂Ee

∂V WS

]
Np

+
[

∂Eem

∂V WS

]
Np

, (81)

since in the process of increasing the electron Fermi energy,
namely by decreasing the radius of the Wigner-Seitz cell, the
system by definition maintains the same number of baryons A

and the same core radius Rc.
Now δE reads

δE =
{[

∂Ee

∂V WS

]
Np

∂V WS

∂EF
e

+
[

∂Eem

∂V WS

]
Np

∂V WS

∂EF
e

+
[
∂Eem

∂Np

]
V WS

∂Np

∂EF
e

}
δEF

e , (82)

so only the electromagnetic energy and the electron energy
give non-null contributions.

From this equation it follows that

	E = 	Eem + 	Ee, (83)

where 	Eem = Eem[EF
e (II )] − Eem[EF

e (I )] and 	Ee =
Ee[EF

e (II )] − Ee[EF
e (I )].

In the particular case in which EF
e (II ) = (EF

e )max and
EF

e (I ) = 0 we obtain

	E � 0.75
35/3

2

(π

4

)1/3 1

	
√

α

( π

12

)1/6
N2/3

p mπc2, (84)

which is positive.
The compressional energy of a nuclear matter core of

stellar dimensions increases with its electron Fermi energy
as expected.

VII. CONCLUSIONS

The results presented in this article are in the realm of the-
oretical physics of nuclear physics and of atomic physics and
give special attention to relativistic effects. They generalize to
the relativistic regimes classical results obtained by Feynman,
Metropolis, and Teller [21] and, by the introduction of scaling
laws, they generalize the classical results obtained by Popov
and collaborators [7,8,13] in heavy nuclei to massive cores of
∼M�. As such they find their justification. They acquire also
special meaning in astrophysics: The considerations contained
in Secs. I– IV lead to a consistent treatment of white dwarfs
and the ones in Secs. V and VI lead to a deeper understanding
of neutron star physics.

We have generalized to the relativistic regime the classic
work of Feynman, Metropolis, and Teller by solving the
relativistic Thomas-Fermi equation in a Wigner-Seitz cell
corresponding to a compressed atom. The relativistic Thomas-
Fermi equation has also been called the Vallarta-Rosen
equation [6,34]. The integration of this equation does not
admit regular solutions for a pointlike nucleus and both the
nuclear radius and the nuclear composition have necessarily
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to be taken into account [5,6]. This introduces a fundamen-
tal difference from the nonrelativistic Thomas-Fermi model
where a pointlike nucleus is traditionally adopted.

As in previous works by Ferreirinho, Ruffini, and Stella [5],
Ruffini and Stella [6], and Ruffini et al. [12], the protons in
the nuclei have been assumed to be at constant density and
the electron distribution has been derived by the relativistic
Thomas-Fermi equation and the neutron component by the β

equilibrium among neutrons, protons, and electrons.
We have examined, for completeness, the relativistic

generalization of the Thomas-Fermi-Dirac equation by taking
into account the exchange terms [24], adopting the general
approach of Migdal, Popov, and Voskresenskii [8], and we
have shown that these effects, generally small, can be neglected
in the relativistic treatment.

There are marked differences between the relativistic and
the nonrelativistic treatments. The first is that the existence of
a finite-size nucleus introduces a limit to the compressibility:
The dimension of the Wigner-Seitz cell can never be smaller
then the nuclear size. Consequently, the electron Fermi energy
which in the nonrelativistic approach can reach arbitrarily large
values reaches in the present case a perfectly finite value: An
expression for this finite value of the electron Fermi energy
has been given in analytic form. There are in the literature
many papers adopting a relativistic treatment for the electrons,
with a pointlike approximation for the nucleus, which are
clearly inconsistent (see, e.g., Chabrier and Potekhin [28] and
Potekhin, Chabrier, and Rogers [29]).

The second is the clear difference of the electron dis-
tribution as a function of the radius and of the nuclear
composition as contrasted to the uniform approximation (see
Fig. 5 in Sec. IV), often adopted in the literature (see,
e.g., Bürvenich, Mishustin, and Greiner [27]). Therefore the
validity of inferences based on a uniform approximation
should be duly verified both in the relativistic and in the
nonrelativistic regime.

The third is that the relativistic Feynman-Metropolis-Teller
treatment allows us to treat precisely the electrodynamical
interaction within a compressed atom with all the relativistic
corrections. This allows us to validate and in some cases
overcome the difficulties of treatments describing the electro-
dynamical effect by a sequence of successive approximations.
This is the case of validation of the Salpeter approach at
high densities and the overcome of negative pressures at low
densities. The new treatment evidences a softening of the
dependence of the electron Fermi energy on the compression
factor, as well as a gradual decrease of the exchange terms
in proceeding from the nonrelativistic to the fully relativistic
regimes. It is then possible to derive, as shown in Table I in
Sec. IV, a consistent equation of state for compressed matter.

The equation of state obtained in Table I has been recently
applied to the study of the general relativistic white-dwarf
equilibrium configurations by Rueda et al. [20]. The contri-
bution of quantum statistics and weak and electromagnetic
interactions here considered have been further generalized
by considering the contribution of the general relativistic
equilibrium of white-dwarf matter. This is expressed by the
simple formula

√
g00µws = const., which links the chemical

potential of the Wigner-Seitz cell µws with the general

relativistic gravitational potential g00 at each point of the
configuration. The configuration outside each Wigner-Seitz
cell is strictly neutral and therefore no global electric field
is necessary to warranty the equilibrium of the white dwarf.
These equations modify the ones used by Chandrasekhar
by taking into account the Coulomb interaction between
the nuclei and the electrons as well as inverse β decay.
They also generalize the work of Salpeter by considering a
unified self-consistent approach to the Coulomb interaction in
each Wigner-Seitz cell. The consequences on the numerical
value of the Chandrasekhar-Landau mass limit have been
then presented as well as on the mass-radius relation of
white dwarfs [20]. This leads to the possibility of a direct
confrontation of these results with observations, in view of
the current great interest for the cosmological implications of
the type Ia supernovae [35–38] and in the case of low-mass
white-dwarf companions of the Pulsar PSRJ1141-6545 [39]
as well as the role of white dwarfs in novae [40].

In Secs. V and VI we have then extrapolated these results
to the case of nuclear matter cores of stellar dimensions for
A ≈ (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M�. The aim here is
to explore the possibility of obtaining for these systems a
self-consistent solution presenting global and not local charge
neutrality. The results generalize the considerations presented
in the previous article by Popov et al. [13] corresponding to
a nuclear matter core of stellar dimensions with null Fermi
energy of the electrons. The ultrarelativistic approximation
allows us to obtain analytic expressions for the fields in the
case of positive electron Fermi energies. An entire family of
configurations exist with values of the Fermi energy of the
electrons ranging from zero to a maximum value (EF

e )max

which is reached when the Wigner- Seitz cell coincides with
the core radius. The configuration with EF

e = (EF
e )max corre-

sponds to the configuration with Np = Ne and np = ne: For
this limiting value of the Fermi energy the system fulfills both
the global and the local charge neutrality and, correspondingly,
no electrodynamical structure is present in the core. The other
configurations present generally overcritical electric fields
close to their surface. The configuration with EF

e = 0 has
the maximum value of the electric field at the core surface,
well above the critical value Ec (see Figs. 8, 9, and 10). All
these cores with overcritical electric fields are stable against
the vacuum polarization process due to the Pauli blocking
by the degenerate electrons (see, e.g., Ruffini, Vereshchagin,
and Xue [41]). We have also compared and contrasted our
treatment of the relativistic Thomas-Fermi solutions to the
corresponding one addressed in the framework of strange
stars by Alcock, Farhi, and Olinto [9], pointing out in these
treatments some inconsistency in the definition of the Coulomb
potential. We have finally compared the compressional energy
of configurations with selected values of the electron Fermi
energy.

The above problem is theoretically well defined and
represents a necessary step in order to approach the more
complex problem of a neutron star core and its interface with
the neutron star crust.

Neutron stars are composed of two sharply different
components: the liquid core at nuclear and/or supranuclear
density consisting of neutrons, protons, and electrons and
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TABLE I. Pressure for iron as a function of the density ρ in the uniform approximation (P ), in the Salpeter approximation (PS) and
in the relativistic Feynman-Metropolis-Teller approach (PFMTrel). Here xS = P F

e,S/(mec) and xFMTrel = P F
e /(mec) are respectively the

normalized Salpeter Fermi momentum and the relativistic Feynmann-Metropolis-Teller Fermi momentum.

ρ (g/cm3) xS xFMTrel P PS PFMTrel

(bar) (bar) (bar)

2.63 × 102 0.05 0.0400 2.9907 × 1010 −1.8800 × 108 9.9100 × 109

2.10 × 103 0.10 0.0857 9.5458 × 1011 4.4590 × 1011 5.4840 × 1011

1.68 × 104 0.20 0.1893 3.0227 × 1013 2.2090 × 1013 2.2971 × 1013

5.66 × 104 0.30 0.2888 2.2568 × 1014 1.8456 × 1014 1.8710 × 1014

1.35 × 105 0.40 0.3887 9.2964 × 1014 8.0010 × 1014 8.0790 × 1014

2.63 × 105 0.50 0.4876 2.7598 × 1015 2.4400 × 1015 2.4400 × 1015

4.53 × 105 0.60 0.5921 6.6536 × 1015 6.0040 × 1015 6.0678 × 1015

7.19 × 105 0.70 0.6820 1.3890 × 1016 1.2693 × 1016 1.2810 × 1016

1.08 × 106 0.80 0.7888 2.6097 × 1016 2.4060 × 1016 2.4442 × 1016

2.10 × 106 1.00 0.9853 7.3639 × 1016 6.8647 × 1016 6.8786 × 1016

3.63 × 106 1.20 1.1833 1.6902 × 1017 1.5900 × 1017 1.5900 × 1017

5.77 × 106 1.40 1.3827 3.3708 × 1017 3.1844 × 1017 3.1898 × 1017

8.62 × 106 1.6 1.5810 6.0754 × 1017 5.7588 × 1017 5.7620 × 1017

1.23 × 107 1.80 1.7790 1.0148 × 1018 9.6522 × 1017 9.6592 × 1017

1.68 × 107 2.0 1.9770 1.5981 × 1018 1.5213 × 1018 1.5182 × 1018

3.27 × 107 2.50 2.4670 4.1247 × 1018 3.9375 × 1018 3.9101 × 1018

5.66 × 107 3.00 2.965 8.8468 × 1018 8.4593 × 1018 8.4262 × 1018

1.35 × 108 4.00 3.956 2.9013 × 1019 2.7829 × 1019 2.7764 × 1019

2.63 × 108 5.00 4.939 7.2160 × 1019 6.9166 × 1019 6.9062 × 1019

8.85 × 108 7.50 7.423 3.7254 × 1020 3.5700 × 1020 3.5700 × 1020

a crust of degenerate electrons in a lattice of nuclei (see,
e.g., Baym, Bethe, and Pethick [1]) and Harrison et al. [42])
and possibly of free neutrons due to neutron drip when this
process occurs (see, e.g., Ref. [1]). Consequently, the boundary
conditions for the electrons at the surface of the neutron star
core will have generally a positive value of the electron Fermi
energy in order to take into account the compressional effects
of the neutron star crust on the core [43]. The case of zero
electron Fermi energy corresponds to the limiting case of
absence of the crust.

In a set of interesting papers [44–49], Glendenning and
collaborators relaxed the local charge neutrality condition
for the description of the mixed phases in hybrid stars. In
such configurations the global charge neutrality condition,
as opposed to the local one, is applied to the limited
regions where mixed phases occur while in the pure phases
the local charge neutrality condition still holds. We have
generalized Glendenning’s considerations by looking to a
violation of the local charge neutrality condition on the entire
configuration, still keeping its overall charge neutrality. This
effect cannot occur locally and requires a global description
of the equilibrium configuration. To exemplify this novel
approach we have considered in Rueda et al. [50] the simplest,
nontrivial, self-gravitating system of degenerate neutrons,
protons, and electrons in β equilibrium in the framework
of relativistic quantum statistics and the Einstein-Maxwell
equations. The impossibility of imposing the condition of
local charge neutrality on such systems is proved in complete
generality. The crucial role of the constancy of the generalized
electron Fermi energy is emphasized and consequently the
coupled system of the general relativistic Thomas-Fermi

equations and the Einstein-Maxwell equations is solved. We
then give an explicit solution corresponding to a violation
of the local charge neutrality condition on the entire star,
still fulfilling the global charge neutrality when electromag-
netic, weak, and general relativistic effects are taken into
account.

The results presented in the second part of this article on
nuclear matter cores of stellar dimensions evidence the possi-
bility of having the existence of critical electromagnetic fields
at the core surface. We have further extended this analysis
by considering the case of a neutron star. At nuclear and
supranuclear densities we have considered a core described
by a self-gravitating system of degenerate neutrons, protons,
and electrons within the framework of relativistic quantum
statistics and Einstein-Maxwell equations [43]. At densities
lower than the nuclear density such a core is surrounded
by a crust. A globally neutral neutron star configuration
is therefore examined in contrast with the traditional ones
constructed by imposing local charge neutrality. To illustrate
the application of this approach we have adopted the Baym,
Bethe, and Pethick [1] strong-interaction model of the baryonic
matter in the core and in the white dwarflike material of the
crust. The existence of an overcritical electric field at the
boundary of the core predicted in the present paper is there
confirmed. We find an electric field extending over a thin shell
of thickness ∼h̄/(mec) between the core and the crust which
largely overcritical in the limit of decreasing values of the crust
mass [43].

We are further extending these treatments by describ-
ing the strong interaction between nucleons through σ -ω-ρ
meson exchange in the context of the extended Walecka
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model [51], all duly expressed in general relativity. We
demonstrate that, as in the noninteracting case, the ther-
modynamic equilibrium condition given by the constancy
of the Fermi energy of each particle species can be prop-
erly generalized to include the contribution of all fields
[52].
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