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We study the impact on the primordial abundances of light elements created by a variation of the quark masses
at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics
required to connect quark masses to binding energies and reaction rates in a model-independent way, we use
lattice QCD data and a hierarchy of effective field theories. We find that the measured “He abundances put a bound
of —1% < dmg,/my < 0.7% on a possible variation of quark masses. The effect of quark mass variations on the
deuterium abundances can be largely compensated by changes of the baryon-to-photon ratio 7. Including bounds
on the variation of 7 coming from WMAP results and adding some additional assumptions further narrows the

range of allowed values of m, /m,.

DOI: 10.1103/PhysRevC.83.045803

I. INTRODUCTION

In theories of physics beyond the standard model, the
standard model parameters appear not as fundamental con-
stants but as derived quantities. In many of those theories
the possibility then arises that the values of the standard
model “constants” can vary over time [1]. It is then important
to understand which constraints the successes of standard
cosmology—which assumes time-independent constants—
imposes on this purported time variation. A natural place to
look for a strong sensitivity to a variation of fundamental
constants is Big Bang nucleosynthesis (BBN) since it satisfies
two important criteria. First, BBN happened very early in
the universe’s history, mostly when the universe was between
3 seconds and 3 minutes old. Second, not only is standard BBN
understood at a few percent level but it is also very sensitive to
microscopic parameters such as nuclear binding energies and
reaction rates that are, themselves, very sensitive to certain
standard model constants. It is no surprise then that BBN has
been used in the past to study the variation of fundamental
constants [2]. The purpose of the present paper is to explore
the BBN constraints on the variation of the masses of the two
lightest quarks, m, and m,.

The binding of nucleons into light nuclei during BBN
proceeds through a number of reactions, some of which are
in equilibrium with the expansion of the universe and some
of which are not. After weak reactions like p + e~ <> n 41
are no longer in equilibrium (i.e., weak freezeout), the ratio
of neutrons to protons decreases due to neutron B decay.
If the formation of light nuclei occurred in equilibrium, the
most bound nuclei (among the light ones this is “He) would
form earlier and more abundantly. The formation of 4He can,
however, only occur after 2H, *He, and *H have been formed,
since multinucleon fusion reactions are essentially impossible
at the relatively low densities prevalent during BBN. Their
number is small because their binding energies are small
and it is not energetically favorable for them to form until
the temperature is low enough to be comparable to their
binding energies. Thus, the beginning of nucleosynthesis is
delayed by the shallowness of the deuteron binding energy;
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the so-called deuterium bottleneck. Since this shallowness
is a product of delicate cancellations between kinetic and
potential energies, the binding of the deuteron is an obvious
place where a small change in quark masses can significantly
alter the primordial abundances. Notice that the rate for the
reaction n + p <> d + y is not small; it is sufficient to keep
the deuteron number in thermal and chemical equilibrium.
It is the equilibrium deuteron number that is too small for
them to collide and be assembled in larger nuclei. After
the deuteron number grows enough, the reactions leading to
the formation of “He proceed quickly, and essentially all the
neutrons present in the beginning of BBN are assembled into
“He nuclei. The timing where this assembly starts (determined,
among other things, by the deuteron binding) is crucial as
the neutron numbers are decreasing due to neutron 8 decay.
Small amounts of 2H, *He, and *H are left out of this process.
Their numbers depend critically on chemical nonequilibrium
physics and the rates of the reactions, including the initial
n + p — d + y reaction. Current observation is not useful in
measuring reliably the primordial abundance of *He and *H.
However, the abundance of H and, especially, *He are well
measured and put a significant constraint on any change of the
standard BBN scenario.

A number of authors have previously considered the effect
of quark mass variations on the BBN predicted abundances
[3-15]. The main difficulty to be surmounted is that the quark
mass dependence of binding energies, reaction cross sections,
and decay rates that are input to BBN models are difficult
to determine. For instance, modern nuclear potentials can
describe very well nucleon-nucleon phase shifts. They can also
be used to compute binding energies with enough precision
(with the help of phenomenologically motivated three-nucleon
forces fit to some observables) and cross section for few-
nucleon reactions. These potentials are, however, tuned to
data obtained from experiments where the quark mass has
its current value. What is usually done in estimating the effect
of quark mass variation is to change the parameters in these
models where this dependence is easy to track. For instance,
the range of nuclear forces, given by 1/m, can be changed
through the relation m2 ~ mg,. However, the long-distance
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FIG. 1. Strategy used to determine quark mass dependence of BBN abundances. At the far left, empirically determined LECs are used to
constrain x EFT, allowing predictions of nuclear observables and determination of their quark mass dependence. This theory is in turn matched
onto the pionless EFT, where subsequent calculations of binding energies and reactivities relevant to BBN are used as input into BBN codes.

part of the potential, sensitive to this range, is actually a small
part of the nucleon-nucleon interaction. The medium- and
short-range parts also have a quark mass dependence and,
while this dependence is likely to be milder, its effect on
the overall nucleon-nucleon interactions is still large due to
fine-tuned cancellations that are responsible for, among other
things, the shallowness of the deuteron. In this paper we avoid,
as much as possible, model-dependent approximations of the
properties of nucleons and its nuclear forces, relying solely
on the symmetries of QCD and its connection to nuclear
physics through more general arguments. In particular we use
effective field theories (supplemented with lattice QCD data)
to connect the change in quark masses to the inputs used in
BBN simulations.

A. Effective field theories

At momentum scales Q below Aqcp =~ 1 GeV, the relevant
degrees of freedom in QCD are hadrons, not quarks and gluons.
Effective field theories (EFTs) for this momentum range (i.e.,
chiral perturbation theory) were developed for the meson,
one-, and many-nucleon sectors. They are able to predict
physical observables as an expansion in the small parameters
Q/Aqcp and my / Aqcep, taking as inputs a few “low-energy
constants” (LECs), like pion decay constants and the nucleon
mass in the chiral (m, = 0) limit. These LECs, in turn, are
determined from analyses of experimental results. Effective
field theories predict, for example, the dependence of nucleon
masses on the value of the quark masses. This particular
change, however, is very small and can be neglected, except
for its effect on the phase space for the neutron decay and
related weak processes (see below). Lattice QCD calculations
reinforce the belief in a small quark mass dependence of
nucleon masses [16,17]. On the other hand, chiral perturbation
theory for few-nucleon systems (referred to here as x EFT)
is in a less developed phase. First, there are conceptual
issues that preclude a reliable prediction of the quark mass
dependence of few-nucleon observables [18]. Second, it has
not been used extensively in multinucleon systems and their
reactions involving photons. To bypass this difficulty we use
a low-energy effective theory where all particles, such as the
pions, have been integrated out, leaving only the nucleon,
photon, and neutrino degrees of freedom. Known as “pionless
EFT,” the momentum scales Q relevant to this effective theory
are much smaller than the pion mass m, . This theory can make
nontrivial predictions because the states pertinent to BBN (°H,
3He, “He) are loosely bound and the typical momenta Q of
their constituents are significantly below ~m, and therefore
within the regime of validity of the pionless EFT.! The

The shallowness of these bound states is related to the fine
tuning in the s-wave two-nucleon scattering. In fact, the scattering

pionless EFT is very successful in predicting observables in
the three-nucleon sector and there is an indication that the same
is true in the four-nucleon sector [19,20]. Since the « particle
is the most strongly bound of s-wave nuclei, its successful
description in the pionless EFT might indicate that the theory
can be useful in studying larger nuclei. Since the pionless
EFT makes no use of the QCD chiral symmetry, it cannot
directly predict the quark mass dependence of observables.
The parameters of the pionless EFT, at the lowest orders in
the low-energy expansion, are the threshold nucleon-nucleon
scattering parameters (e.g., scattering lengths, effective ranges,
etc.). These few parameters have been studied using y EFT and
we can use them to predict their variation with quark masses.
In addition, some lattice QCD results confirm and reinforce
the xEFT predictions for scattering length dependencies on
quark masses. We use these y EFT results as input parameters
for the pionless EFT. This allows us to obtain estimates for
the quark mass dependence of nuclear properties relevant to
BBN. We will then use this information in combination with a
standard BBN code to compute the light element abundances
in order to constrain the values of the quark masses during the
universe’s first minutes. Our strategy of combining these two
types of effective theories is summarized in Fig. 1. We will
now describe the stages of our calculation.

B. Scattering length dependence on quark masses

Different versions of x EFT have been used by different
authors to study the quark mass variation of the nucleon-
nucleon s-wave scattering lengths. The results depend on the
spin channel. In the spin singlet 'Sy channel and at leading
order (LO) on the m;/Aqcp expansion, the calculation of
the quark mass dependence of the scattering length in the
version of xEFT used in [21] requires as inputs the chiral
limit values of the axial charge of the nucleon g4, the decay
constant of the pion f;, the nucleon mass M, the pion
mass m,, and the coefficient of a two-nucleon contact term
C? fitted to the physical scattering length. Only the value
of these quantities at the physical value of quark masses
is precisely known, but the difference between them and
their chiral limit values is a higher-order effect that can be
neglected in a next-to-leading order (NLO) calculation. At
NLO a new constant D? appears (which is the coefficient
of a two-nucleon operator with no derivatives but one quark
mass insertion) as well as other constants contributing to the
quark mass dependence of f;,ga, and M. The value of D? is
difficult to disentangle from C? as both contribute equally to

length in the two spin channels 'S, and 3S; (a, & —22 fm and
a; = 5.4 fm, respectively) are unnaturally large, much larger than
the naive expectation ~1/m, = 1.4 fm.
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nucleon-nucleon scattering at the physical value of the quark
masses. They give, however, different extrapolations to other
values of quark masses. They can be disentangled only through
a study of processes like deuteron-pion scattering or by the use
of lattice QCD data (see below). The strategy used in dealing
with the lack of knowledge of the value of D? is to estimate
it using naive dimensional analysis arguments. In Ref. [21]
D? was constrained by requiring its absolute value to be not
too much larger than |C?| while in Ref. [22] D? itself was
required to be of natural size. Fortunately, the difference in
the power counting schemes used in [21] and [22] has little
impact on the dependence of the scattering length on the quark
masses, and the discrepancy between them can be explained
by the different assumptions about the reasonable range of
values for Dsz. We will use the calculation described in [22]
as those authors computed the quark mass dependence of both
the deuteron binding energy and nucleon-nucleon scattering
lengths, since the deuteron binding energy is one of the most
important ingredients in the BBN calculation.

For a small variation of the quark mass we can read the
slope off Fig. 12 in Ref. [22] (we use the more conservative
estimate where the change of the axial constant g4 with quark
masses, parametrized by d,s, is included):
my 8By My

mq (SBZ
Mg 082 _ Mz = —Z (—0.085 £ 0.027),
32 qu 232 Smn 2B2

(1.1)

where m, is the average mass of the up and down quarks
and we made use of the relation myzr ~ mg,. Similarly, we use

Fig. 12 in [22] to extract the variation of the spin singlet ! Sy
channel scattering length to find

day 2mg Sag
= — =(-14+£14
Smy my dmy

fm
MeV'

(1.2)

Notice that a vanishing a, variation is consistent with these
extrapolations, a feature also seen in the extrapolation in [21].
If a;, were the only parameter determining the change of
abundances due to varying quark masses, BBN would impose
no constraint on possible quark mass variations.

Fully dynamical lattice QCD calculations of the nucleon-
nucleon scattering lengths have appeared in the last few years.
They are still performed at higher values of quark masses—too
high for the effective theory approach to be valid—so they are
of limited value for our purposes. Despite that, an attempt was
made in [23] to use x EFT to find the quark mass dependence of
scattering lengths by interpolating the lowest pion mass lattice
data and the known experimental value of the scattering lengths
at the physical point. At this point in time, the deuteron binding
energy has not been measured from lattice QCD. However, it
is related, at leading order in the effective theory, to the triplet
scattering length that is measured. Using the extrapolation
in [23] and the leading order relation B, = 1/(Ma?) we find

my de
Bz dmn

= —0.14 £0.13, (1.3)
in agreement with Eq. (1.1). In the extrapolation done in [23]
another branch of allowed values of d B, /dm, appears. This
additional band is excluded from the purely EFT extrapolations
in [21] and [22] and will be disregarded in this paper.
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The allowed values for the a; quark mass dependence
extracted from the extrapolation in [23], namely

da, f
& (20754 1.0) ——,
MeV

are consistent with the ones above but are too loose to add any
relevant constraint.

The remaining inputs of the pionless EFT, like three-
nucleon interaction parameters, effective ranges, nucleon
magnetic moments, etc., are not fine tuned and therefore vary
much less drastically with the quark masses. Their contribution
to the overall fusion cross sections is also suppressed compared
to B, and a,. In the present paper we will take them to be
independent of the quark masses.

(1.4)

dm,

C. Binding energies, reactivities, and lifetimes

We have used the pionless EFT to estimate the quark
mass variation of four quantities: the binding energies of the
deuteron, *H, *He, and *He and the reactivity of the process
n+ p — d+ y. Similar calculations were carried out for
3H in the context of infrared limit cycles in Refs. [24-26].
The binding energies of larger nuclei, like "Li, are important
only for the abundances for these larger nuclei. As it is not
presently possible to have a reliable estimate on the quark
mass variation of these binding energies, we keep them fixed
and concentrate on the abundances for the lighter nuclei >*H
and “He, confident that they will not be significantly affected
by the binding of A > 4 nuclei. We also only include the
variation of the reactivity of proton-neutron capture as this is
the reaction that initiates BBN and is more likely to have an
impact on abundances (but, as we will see below, this impact
is minimal). The binding energy of the deuteron is given by
Eq. (1.1).

The calculation of three-nucleon and four-nucleon prop-
erties in the pionless EFT requires as inputs the singlet and
triplet scattering lengths as well as one three-body observable,
usually taken to be the triton binding energy. This binding
energy can be traded by the value of a three-body force coun-
terterm. The three-body force is also not fine tuned and will
therefore show only a weak dependence on the quark masses
that we will consequently neglect. Changing the two-body
input while keeping the three-body counterterm fixed provides
then the scattering length dependence of the three-nucleon
system. In other words, the binding energies of the *He, *H,
and *He nuclei are estimated by

my dB; my (das dB;, dB, dB,-)
— == |—"+t > (1.5)
qu d Bz

B; dm, B; \dm, daj

where B; stands for the binding energy of one of *He, *H, or
“He. The values of the derivatives appearing in Eq. (1.5) were
computed using the pionless EFT:

. dB B, dB
OB 12, 224141, (1.6)
B3 das B3 d33
[N dB4 Bz dB4
D22 _0.037, 22224 074, 1.7
B4 das B4 dB2 ( )

where By is the *He binding and Bs is the *H or *He binding
energy. The weak dependence on a; is easily understood when
one notices that the typical momentum in these bound states
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is of order /M B;, which is much larger than 1/a;. The
dependence of B; on a; is a function of the dimensionless
parameter ~+/M B;a; < 1 and therefore taken to be zero.

In order to account for the theoretical uncertainty in the EFT
calculation we assign an additional 10% random variation to
the bindings of *He and *H (computed at NLO in EFT) and a
30% variation on the value of the “He binding (computed at
LO only), as will be shown more explicitly below.

The reaction n 4+ p <> d + y was extensively analyzed in
Ref. [27] using an N* LO calculation in the pionless EFT.
The inputs at this order are the scattering length ag, the
deuteron binding energy, the corresponding effective range
parameters, the magnetic moments of the deuteron, and a
single two-nucleon-one-photon term fixed by experiment. We
use the variation of B, and ay given in Eqs. (1.1) and (1.2)
to compute, with the help of the explicit formula in [27], the
relative change in the reactivity as a function of the temperature
and use this as input for the BBN code. In [4] it was argued

that the reactivity (o v) scales as ~B§ / zaf. We verified with the

explicit formula from [27] that the scaling with BS/ 2 is indeed
very well satisfied but that the scaling with asz does not work
as well.

Finally, we discuss how quark mass changes affect the
neutron lifetime as well as the rates of other one-baryon weak
reactions such as p + e~ <> n + v. This effect arises from a
modified value of the axial charge g4 and the neutron and
proton masses, which in turn dictate the allowed kinematic
phase space for these weak reactions. In fact, the neutron width
is given by [28]

(Gpcos O¢c)? A
r= %mg (1+3¢2) f (m—) , (1.8)

e

where A =m, —m, and m, are the mass splitting between
neutron and proton and the electron mass, respectively, g4 ~
1.26 is the nucleon axial decay constant, G is the Fermi
constant, and ¢ is the Cabibbo angle. The function f(A /m,)
is

f(w0)=/wodww\/mwo —w)?
1

2o 1
N ==
(1.9)

which describes the phase space and the Coulomb repulsion.
The variation of I" with the quark masses is given then by

)
dmg

(1.10)

mg dI’ mgy d A mgy
= S

?qu - f(%) dm, m, 1+3g3

The dependence of g4 with the quark mass is given, at NLO
in chiral perturbation theory, by [29]

90212 2 _4)m?
322 F? A 3272 F? A/

(1.11)
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where g4 is the chiral value of g4, F =~ 93 MeV, and
A and A’ are constants of order 1 GeV dependent on the
Gasser-Leutwyler coefficients [30]. Numerically we find

mg d(gi) 1 my _d(g3)

5 =— 5 ~ 0.2.
14+3g; dmy 21+4+3g, dmy

(1.12)

The variation of the phase space f(A/m,) with the quark
masses can be estimated as

g f(mAe) Mg df(m%)
f(E) dmg — 2f(2) dm,
my df(U)()) dA/me

- (1.13)
2f (wo) dwo wo=2 dmy

The value of f(wp) and its derivative at wyo = A/m, is
found numerically to be 1.64 and 4.25, respectively. The
variation of A /m, with m, can be estimated by splitting A into
a strong interaction component A proportional to the up and
down quark mass difference (and, consequently, to the value
of m,) and an electromagnetic piece Agp, largely independent
of m,. Unfortunately, the electromagnetic part is due to short
distance effects and cannot be directly computed in a reliable
way. The best handle we have on its value comes from chiral
perturbation theory, where the up and down quark mass ratio,
the meson spectrum, and the best estimate of the nucleon o —
term are used as inputs to extract A. The value obtained for
Ay in this manner is consistent with that obtained from lattice
QCD calculation [31]. The difference between this value of A
and the measured value of the neutron-proton mass splitting
gives Agy = —0.76 £ 0.30 [32].

Chiral perturbation theory predicts a quark mass depen-
dence of A, of the form A; = Am%(md —my)/(mg + my),
a formula valid up to NLO since the leading order loop
contribution to the nucleon mass cancels between the neutron
and proton. We then have

A
my df(mj)
f(m%) dm,
1 —
_ df (wo) Mx g Md =My
fwo) dwo |, —a 2m, mq+m,
_ 1 df(U)()) As
fwo) dwo |,_a m,
~ 104+ 1.5. (1.14)

Notice that we are taking both the up and down mass to vary
while keeping the ratio m,/m, fixed. As the dependence in
Eq. (1.14) dominates over Eq. (1.12), we finally find
Mg AT 106+ 15,
I' dm,
The quark mass variation of the neutron lifetime is relevant
for our calculation. In order to see that, let us remember that
the neutron number, after the weak interactions are decoupled,
decreases until BBN starts at# =~ 168 s. The suppression factor
in standard BBN is thus e~ !6%/8%5 &~ (0.827. A 5% increase of
quark masses would lead, according to Eq. (1.14), to a decrease
of about 50% in the neutron lifetime and the suppression factor
would change to e=2°%/885 & 0.752, leading to a change of

(1.15)
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about 10% in the *He abundance; a variation comparable to
the observational uncertainties.

The rate of other weak reactions changes in a similar
manner. The phase space integrals are more involved and
are, in BBN codes, computed “on the fly,” taking the ratio
0 = A/m, as input. We calculated the variation of Q as

myg dQ  my dA Ay
Q dm, 2Adm, A
~ 1.59 +0.23. (1.16)
II. RESULTS

In order to deal with the highly nonlinear dependence of
the final abundances on the quark masses and, at same time,
to include estimates of theoretical errors, we use a stochastic
procedure. More specifically, for a given quark mass variation
dmy/m,, we specify the binding energies of ’H, *H, 3He,
and “He, the reactivity (ov) for n + p <> d + y, the neutron
lifetime 7, and the phase space parameter Q. All other BBN
parameters are kept at their present values.

We have randomly generated a set of 300 values of
scattering lengths a, and deuteron bindings B, with a Gaussian
distribution with mean value and standard deviation given by

K= |14t (e dX ] | ma dX ) Amg
2\ X dm, n X dmg|_ | my

oy = |14 L (Ma @X | mg dX ) Amg
2\ X dm, n X dmg| | my

2.1

ER)

where X stands for either a, or B, and the “+” and “—
subscripts refer to the higher and lower values of dX/dm,,
respectively, allowed by Eqs. (1.1) and (1.2). The variations of
ag and B, are assumed to be uncorrelated. From the ensemble
of a; and B, obtained as above, we compute a corresponding
ensemble of binding energies using Eq. (1.5) and add to the
result a 10% (for H and 3He) or 30% (for “*He) relative random
error to take into account theoretical errors discussed in the
previous section. The binding energies of H, *He, and “He
are then given by

B,‘ - ag dB, Bz dB, phys
oy — |:1+(1+fi€i) (E da. +EE) (as —aP™) |,

(2.2)

where i indexes the three nuclei *H, 3He, and *He, the
superscript “phys” stands for the present experimental values
of the quantity, & are Gaussian random variables with central
value 0 and standard deviation equal to 1, and ¢; is the
theoretical error of the extrapolation equal to 0.1 (for *H and
3He) and 0.3 (for “He).

Similarly, the reactivity (ov)y of the n+p—d+y
reaction was computed as a function of the temperature 7
for the ensemble of a, B, values determined by Eq. (2.1) using
the explicit expression for the cross section from [27]. The
high-order expansion of this calculation in [27] is accompanied
with very small theoretical errors that we subsequently
neglect.
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We also generated, for each value of ém,/m,, a set of
300 random values of T and Q whose distribution reflect the
discussion in the previous section. More specifically, these
values were generated through the formula

b 1064 1560
i +(.+.E)_q,

(2.3)
— hys [ 5mqi|
0 =01+ (1.59+0.236)— |,
my

where £ is a Gaussian random variable with central value 0
and standard deviation 1. Notice that this £ is independent
of the & used in the determination of the binding energies
but the same & is used in both t and Q since the leading
theoretical uncertainties on both quantities stem from the same
determination of the o — term.

For a given value of dmg/m,, a set of values for
B;, Bsy, Bsye, B4, and (ov)r was paired to one of the set
of T and Q values and used in a standard BBN code.
The BBN code we have used in our analysis is based on
Refs. [33,34] and is publicly available [35]. The code was
modified to accept temperature-dependent variations in the
reactivity corresponding to the n + p — d + y reaction and
the rate of weak interaction processes was changed according
to Egs. (1.15) and (1.16). The Q values of all BBN reactions
with 2H, 3H, *He, and *He as either parent or daughter
products of reactions were allowed to vary in accordance
with the changes in binding energies of these nuclei. The
baryon-to-photon ratio n was changed over a range discussed
below. Otherwise, the standard input parameters were used in
our BBN simulations.

The main feature seen in the simulations is that a variation
in 7 shifts the deuterium abundance but has little effect on
the “He yields [see Fig. 2]. A larger value of  implies, in a
larger baryon density, a more complete burning of the neutrons
into “He nuclei and a smaller deuterium abundance. As a
consequence, in the absence of a restriction on the value of

h
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0.20 0.22 0.24 0.26 0.28 0.30

FIG. 2. (Color online) Yellow bands show the 1-o allowed
abundances for “He and 2H. The two clouds show the result of 300
simulations, both with Am,/m, = —1% but two different values
of n19. The lower cloud (ochre) is the result of taking 1y = 6.23
and the upper cloud (burgundy) is the result of taking 7,9 = 4.60.
There is very little change in the “He yield but the deuterium yield
changes enough to render the deuterium abundance useless in putting
a constraint on Am,/m,.
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FIG. 3. (Color online) Yellow bands show the 1-o allowed
abundances for “He and >H. The five clouds show the result of 300
simulations at each one of the values (from left to right): Am,/m, =
2% (green), Am,/my, = 0.7% (blue), Am,/m, = —0.5% (purple),
Amgy/my = —1% (ochre), and Am,/m, = —2% (red).

n from other considerations, the deuterium abundance does
not put any constraints on the range of allowed quark mass
variations.

Additional constraints on the value of 1 come from
studies of the large-scale structure of the universe. The actual
numerical value of the constraints, however, depends on
assumptions made in these analyses, including assumptions
on the initial spectrum of fluctuations. For instance, the lower
range of the determination of 119 = 4.79 £ 0.019 in [36] and
the central value of the determination of 7y = 6.23 +0.17
in [37] are shown for dm,/m, in Fig. 2. A similar plot results
from other values of ém,/m,. Consequently, any reasonable
change in the deuterium abundance can be accommodated by
a change in the value of 1)o. If we restrict ourselves to the
much narrower range 7y = 6.23 +0.17 [37], the deuterium
abundances can play a role. However, the values in the range
Nio = 6.23 £ 0.17 are in tension with the observed deuterium
abundances. BBN, by itself, prefers the slightly lower range
5.1 < n1p < 6.5 at the 95% confidence level [38]. Thus, even
with the current physical values of m,,, the predicted deuterium
abundance lies just outside the 1-o band, making it difficult to
distinguish the allowed and forbidden values of m, based on
Y,. Therefore, to proceed further, we disregard the deuterium
abundances and look at how the “He abundances change with
the quark masses.

In Fig. 3 we show the result of changing the quark masses
by five values: 2%, 0.7%, —0.5%, —1%, and —2%, all
corresponding to 119 = 6.23. Each one of these values of
dmg/my is represented by a cloud of points in the Y; x >
plane. The spread between the 300 points in each cloud
accounts for the theoretical uncertainties in the extrapolation
of the parameter inputs as described by Eqgs. (2.2) and (2.3).
The tendency is for a smaller Y, for larger values of m,. Two
main mechanisms account for this general trend. First, large
values of m, imply larger values of A, as well as a larger
phase space for neutron decay and therefore shorter neutron
lifetime. Consequently, more neutrons decay by the time BBN
starts the assembly of “He, resulting in smaller “He yields. In
addition, Eq. (1.1) shows that a larger m, implies a smaller B,.
The deuteron, being less bound, takes longer to form, delaying
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the onset of “He formation and giving even more time for the
neutrons to decay, reducing further the *He yields. There is
also a weak tendency to have smaller Y, for smaller m,, a
trend not so easily explained.

Based on the data shown on Fig. 3 we put a bound on the
allowed values of quark mass changes at

Amy
—1% <

<0.7%, (2.4)

mq

which is the main result of this paper. We refrain from assigning
a numerical value to the uncertainty in this estimate, as an
attempt in this direction would require us to assign a precise
statistical meaning to our theoretical uncertainties. While
there are reasons to take these uncertainties seriously at the
qualitative level, we believe them to be superior to the model
calculations used previously.

III. CONCLUSION

We have estimated the abundances of ?H and “He produced
in the standard BBN scenario under the assumption that the
light quark masses were shifted at the BBN time from their
present values. In order to perform this calculation we have
used input from several effective field theories as well as lattice
QCD results to connect the quark mass variation to the relevant
nuclear physics pertinent to BBN. We found that a variation

beyond the —1% < £y < 0.7% range to likely be inconsistent

m
with the observed abundances.

Two of the BBN parameters played the largest roles in
changing the light element yields: the deuteron binding energy
B, (with the 3H, *He, and “He binding energies strongly
correlated with B;) and the neutron lifetime. The dependence
of the neutron lifetime on the quark mass values is well
constrained by theory. The variation of the deuteron binding is,
however, much less constrained and several venues of further
progress are clearly visible (for a very recent study, see [39]).
Lattice QCD calculations of nucleon-nucleon interactions,
even if performed at unphysical values of m,, would go a
long way in narrowing these constraints. As long as they are
performed with quark masses low enough to be within the
region of validity of the chiral nuclear EFT, they determine
reliably the value of parameters of the EFT necessary for
the extrapolation of the deuteron binding energy. The binding
energies of *H, 3He, and, especially, “He can and should be
computed in the pionless nuclear EFT to higher orders so
that theoretical uncertainties associated with these quantities
decrease. Finally, a better understanding of the quark mass
variation of other threshold parameters like effective ranges,
magnetic moments, etc., would also allow for a more precisely
constrained calculation of the binding energies on nuclei larger
then “He.

A number of other works have also considered the effects of
a variation of the quark masses on properties of light nuclei. For
example, in Ref. [8] this effect was implemented by a change
of the pion mass in the phenomenological model interaction
employed in the calculations. Such an interaction is only
able to capture the true quark mass dependence to a limited
degree since it is not constructed as a systematic expansion
in powers of my /Aqcp. In particular, quark mass dependent
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short-distance contact operators (such as the D term) discussed
in the above text do not appear in standard phenomenological
interactions.

Since we are not presently able to obtain reliable values
for the "Li binding energies, the "Li abundances we compute
are not very meaningful and were not used to put constraints
on the quark mass variations. Future advances in the nuclear
pionless effective theory may change this and allow us to
address the ‘lithium problem” as a signal of quark mass
variation.

Finally, it should be pointed out that, in models of physics
beyond the standard model, the value of the quark masses are
derived quantities and their variations may well be correlated
with other quantities. In particular, it may seem unnatural to
expect the masses of different quark flavors to vary together,
unless this variation is being driven by a change in the Higgs
vacuum expectation value. If that is the case, a change in the
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quark masses will be correlated with changes in the vector
boson masses, changing the strength of strong interactions at
low energies. The effect of those changes on BBN can easily be
tracked in a manner similar to what was done in this paper. We
plan to consider BBN bounds on the Higgs vacuum expectation
value change in a future presentation.
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