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Utilizing the Foldy-Wouthuysen representation, we use a bottom-up approach to construct heavy-baryon
Lagrangian terms, without employing a relativistic Lagrangian as the starting point. The couplings obtained this
way feature a straightforward 1/m expansion, which ensures Lorentz invariance order by order in effective field
theories. We illustrate possible applications with two examples in the context of chiral effective field theory:
the pion-nucleon coupling, which reproduces the results in the literature, and the pion-nucleon-delta coupling,
which does not employ the Rarita-Schwinger field for describing the delta isobar, and hence does not invoke
any spurious degrees of freedom. In particular, we point out that one of the subleading πN� couplings used
in the literature is, in fact, redundant and we discuss the implications of this. We also show that this redundant
term should be dropped if one wants to use low-energy constants fitted from πN scattering in calculations of
NN → NNπ reactions.
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I. INTRODUCTION

Effective field theories (EFTs) are very useful in describ-
ing low-energy physics in which external momenta Q are
much smaller than some high-energy scale Mhep where the
underlying theory kicks in. The S matrix computed by an
EFT is an approximation, namely, an expansion organized in
the powers of the small parameter Q/Mhep. Effective degrees
of freedom (DOFs) of the low-energy theory are not always
light particles. The particles that appear in both the initial
and final states (hence, they can not be integrated out) may
have a small momentum Q but a mass m comparable with,
or even larger than, Mhep: Q � Mhep � m. In such cases,
one needs to carefully implement these heavy particles as
low-energy effective DOFs so that the ratio m/Mhep � 1 will
not spoil the EFT expansion. Widely used in many EFTs is
heavy-particle formalism [1–3], in which the particles with
m ∼ Mhep are allowed only to propagate forward in time, i.e.,
there are no heavy antiparticle DOFs. In this paper, we consider
the application of heavy-particle formalism in chiral effective
theory (ChET).

ChET specializes in low-energy interactions among
baryons and (pseudo)-Goldstone bosons, which arise due to
the fact that chiral symmetry of quantum chromodynamics
(QCD) is spontaneously broken. Since non-Goldstone bosons
are all integrated out in ChET, the underlying scale of ChET
is set by the mass of the lightest non-Goldstone boson σ ,
mσ ∼ 600 MeV [4]. Since the nucleon (the lightest baryon)
mass mN � 940 MeV is not a light scale compared with mσ , it
is natural to treat baryons with heavy-particle formalism, i.e.,
heavy-baryon ChET (HBChET) [2,5,6].

To derive the HBChET Lagrangian, one (probably the
most popular) way is nonrelativistic reduction of a relativistic
ChET Lagrangian that is built with causal fields (fields
that satisfy microscopic causality) for baryons, e.g., the
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Dirac field for the nucleon. Nonrelativistic reduction can be
carried out by decoupling low- and high-energy DOFs of
the causal baryon fields. In the case of the nucleon, one
identifies the “large” and “small” components of the Dirac
field, respectively, as low- and high-energy DOFs, and then
decouples the two sets of DOFs by explicitly integrating out
the small components with the path integral [3,7] or by block
diagonalizing the Hamiltonian by the Foldy-Wouthuysen
(FW) transformation [8] (for use of this approach in the
context of nucleon-nucleon forces and HBChET, see, e.g.,
Refs. [9,10]).

References [3,7–10], among others, considered only
baryon-bilinear operators, exploiting the fact that these op-
erators are quadratic in baryon fields to integrate out or block
diagonalize. It is not immediately clear how a similar method
can be applied when four-baryon (or multibaryon) operators,
important for few-nucleon systems, are present. One might
wish to treat four-baryon operators as perturbations to the NN

bilinears. However, this is well known not to be the case (see,
e.g., Ref. [11]).

It is not, however, inevitable to rely on the form of a
Lagrangian outside the regime of validity of an EFT; only
symmetries are what matters. The other approach starts with
the nonrelativistic limit, implementing the nucleon and the
delta isobar [�(1232)], another important ingredient in ChET
[12], as a two- and a four-component spinor, and then enforcing
Lorentz invariance order by order with more and more
1/mN suppressed operators accounted for [13,14] (branded
differently, reparametrization invariance is a technique in a
similar spirit [15]).

In this bottom-up approach, 1/mN expansion of multi-
baryon operators is not different from that of baryon bilinears
(in this connection, see Ref. [16], where the construction of
all possible NNNN contact interactions with two derivatives
was considered). The other gain of this approach is that
it is convenient to treat the delta isobar [14,17] because
one no longer needs to cope with spurious spin-1/2 sectors
of the Rarita-Schwinger field, which is commonly used as
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the causal field for spin-3/2 fermions (for a discussion of
this and related issues, see Refs. [18–21] and references
therein).

While a nonrelativistic reduction, such as FW transfor-
mation, starts from causal relativistic fields and disentangles
particle and antiparticle DOFs, the FW representation of
the Poincaré group [22], where the particle and antiparticle
fields are separated from the beginning, is a technique in
the spirit of bottom-up construction (we note that, although
credited to the same authors, the FW transformation [8] is
not the technique we use in this paper). By using the FW
representation, we present in this paper a systematic machinery
to build HBChET operators that are fixed by Lorentz invariance
(and hence suppressed by 1/mN ), and illustrate the method
with several effective interactions, namely, pion-nucleon and
pion-nucleon-delta couplings. With the case of πNN coupling
being well known and rather standard, our result for πN�

coupling is new in the context of HBChET. More importantly,
we find that one of the subleading πN� couplings used in the
literature is redundant, which directly affects calculations of
many reactions. We discuss the implications of this for πN

scattering and the reactions NN → NNπ .
Our paper is structured as follows. In Sec. II, we revisit the

Lorentz invariance of heavy-particle EFT. The FW representa-
tion is introduced in Sec. III and its relation with other Lorentz-
covariant fields is discussed in Sec. IV. Nucleon-nucleon and
nucleon-delta covariant bilinears are discussed in Sec. V. In
Sec. VI, πNN and πN� couplings are used to demonstrate
our method of 1/mN expansion, and a discussion of the results
is presented. We summarize and close with a conclusion
in Sec. VII.

II. LORENTZ INVARIANCE IN HEAVY-PARTICLE EFT

When the momentum of heavy particles is much smaller
than their mass m, Galilean invariance is a good approx-
imation but not a substitute to Lorentz invariance. As
contributions of higher and higher orders are taken into
account in order-by-order EFT calculations, the approxi-
mation of Lorentz invariance must be improved along the
way. In this section, we review how Lorentz invariance
is enjoyed in heavy-particle formalism [2,3]. Without a
relativistic Lagrangian built with causal baryonic fields as
the starting point, microscopic causality will be lost. There-
fore, of particular interest is the following question: How

could the bottom-up construction lead to a Lorentz-invariant
S matrix?

For definiteness, we consider the S matrix generated by the
Dyson series,

S = T exp

[
−i

∫
d4xHI (x)

]
, (1)

where HI (x) is the interaction Hamiltonian density in the
interaction picture. Here, T indicates, as usual, that the fields
are to be time ordered in the expansion. Starting with a
Lagrangian and proceeding with canonical quantization, one
does not necessarily end up with an interaction Hamiltonian
HI that equals to minus the interaction Lagrangian −LI

because canonical quantization may produce extra terms [23]
in some cases. Nevertheless, for simplicity, we will not
concern ourselves with this subtlety and will recklessly assume
HI = −LI .

In order for the S matrix to be Lorentz invariant, not only
does LI (x) need to be invariant, LI (x) also needs to be built
with causal fields so that LI (x) and LI (y) will commute with
each other when x − y is spacelike: microscopic causality.
In turn, microscopic causality allows a heavy particle to
propagate backward in time. As a consequence, virtual particle
pairs are created and annihilated as intermediate states. Since
intermediate states of this sort have energies at least 2m,
they are integrated out in an EFT and are buried into low-
energy constants (LECs). This is exemplified in Fig. 1(a)
with baryon-meson interactions. Time flows from left to
right in the figure, and the baryon internal line propagating
backward represents an antibaryon. Having integrated out the
baryon-antibaryon pair, one is left with a local EFT operator
as shown by Fig. 1(c). Therefore, microscopic causality is
preserved order by order in heavy-particle EFT by taking into
account the local EFT operators arising from integrating out
heavy particle-antiparticle pairs.

In the specific case of HBChET, LECs driven by high-
energy intermediate states in Fig. 1(a) are suppressed by
powers of 1/mN and, in principle, could be computed by
explicit integrating out or block diagonalization, as shown
in Refs. [3,7,8,10], so that microscopic causality is man-
ifestly satisfied. Although microscopic causality is crucial
for the manifest Lorentz invariance, it is not the sole
short-range physics that drives the LECs of HBChET; non-
Goldstone bosons propagating could be the other short-range
mechanism, illustrated by Fig. 1(b). The contributions by
Fig. 1(b) are suppressed by 1/mNGB, with mNGB � mσ the
generic mass of non-Goldstone bosons. Since any local EFT

(a) (b) (c)

FIG. 1. Two types of short-range physics contribute to local EFT operators: (a) intermediate states consisting of a baryon-antibaryon pair
and (b) exchanges of a non-Goldstone boson. Time flows from left to right. Local EFT operators (c) can be generated by both types of
short-range interactions. The solid line represents a baryon, the dashed line a Goldstone boson, and the double-dashed line a non-Goldstone
boson.
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operator generated by Fig. 1(a) can as well be generated by
Fig. 1(b), the particular knowledge of the 1/mN contributions
does not improve the predictive power of EFT. Therefore,
even if one can compute explicitly the baryon pair-generated
contributions to LECs, it is hardly useful to do so. However,
we remark that, in some EFTs, the contributions to LECs
from heavy-particle pairs might dominate. For instance, in
heavy-quark effective theory (HQET) for bottom quarks, LECs
contributed by electroweak physics are suppressed by the
inverse W -boson mass 1/mW � 1/mb [3,15].

To conclude the points we have argued, it is not necessary to
constrain the HBChET Lagrangian with microscopic causality.
Lorentz invariance will be enjoyed by the HBChET S matrix
as long as LI (x) is a Lorentz scalar, built with the relativistic,
isovector pion field π and forward-propagating baryon fields:
a two-component spinor and isospinor N for the nucleon and
a four-component spinor and isospinor � for the delta isobar.
LI (x) is a Lorentz scalar in the sense that

U0(�)LI [π(x), N(x),�(x)]U−1
0 (�)

= LI [π(�x), N(�x),�(�x)], (2)

where � is the Lorentz transformation matrix and U0(�) is
the Lorentz transformation for free π , N , and �. As pointed
out long ago, this level of Lorentz invariance can be achieved
without causal fields [22]. Note that the fields in the interaction
picture satisfy the free equations of motion (EOM), which
will be exploited repeatedly in this paper. As we will see,
the Lorentz invariance (2) will be enforced by a set of an
infinite number of EFT operators, which are suppressed by
inverse powers of mN and do not originate from integrating
out intermediate baryon-antibaryon pairs.

III. FOLDY-WOUTHUYSEN REPRESENTATION

A Poincaré transformation takes a space-time point x to x ′,

x ′µ = �µ
ν xν + aµ, (3)

with aµ a four-vector specifying the space-time translation
and �µ

ν the Lorentz-transformation matrix. An infinitesimal
Poincaré transformation can be written as

U = 1 − i �θ · �J − i�ξ · �K + iεµPµ + · · · , (4)

where �J are the rotation generators, �K is the boost, and Pµ

is the space-time translation. We follow the convention of
Ref. [22] on the commutation relations among �J , �K , and Pµ:

[Pi, Pj ] = 0, [Pi, P0] = 0, [Ji, Pj ] = iεijkPk,

[Ji, P0] = 0, [Ji, Jj ] = iεijkJk,

(5)
[Pi,Kj ] = −iδijP0, [P0,Ki] = −iPi,

[Ji,Kj ] = iεijkKk, [Ki,Kj ] = −iεijkJk.

The most commonly used causal fields in building rela-
tivistic theories, including the Dirac field, four-vector, etc.,
transform under the Poincaré group as


l′(x) → 
′
l′(x) = M(�)l′l
l(x

′′), (6)

where M(�) are finite-dimension space-time-independent
matrices that furnish a (nonunitary) representation of the
proper homogeneous Lorentz group, and

x ′′ ≡ �−1(x − a). (7)

Transformation (6) can be symbolically written as


 → M(�)
, (8)

with the convention that the left-hand side is evaluated at x

while the right-hand side is evaluated at x ′′. Unless pointed
out otherwise, the Lorentz transformations in this paper are
written as if the fields were classical.

In the following, we refer to the fields that trans-
form according to (6) as Lorentz-covariant fields. Un-
der an infinitesimal boost, x ′′ and the boosted space-time
derivatives are

t ′′ = t + �ξ · �x, �x ′′ = �x + �ξ t (9)

and

∂t → ∂t + �ξ · �∇, �∇ → �∇ + �ξ∂t . (10)

While being convenient for building relativistic Lagrangians,
the Lorentz transformation (8) can not be expanded intu-
itively in ∂/m because the matrices M(�) are, by construc-
tion, independent of the momentum or the mass. However,
the FW representation allows for such a straightforward
expansion [22].

The FW representation of the Poincaré group is spanned by
the solutions of the relativistic Schrödinger equation

i∂tχ (x) = ωχ (x), (11)

where χ (x) is a regular SO(3), (2s + 1)-component spinor with

spin s and mass m, and ω ≡
√

−�∇2 + m2. The generators of
the FW representation are identified as

Pµ = (ω, i �∇), (12)

�J = −i �x × �∇ + ��(s), (13)

�K = 1

2
(�xω + ω�x) + it �∇ + i ��(s) × �∇

m + ω
, (14)

where ��(s) are the spin operators for spin-s particles (e.g.,
��(1/2) = �σ/2 with �σ the Pauli matrices), satisfying[

�
(s)
i , �

(s)
j

] = iεijk�
(s)
k . (15)

An explicit check shows that the operators defined in
Eqs. (12)–(14) satisfy the commutation relations of the
Poincaré algebra (5).

The rotation of fields χ is standard; therefore, it is routine to
build three-scalars (e.g., χ †χ ), three-vectors (e.g., χ † ��(s)χ ),
etc. The boost is a little more complex,

χ (x) → χ ′(x) = (1 − i�ξ · �K)χ (x)

=
[

1 + i�ξ · �∇
2ω

+
�ξ · ( ��(s) × �∇)

m + ω

+ i�ξ · �x(i∂t − ω)

]
χ (x ′′). (16)

Since we are concerned with only the transformation of the
free fields, we have dropped in the boost transformation terms
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proportional to the free EOM. The parity and time-reversal
transformations of the FW field χ are exactly the same as
those of a nonrelativistic spinor. In the case of a spin-1/2
fermion χ 1

2
,

χ 1
2

P→ πχ 1
2
, χ 1

2

T→ − iτσ2χ
∗
1
2
, (17)

where π and τ are unitary phase factors decided by the species
of the particle.

In heavy-particle formalism, it is essential to remove the
large phase in χ (x) by introducing the heavy-particle field [1]

�(x) ≡ eimtχ (x) (18)

so that the ∂/m expansion can be facilitated. For example, the
EOM for the free field becomes

i∂t�(x) = (ω − m)�(x) =
(

−
�∇2

2m
−

�∇4

8m3
+ · · ·

)
�(x).

(19)

The infinitesimal boost of �(x) is defined to be

�(x) → � ′(x) ≡ eimtχ ′(x) = eimt (1 − i�ξ · �K)e−imt�(x)

=
[

1 + i�ξ · �∇
2ω

+
�ξ · ( ��(s) × �∇)

m + ω
− im�ξ · �x

]
�(x ′′).

(20)

The −im�ξ · �x term is important for reproducing the Galilean
transformation: the momentum �p of a nonrelativistic particle
shifts to �p − m�ξ under the boost, i.e.,

�† �∇� → �† �∇� − im�ξ�†� + �†O
(

ξ
�∇2

m

)
�. (21)

It also serves as a slightly nontrivial reminder that � and
�† must appear in pair in order to have a Galilean invariant
operator, hence, the conservation of heavy-particle number
in EFT.

Suppose that χ 1
2

and χ 3
2

are, respectively, FW fields with
spins 1/2 and 3/2, with masses of the nucleon mN and delta
isobar m�. We introduce heavy-baryon fields for the nucleon
and delta isobar N and � by removing the common nucleon
mass mN ,

N = eimN tχ 1
2
, � = eimN tχ 3

2
. (22)

So, the free nucleon and delta EOMs are

i∂tN (x) =
(

−
�∇2

2mN

−
�∇4

8m3
N

+ · · ·
)

N (x), (23)

i∂t�(x) =
(

δ −
�∇2

2mN

+ δ �∇2

2m3
N

+ · · ·
)

�(x), (24)

where δ is the delta-nucleon mass splitting δ ≡ m� − mN .

IV. LORENTZ-COVARIANT FIELDS

With the boosts of a heavy field � [Eq. (20)], we are already
in a position to write down order-by-order Lorentz-invariant
operators in terms of �. Consider a spin-1/2 heavy-fermion
� coupling to a relativistic pseudo-four-vector Aµ. The heavy

operator with lowest mass dimension that satisfies parity,
time-reversal, and rotation invariance is �† �σ� · �A, which
transforms under the boost as

�† �σ� · �A → �† �σ� · �A + �† �σ� · �ξA0 + �†O
(

ξA
∇
m

)
�.

(25)

To diminish the Lorentz breaking, one needs a higher-
dimension operator (i�† �σ · �∇� + H.c.)A0 with a properly
tuned coefficient such that the sum of the two has a Lorentz
breaking of higher dimension,

�† �σ� · �A − 1

2m
(i�† �σ · �∇� + H.c.)A0

→ l.h.s. + �†O
(

ξA
∇
m

)
�. (26)

Repeating this procedure, we expect to build a Lorentz-
invariant Lagrangian order by order.

The above example suggests that the construction of
the effective Lagrangian with the FW fields will be much
simplified if one can construct Lorentz-covariant bilinears out
of the FW fields, e.g.,

aµ =
[
− 1

2m
(i�† �σ · �∇� + H.c.) + · · · , �† �σ� + · · ·

]
.

(27)

To this end, we would like to establish a field redefinition
that maps a FW field onto a Lorentz-covariant field. More
precisely, we wish to have a function in terms of the FW
field that transforms covariantly but, of course, does not create
the antiparticle (therefore, does not accommodate microscopic
causality). In the case of a spin-1/2 field, the function being
sought is just the Foldy-Wouthuysen transformation [8], which
can be generalized to particles with arbitrary spin (see, e.g.,
Ref. [24]). We give in the following the results for spin-1/2
and spin-3/2 fermions, which are of particular relevance in
HBChET, in the notation consistent with this paper. For the
detail of the corresponding derivations, the reader is referred
to Appendix B. Building Lorentz-covariant fermion bilinears
will be discussed in Sec. V.

The irreducible representations of the homogeneous
Lorentz group can be characterized by a pair of integer or
half-integer numbers (A,B) (see, e.g., Ref. [23]), with angular
momentum

j = A + B,A + B − 1, . . . , |A − B|. (28)

In our notation, A corresponds to operator �A = 1
2 ( �J − i �K)

and B to �B = 1
2 ( �J + i �K). Generalizing from the Weyl spinors

for ( 1
2 , 0) and (0, 1

2 ), we call the (s, 0) [(0, s)] representation
a left-handed (right-handed) spinor, denoted by the (2s + 1)-
component spinor 


(s)
L (
(s)

R ), which transforms covariantly
under boosts as



(s)
L → [1 + �ξ · ��(s)]
(s)

L , 

(s)
R → [1 − �ξ · ��(s)]
(s)

R .

(29)

The idea is to construct, as the building blocks, the 

(s)
L and



(s)
R out of the spin-s FW field χs , i.e., to construct a certain
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functional of χs such that it transforms under boosts according
to Eq. (29). The field redefinition (18) will then easily turn the
results in terms of the heavy version of the FW fields �. To
preserve the rotational properties, 


(s)
L or 


(s)
R has to take the

general form


(s)(x) =
2s∑

i=0

fi( �∇2)T (i)
j1,...,ji

∇j1 · · · ∇ji
χs(x)

≡ F (s)( �∇)χs(x), (30)

where T
(i)
j1,...,ji

are rank-i tensors built from the generators
��(s) [one can choose them to be irreducible in the sense that

χ
†
s T

(i)
j1,...,ji

χs constitute a spin-i irreducible representation of
SO(3)].

A. Spin-1/2

In the spin-1/2 case, one needs to look for the left-handed
(right-handed) Weyl spinor that transforms under the boost as

ηL,R →
(

1 ± �ξ · �σ
2

)
ηL,R, (31)

where the left-handed (right-handed) spinor corresponds to the
upper (lower) sign. To remain as a three-spinor and to have
desired parity, ηL,R must be related to χ 1

2
as follows:

ηL,R = [f0( �∇2) ± f1( �∇2)�σ · �∇]χ 1
2
. (32)

Applying the above expression and the boost of χ 1
2

[Eq. (16)]
to the boost of ηL,R [Eq. (31)], one finds

ηL,R =
√

m + ω

4ω

(
1 ± i

�σ · �∇
m + ω

)
χ 1

2
(33)

(see Appendix B for the details).
It is perhaps more conventional to write a Dirac field in

terms of ηL,R in the chiral basis where γ 5 is diagonal:

ψD =
(

ηL

ηR

)
=

√
m + ω

4ω

⎛
⎝(

1 + i �σ · �∇
m+ω

)
χ 1

2(
1 − i �σ · �∇

m+ω

)
χ 1

2

⎞
⎠. (34)

Here we reproduced the results of Refs. [8,22], and the redef-
inition (33) is essentially projecting out the large components
of the free Dirac field.

B. Spin-3/2

Another case of interest in this paper is the spin-3/2
fermion, e.g., the delta isobar. In this case, the left-handed
(right-handed) spinor transforms under the boost as

ζL,R → (1 ± �ξ · ��)ζL,R, (35)

where the left-handed (right-handed) spinor corresponds to
the upper (lower) sign, and we have dropped the superscript
3
2 in the 4 × 4 matrices �� that denote the spin operators for
the spin-3/2 fermion. Again, to keep the correct rotational
property and the correct parity, the relation between ζL,R and

the spin-3/2 FW field χ 3
2

must be

ζL,R = [f0( �∇2) ± f1( �∇2) �� · �∇ + f2( �∇2)Mij∇i∇j

± f3( �∇2)Tijk∇i∇j∇k]χ 3
2
, (36)

where the matrices Mij and Tijk are defined as

Mij = 1
2 {�i�j } − 5

4δij ,
(37)

Tijk = 1
6 {�i�j�k} − 41

60 (�iδjk + �jδik + �kδij ),

where the braces stand for the summation over all the
permutations of tensor indices. Note that Mij and Tijk are
defined such that χ †

3
2
Mijχ 3

2
(χ †

3
2
Tijkχ 3

2
) has only spin-2 (spin-3)

sector (see Appendix B for the details). One finds

ζL,R =
√

m + ω

4ω

[
ω

m
± i

(6ω + 4m) �� · �∇
5m(m + ω)

− Mij∇i∇j

m(m + ω)

∓ i
2Tijk∇i∇j∇k

3m(m + ω)2

]
χ 3

2
. (38)

Most importantly, one no longer needs to deal with any
spurious DOFs because, unlike in the case of the Rarita-
Schwinger field, there is only one spin-3/2 sector and no other
spin-1/2 sector.

V. LORENTZ-COVARIANT BILINEARS

The bilinears sought after are, in general, tensors of
integer rank n, which are direct products of n vectors, which
can, in turn, be decomposed into irreducible terms (A,B)
with A = n/2, n/2 − 1, . . . and B = n/2, n/2 − 1, . . . by
various symmetrizations, antisymmetrizations, and extracting
traces. For example, (0, 0) is a scalar, (1, 0) ⊕ (0, 1) is
an antisymmetric rank-2 tensor, and (1, 1) is a symmetric
rank-2 tensor. A vector (or a pseudovector) is represented
by ( 1

2 , 1
2 ).

To accommodate parity, one needs to use the direct sum
of 


(s)
L and 


(s)
R in building fermion bilinears: (s, 0) ⊕ (0, s).

Since there are no antiparticle DOFs, 

(s)
L and 


(s)
R are not

independent of each other.

A. N N bilinears

Because[(
1
2 , 0

) ⊕ (
0, 1

2

)] ⊗ [(
1
2 , 0

) ⊕ (
0, 1

2

)]
= (0, 0) ⊕ (0, 0) ⊕ (

1
2 , 1

2

) ⊕ (
1
2 , 1

2

) ⊕ [(1, 0) ⊕ (0, 1)] ,

(39)

nucleon-nucleon bilinears include a scalar (s), a
pseudoscalar (p), a vector (vµ), a pseudovector (aµ),
and an antisymmetric tensor (Fµν), as is well known. Our
procedure of assembling these bilinears is as follows. Consider
at first the boosts of, for instance, the following three-scalars
and three-vectors:

η
†
LηL → η

†
LηL − �ξ · (−η

†
L �σηL),

(40)
η
†
L �σηL → η

†
L �σηL − �ξ (−η

†
LηL),

η
†
RηR → η

†
RηR − �ξ · (η†

R �σηR),
(41)

η
†
R �σηR → η

†
R �σηR − �ξ (η†

RηR).
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TABLE I. Lorentz-covariant bilinears built out of the spin-1/2
FW field, where ηL,R are defined in Eq. (33).

s s = η
†
LηR + η

†
RηL

p p = η
†
LηR − η

†
RηL

vµ vµ = (η†
LηL + η

†
RηR, η

†
R �σηR − η

†
L �σηL)

aµ aµ = (η†
LηL − η

†
RηR, −η

†
R �σηR − η

†
L �σηL)

F µν F 0i = iη
†
LσiηR − iη

†
RσiηL, F ij = εijk(η†

LσkηR + η
†
RσkηL)

Note also that ηR and ηL get interchanged under spa-
tial reflections. This allows one to conclude that (η†

LηL ±
η
†
RηR,±η

†
R �σηR − η

†
L �σηL) is a contravariant four-vector

(pseudovector). Analogous considerations can be applied to
all other SO(3) bilinears. Listed in Table I are all of the NN

covariant bilinears.

B. N� bilinears

The product of a spin-1/2 and a spin-3/2 fermion is
decomposed as[(

1
2 , 0

) ⊕ (
0, 1

2

)] ⊗ [(
3
2 , 0

) ⊕ (
0, 3

2

)]
= [(1, 0) ⊕ (0, 1)] ⊕ [(

3
2 , 1

2

) ⊕ (
1
2 , 3

2

)]
⊕[(2, 0) ⊕ (0, 2)], (42)

where (1, 0) ⊕ (0, 1) is a rank-2 antisymmetric tensor (Gµν),
( 3

2 , 1
2 ) ⊕ ( 1

2 , 3
2 ) and (2, 0) ⊕ (0, 2) a rank-3 (Fµνλ) and a rank-4

tensor (Hµνλρ), respectively, with the following symmetry
properties:

Fµνλ = −Fµλν, Hµνλρ = Hλρµν = −Hνµλρ = −Hµνρλ.

(43)

The SO(3) bilinears at our disposal are

η
†
L,R

�SζL,R, η
†
L,RσiSj ζL,R, (44)

where Si are the 2 × 4 transition matrices in spin space,
normalized so that

SiSj
† = 1

3 (2δij − iεijkσk). (45)

They have the property

σiSj − σjSi = −σi

2
Sj + Sj�i = −iεijkSk. (46)

Using (35) and (46), one can get the boost rules for the bilinears
in full analogy to (40) and (41), and ultimately build the

tensors. For instance, one gets

ηL
�SζR → ηL

�SζR − iηL(�ξ × �S)ζR,
(47)

ηR
�SζL → ηR

�SζL + iηR(�ξ × �S)ζL,

which allows one to conclude that ηLSiζR + ηRSiζL and
−iεijk(ηLSkζR − ηRSkζL) transform, respectively, as (0i) and
(ij ) components of an antisymmetric tensor Gµν = −Gνµ.
Performing analogous calculations for the remaining bilinears,
one obtains the explicit expressions for these tensors, as given
in Table II. Of practical use for EFT calculations are the first
few 1/m terms of Lorentz-covariant bilinears. In Appendix C,
we give the expansion of bilinears defined in Tables I and II,
up to and including O[(∇/m)2] terms.

VI. π N N AND π N� COUPLINGS

As applications of our approach to HBChET, we will
consider couplings of a spin-1/2 field (N ) to the gradient
of the pion field (∂µπa with a the isospin index) and
the transition of N to a spin-3/2 field (�) via emitting a
pion. With the pseudovector NN bilinear [Eq. (C4)], the
NN axial-vector coupling and the first terms of its 1/mN

expansion are

LπNN = −gAψDτaγ 5γ µψD

∂µπa

2fπ

= gAN †τ a �σN ·
�∇πa

2fπ

− gA

2mN

[iN †τ a �σ · �∇N + H.c.]
π̇ a

2fπ

+ gA

4m2
N

[N †τ a �σ �∇2N + ( �∇N )†τ a(�σ · �∇)N

+ H.c.] ·
�∇πa

2fπ

+ · · · , (48)

where ψD is defined in Eq. (34) and fπ � 93 MeV is the pion
decay constant. This expansion coincides with the well-known
result in, e.g., Ref. [5].

As seen in Eq. (42), there is no pseudovector N� bilinear.
The way out is to invoke a contraction of tensor bilinears with
the derivatives of N or �. Consider a coupling of ∂µπ to Gµν .
We denote by ∂N

µ (∂�
µ ) the derivative that acts on the nucleon

(delta) field. Since the equality

∂�
µ Gµν∂νπ = ∂µ(Gµν∂νπ ) − ∂N

µ Gµν∂νπ − Gµν∂µ∂νπ

(49)

TABLE II. Lorentz-covariant bilinears built out of the spin-1/2 and the spin-3/2 FW fields, where ηL,R and ζL,R are defined in Eqs. (33)
and (38), respectively. �ij is defined as �ij ≡ (σiSj + σjSi)/2.

Gµν G0i = η
†
LSiζR + η

†
RSiζL, Gij = −iεijk(η†

LSkζR − η
†
RSkζL)

F µνλ F 00i = η
†
LSiζL + η

†
RSiζR, F 0ij = iεijk(η†

LSkζL − η
†
RSkζR), F ij0 = η

†
LσiSj ζL − η

†
RσiSj ζR, F ijk = −iεjkl(η

†
LσiSlζL + η

†
RσiSlζR)

Hµνλρ H 0i0j = η
†
L�ij ζR − η

†
R�ij ζL, H 0ijk = −iεjkl(η

†
L�ilζR + η

†
R�ilζL), H ijkl = −εijmεkln(η†

L�mnζR − η
†
R�mnζL)
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holds, where the last term in the r.h.s. vanishes due to the
antisymmetricity of Gµν , and the first term therein is a total
derivative, the only independent πN� coupling that one can
construct with Gµν is

LπN� = hA

m�

[i∂�
µ Gµν + H.c.]

∂νπ

2fπ

, (50)

where we have suppressed for the moment the isospin index,
and the pseudovector P ν ≡ [i∂�

µ Gµν + H.c.] has the structure

P 0 = −i[η†
L(�S · �∇)ζR + η

†
R(�S · �∇)ζL] + H.c., (51)

�P = i(η†
L
�S∂tζR + η

†
R

�S∂tζL)

−[ηL( �∇ × �S)ζR − ηR( �∇ × �S)ζL] + H.c. (52)

The 1/mN expansion of (50) is straightforward as long as one
switches to heavy fields and uses the EOMs for � to get rid of
their time derivatives,

LπN� = hA[N † �ST a� + H.c.] ·
�∇πa

2fπ

− hA

mN

[iN † �S · �∇T a� + H.c.]
π̇ a

2fπ

+ δ
hA

m2
N

[iN † �S · �∇T a� + H.c.]
π̇ a

2fπ

+ hA

2m2
N

{[N † �S �∇2T a� − N †(�S · �∇) �∇T a�] + H.c.}

·
�∇πa

2fπ

+ hA

8m2
N

[(δlmN † �S · �∇T a� + 3N †Sl∇m�

− 2iεij lN
†�im∇j T

a�) + H.c.]
∇l∇mπa

2fπ

+ · · · ,
(53)

where T a are the isospin analogs of Sa , normalized as in
Eq. (45). Here, the first two terms in the expansion give the
well-known nonrelativistic result [14].

Further couplings can be built by a contraction of Fµνλ with
two derivatives. One can choose to work with ∂N

µ ∂�
ν Fµνλ∂λπ

and ∂N
ν ∂�

λ Fµνλ∂µπ , with other possibilities dependent on
these two via the symmetry property [Eq. (43)] by partial inte-
grations. However, with the help of the EOM for the nucleonic
Dirac spinor ψD , one of these two couplings ∂N

µ ∂�
ν Fµνλ∂λπ

can be shown to be equivalent to ∂�
µ Gµν∂νπ , thus leaving us

with only one independent term ∂N
ν ∂�

λ Fµνλ∂µπ :

L′
πN� = b

mNm�

[
∂N
ν ∂�

λ Fµνλ + H.c.
]∂µπ

2fπ

, (54)

where b is the corresponding dimensionless coupling constant.
The first two terms of the expansion of L′

πN� in powers of
∇/mN can be shown to be equal to the first two terms of
the corresponding expansion of LπN� times the small factor
δ/mN :

L′
πN� = b

δ

mN

{
[N † �ST a� + H.c.] ·

�∇πa

2fπ

− 1

mN

[iN † �S · �∇T a� + H.c.]
π̇ a

2fπ

}
+ · · · . (55)

Therefore, unless δ is a variable that could depend on the
number of colors in QCD, L′

πN� is equivalent to LπN�, up to
and including O(p3), where p stands generically for a small
momentum factor such as ∇, δ, etc.

Finally, considering a contraction of Hµνλρ with three
derivatives and taking into account the symmetry of Hµνλρ , one
arrives at the only independent coupling ∂�

µ ∂N
ν ∂�

λ Hµνλρ∂ρπ :

L′′
πN� = d

mNm2
�

[
i∂�

µ ∂N
ν ∂�

λ Hµνλρ + H.c.
]∂ρπ

2fπ

. (56)

The expansion of this Lagrangian in powers of ∇/m starts at
O[(∇/m)2], which can be proved with the help of integration
by parts:

L′′
πN� = − d

2m2
N

[N † �ST a� + H.c.] ·
�∇(∇2πa)

2fπ

+ · · · . (57)

Using EOMs for pion, N , and � fields, one can show that
L′′

πN�, in fact, starts introducing new πN� operators at least
at O(p4), similarly to L′

πN�.
Therefore, we conclude that the couplings (54) and (56)

start producing new operators at as early as O(p4) and,
thus, the only independent πN� vertex up to O(p3) is (50),
expanded out in Eq. (53). This is, however, at odds with
some results in the literature. References [6,25,26] consider
an additional πN� coupling with an undetermined LEC,
b3 + b8 ∼ 1/Mhep, the leading term in the 1/mN expansion
of which is an O(p2) operator,

Lb3+b8
πN� = −2(b3 + b8)(iN † �ST a� + H.c.) ·

�∇π̇ a

2fπ

. (58)

If our conclusion is correct, one must be able to show that
b3 + b8 is redundant.

To show this more explicitly for its leading term Lb3+b8
πN�

at the level of heavy-baryon operators, we first write down
the leading O(p) HBChET Lagrangian that has both baryon
EOMs, the leading πNN , πN�, and π�� couplings,

L(0) = iN †∂tN + gAN †τ a �σN ·
�∇πa

2fπ

+�†(i∂t − δ)� + 4g�
A�†ta

( 3
2 )

��� ·
�∇πa

2fπ

+hA(N † �ST a� + H.c.) ·
�∇πa

2fπ

+ {�†��†�}, (59)

where g�
A is the � axial coupling constant, ta

( 3
2 )

are the isospin

3/2 generators, � is the generic baryon field, and {�†��†�}
are nonderivative four-baryon operators, the details of which
are irrelevant.

Using partial integration, we can choose the independent
πN� operators that have a time and a spatial derivative, hence
of O(p2), to be

h1(iṄ † �ST a� + H.c.) ·
�∇πa

2fπ

+h2(iN † �ST a�̇ + H.c.) ·
�∇πa

2fπ

, (60)
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where h1,2 ∼ 1/Mhep. This absorbs all the effects of Eq. (58).
We note that, in order to respect chiral symmetry, there has
to be at least one derivative on π . We now want to get rid of
interactions that have baryon time derivatives, as commonly
practiced in heavy-baryon EFTs. The field redefinition

N → N + h1T
a �S ·

�∇πa

2fπ

�, (61)

� → � − h2T
a† �S† ·

�∇πa

2fπ

N (62)

generates a O(p2) variation

L → L − h1(iṄ † �ST a� + H.c.) ·
�∇πa

2fπ

−h2(iN † �ST a�̇ + H.c.) ·
�∇πa

2fπ

+ δh2(N † �ST a� + H.c.) ·
�∇πa

2fπ

+O(p2){ππ�†�} + O(p2){π�†��†�} + · · · ,
(63)

where the ellipsis includes O(p3) operators. The first line
shows that the field redefinition was designed to eliminate both
h1 and h2 terms at the expense of generating other operators
that are listed in the second line. It is important that (i) these
generated operators do not have baryonic time derivatives
and they can be absorbed into the existing O(p2) HBChET
Lagrangian, and that (ii) the b3 + b8 operator, absorbed
earlier into h1 and h2 operators by partial integration, is not
reincarnated. The first operator in the second line can be
lumped into the hA term by redefining hA: hA + δh2 → hA.
Alternatively, the rearrangement of the Lagrangian evoked by
the field redefinition can also be realized by applying EOMs
of the nucleon and delta fields. After all these operations, the
effects of the b3 + b8 term are transformed into various terms

Lb3+b8
πN� → 2(b3 + b8)

[
δ(N †T a �S� + H.c.) ·

�∇πa

2fπ

− 8

9
hAN †N

( �∇πa

2fπ

)2

+ 2

9
hAN †εijkε

abcσkτ
cN

∇iπ
a

2fπ

∇jπ
b

2fπ

+ · · ·
]
.

(64)

Here, we only explicitly listed the πN� and ππNN pieces
that will be useful later; subsumed in the ellipsis are such
terms as ππN�, ππ��, etc.

As promised, we showed that b3 + b8 is not an independent
parameter. To further illustrate this point in practice, we show
in Appendix A that, in Ref. [27], while two fits of LECs to low-
energy πN scattering data yield two different sets of LECs,
this apparent difference is purely due to the arbitrary choice
of a set containing a redundant parameter. We also discuss the
possible implications of this for other reactions, in particular,
NN → NNπ .

VII. CONCLUSION

We demonstrated how one can build heavy-particle
Lorentz-invariant Lagrangians with fields that furnish the
FW representation for the Poincaré group. At the core of
the method are Eqs. (33) and (38), which map the FW
fields onto the more conventional, Lorentz-covariant left-
and right-handed spinors, in the cases of spin-1/2 and -3/2
corresponding to the nucleon and delta isobar in HBChET.
We also built covariant NN and N� bilinears (Tables I and
II) and their 1/mN expansions (Appendix C) that are useful
in HBChET. A Lorentz-invariant interaction can thereby be
assembled with the FW fields and, in the mean time, can be
easily expanded in powers of ∇/m.

The machinery we presented here provides a couple of
advantages in working out 1/m expansion over the ex-
plicit integrating out or block diagonalization used in, e.g.,
Refs. [3,7,8,10]. First, it is natural to apply the same method
to multifermion operators such as NNNN , NNN�, etc.,
whereas it is more difficult to do so in integrating out or
block diagonalization because the Lagrangian is no longer
quadratic in baryon fields. Second, when treating the delta
or other high-spin baryons, one no longer needs to deal with
spurious DOFs.

We illustrated the technique with the examples of πNN

and πN� couplings. The well-known 1/mN expansion of
πNN is explicitly reproduced up to O(p3). πN� is more
interesting because there is no N� bilinear that is a four-
pseudovector. We analyzed all possible πN� couplings up to
O(p3) and found that there is only one independent πN�

coupling up to and including O(p3). In Appendix A, we
use low-energy πN scattering to further illustrate that the
employment in the literature of the O(p2) πN� operator,
with LEC b3 + b8, is redundant. We also discuss there the
possible implications of this redundancy for calculations of
the reactions NN → NNπ . In particular, we show that the
inclusion of b3 + b8 at O(p2) in πN scattering can lead to
unnaturally large variations of some terms in NN → NNπ ,
which can be cured by demoting the b3 + b8 term to O(p4) at
the level of the HBChET Lagrangian.
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APPENDIX A: THE REDUNDANCY OF Lb3+b8
π N� AT O( p2)

AND THE REACTIONS N N → N Nπ

Here, we examine in more detail whether the πN� LEC
b3 + b8 plays any role in a specific process, πN scattering
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(a) (b) (c)

FIG. 2. Feynman diagrams showing the effect of b3 + b8 πN� coupling on πN scattering. The filled circles denote the leading πN�

vertex, the crossed circle stands for the b3 + b8 vertex, and the filled square denotes the subleading ππNN contact term. Crossed diagrams are
not shown.

below the delta threshold, and discuss the significance of
Lb3+b8

πN� being redundant for calculations of other processes,
in particular, the reactions NN → NNπ .

Up to the next-to-leading order (NLO) in the so-called
small-scale expansion (SSE) [25,26], the diagrams contribut-
ing to πN scattering are all trees and were discussed in detail,
e.g., in Refs. [26,27]. Aside from the leading Lagrangian (59),
one also needs O(p2) seagull terms [5]

L(1)
ππNN = N †

[
4(c2 + c3)

(
π̇ a

2fπ

)2

− 4c3

( �∇πa

2fπ

)2

− 2c4εijkσkε
abcτ c ∇iπ

a

2fπ

∇jπ
b

2fπ

]
N, (A1)

where we have suppressed 1/mN corrections to ππNN LECs
c2, c3, and c4. Comparing the above Lagrangian and Eq. (64),
one can redefine hA and ci’s to eliminate b3 + b8 from the
πN� Lagrangian at this order O(p2):

h̄A = hA + 2δ(b3 + b8), c̄2 = c2 − 4
9hA(b3 + b8),

(A2)
c̄3 = c3 + 4

9hA(b3 + b8), c̄4 = c4 − 2
9hA(b3 + b8).

Here, the barred letters stand for the redefined constants.
As shown in Fig. 2, the diagrammatic interpretation of

eliminating b3 + b8 is that the subleading (with one vertex
being b3 + b8) � pole term (b) can be dissected to the sum
of, up to some constant factors, the leading � pole term (a)
and the subleading ππNN contact terms (c). This can also be
manifested by the identities

ω

ω ± δ
= 1 ∓ δ

ω ± δ
, (A3)

with the lower signs corresponding to pole diagrams, while
the upper ones correspond to crossed diagrams.

Reference [27], in which b3 + b8 was employed, obtained
two different sets of LEC values in fitting to πN scattering
data (note that our hA corresponds to 2hA in their notation).
We calculate the LECs redefined according to Eq. (A2) and
find that the two sets of LECs in Ref. [27] indeed correspond to

the same set of barred LECs, shown in Table III, with only h̄A

having ∼10% discrepancy that can be traced to higher-order
contributions.

The presence of the b3 + b8 term in the Lagrangian at
order O(p2) can be a source of rather intricate troubles
in certain calculations. Consider, for instance, a version of
counting that does not go together with the chiral index. In
this case, the contributions due to Lb3+b8

πN� can be of different
(higher) order than those coming from the ππNN contact
term with ci’s. Examples of such countings are the δ counting,
used for calculations in the energy region extending to delta
resonance [28], or the p counting used in in calculations of the
reactions NN → NNπ [29], where Lb3+b8

πN� starts to contribute
one order higher than the ππNN contact term with ci’s. This
is due to the nucleon-delta mass difference δ being considered
as an intermediate scale (ω � δ � Mhep) in these countings,
and the ratio ω/δ being just one of the expansion parameters,
which implies that one should expand the product of pion
energy and the delta propagator in powers of ω/δ,

ω

ω ± δ
= ±ω

δ

[
1 ∓ ω

δ
+ · · ·

]
, (A4)

rather than use Eq. (A3). Hence, the contribution of Lb3+b8
πN�

starts one order higher than that of the terms with ci’s.
A problem emerges when one attempts to use the values

of ci’s, calculated in an SSE calculation of πN scattering, in
a calculation of NN → NNπ up to next-to-next-to-leading
order (NNLO), the order where ci’s start to contribute. The
discussed correlations of hA, b3 + b8, and ci’s [Eq. (A2)] can
lead to sizable variations of the latter, as illustrated by Table III,
thus leading to unnaturally large variations of the calculated
observables in NN → NNπ . To counter these variations at
NNLO, one would need to include Lb3+b8

πN� , being one order
higher according to p counting. Such a promotion without a
good reason would be completely undesired, especially given
the fact that there is a far more natural solution, namely,
demoting the redundant b3 + b8 term at the level of the

TABLE III. Values of redefined LECs h̄A (dimensionless) and c̄2, c̄3, c̄4 (in units of GeV−1). We also give the values of the input LECs (in
the same respective units) taken from fit 1 and fit 2 of Ref. [27]. Note that our hA corresponds to 2hA in the notation of that reference.

Source hA b3 + b8 c2 c3 c4 h̄A c̄2 c̄3 c̄4

Ref. [27] fit 1 2.68 1.40 −0.25 −0.79 1.33 3.50 −1.92 0.88 0.50
Ref. [27] fit 2 2.10 2.95 0.83 −1.87 1.87 3.83 −1.92 0.88 0.49
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Lagrangian, using the equations of motion, and refitting ci’s
accordingly.

APPENDIX B: CALCULATION OF FW TRANSFORMATION

The FW transformation for a spin-s field [Eq. (30)] can be
written in a closed analytical form as

F (s)( �∇) = Cω−1/2 exp

[
∓( ��(s) · �∇)

1

| �∇|arctanh − i
| �∇|
ω

]
,

(B1)

where C is a normalization constant (see Ref. [24]; note that
we use a normalization of FW transformation that differs from
one used in that reference). In practice, it is convenient to
express this exponential as a finite sum of terms constructed
of the generators ��(s) and their products, as in Eq. (30). It is
always possible due to the fact that a product of any 2s + 1
generators ��(s) is a linear combination of products of up to 2s

generators, which is manifested by the identity

[( ��(s) · �n)+s][( ��(s) · �n) + (s − 1)] · · · [( ��(s) · �n)−s] = 0,

(B2)

with �n being an arbitrary unit vector. On the other hand,
Eq. (30) is the most general form of a transformation of a
spin-s field conserving the rotational properties of that field,
and one can use this equation as the starting point in deriving
the FW transformation.

Demanding that the field 
(s)(x) [Eq. (30)] transforms
under the boost as given by Eq. (29) and taking into account
the transformation properties of the gradient [Eq. (10)], the
boost of the field χs(x) [Eq. (16)], we arrive at the following
equation for function F (s)(�y):

F (s)(�y)

[
i �y

2ω(y)
+

��(s) × �y
m + ω(y)

]
− i

∂F (s)(�y)

∂ �y ω(y)

= ± ��(s)F (s)(�y), (B3)

where ω(y) =
√

m2 − y2 and the choice of the sign in the
r.h.s. is the same as in Eq. (29). Here, we again dropped
terms proportional to the free EOM for the field χs(x). With
the help of algebraic relations between the spin-s generators
�

(s)
i and their products, one can simplify this equation,

arriving at a system of differential equations for functions
fi(�y2). In the following, we will show how this procedure
works on the examples of spin-0, -1/2, and -3/2 fields. Note
that the transformation for the left-handed spinor F

(s)
L ( �∇),

corresponding to the positive sign in the r.h.s. above, is related
(up to normalization factors) to that for the right-handed spinor
via the change of the sign of the gradient F

(s)
R ( �∇) = F

(s)
L (−�∇);

hence, we will consider only the left-handed transformation
below in this Appendix.

1. Spin-0

For the spin-0 FW field χ0(x) to remain a three-scalar, the
field redefinition we are after must be


(0)(x) = f0( �∇2)χ0(x), (B4)

such that 
(0)(x) is a four-scalar, namely, 
(0) → 
(0) under
the boost. Equation (B3) takes the form

f0(y2)
�y

2ω(y)
− ω(y)

∂f0(y2)

∂ �y = 0, (B5)

which gives, up to a normalization factor, f0(y2) = ω−1/2. One
can choose, e.g.,


(0)(x) =
√

m

ω
χ0(x). (B6)

2. Spin-1/2

In the spin-1/2 case, we have the transformation for the
(left-handed) spinors



(1/2)
L = [f0( �∇2) + f1( �∇2)�σ · �∇]χ 1

2
. (B7)

Similar to the spin-0 case, one finds, substituting the expression
for 
(1/2) in (B3) and using the algebra of the Pauli matrices,

σj

[
εijkyk

2(m+ω)
f0(ω) + i

(
yiyj

2ω
+ yiyj

2(m+ω)
− y2δij

2(m+ω)
− ωδij

)

× f1(ω) + iyiyjf
′
1(ω)

]
+ i

(
1

2ω
f0(ω) + f ′

0(ω)

)
yi

= 1

2
σj

[
δijf0(ω) − iεijkykf1(ω)

] + 1

2
yif1(ω), (B8)

where the functions f0 and f1 are considered as functions of
ω, and the prime denotes the derivative with respect to ω.
Considering factors in front of different matrix and tensor
structures appearing in this equation gives four equations: two
differential equations and two algebraic equations relating f0

and f1. One can choose any two of the four equations to solve
for f0 and f1, for instance, the factors in front of εijkσjyk and
σjyiyj give

f0(ω)

m + ω
= −if1(ω),

(B9)(
1

2ω
+ 1

2(m + ω)

)
f1(ω) + f ′

1(ω) = 0,

which finally gives (up to normalization)

f0(ω) =
√

m + ω

4ω
, f1(ω) = i√

4ω(m + ω)
. (B10)

The remaining two of the four equations are consistent with this
solution for f0 and f1, and we arrive at the FW transformation
for the left-handed spin-1/2 spinor



(1/2)
L (x) =

√
m + ω

4ω

[
1 + i

(�σ · �∇)

m + ω

]
χ 1

2
(x). (B11)
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3. Spin-3/2

The calculations for spin-3/2 are more involved due to the
more complex algebra of the spin-3/2 generators; however,
the ideology is the same as for spin-1/2. It is convenient to
introduce symmetrized versions of products of �i (here we
again suppress the index (3/2) for the spin-3/2 generators):

�ijkl = 1

24

{
�i�j�k�l

}
, �ijk = 1

6

{
�i�j�k

}
,

�ij = 1

2

{
�i�j

}
, (B12)

where the braces stand for summations over all the permu-
tations of Cartesian indices. Using the standard commutation
relations [�i,�j ] = iεijk�k , one can get the following alge-
braic identities for the products of generators:

�i�j = �ij + i

2
εijk�k, (B13)

�i�j�k = �ijk + i

2
(�jlεikl + �ilεjkl + �klεij l)

+ 1

6
(δilδjk − 2δjlδik + δij δkl)�l, (B14)

�i�j�k�l = �ijkl + i

2
(�ijmεmkl + �ikmεmjl

+�ilmεmjk+�jkmεmil+�jlmεmik + �klmεmij )

+ 1

6
(2�ij δkl − �ikδjl + 2�ilδjk − 4�jkδil

−�jlδik+2�klδij )−1

4
�mn(εijmεkln + εikmεjln

+ εilmεjkn) + i

12
(2εij l�k + 2εjkl�i − εikl�j

− 3εijk�l) − i

12
(4εikmδjl − εijmδkl − 3εilmδjk

− εjkmδil + 2εjlmδik + εklmδij )�m. (B15)

The linear dependence of �ijkl on products of lower powers
of �i is given by the identity

�ijkl = 5

12
(�ij δkl + �ikδjl + �ilδjk + �jkδil + �jlδik

+�klδij ) − 3

16
(δij δkl + δikδjl + δilδjk). (B16)

We write the transformation for the left-handed four-
component spinor as



(3/2)
L = [f0( �∇2) + f1( �∇2) �� · �∇ + f2( �∇2)Mij∇i∇j

+ f3( �∇2)Tijk∇i∇j∇k]χ 3
2
, (B17)

where matrices Mij and Tijk are defined in Eq. (37):

Mij = �ij − 5

4
δij ,

Tijk = �ijk − 41

60
(�iδjk + �jδik + �kδij ).

This definition is to ensure that a contraction of the two
Cartesian indices of Mij (or any two indices of Tijk) gives

zero result, resulting in the set of quantities χ
†
3
2
Mijχ 3

2
being an

SO(3) irreducible tensor of rank two, i.e., it transforms under
rotations under a spin-2 irreducible representation of SO(3)
because lower spin (spin-0 in this specific case) components
are proportional to the Cartesian trace of this tensor and
therefore vanish by the definition of Mij . Analogously,
χ
†
3
2
Tijkχ 3

2
is an SO(3) irreducible tensor of rank three, having

only spin-3 components.
Plugging the transformation for 
(3/2) into Eq. (B3) and

using the spin-3/2 algebra given above, one can obtain
equations for the four functions f0(ω), . . . , f3(ω), in full
analogy to the spin-0 and spin-1/2 cases considered before.
The calculation is, however, much more tedious due to the
convoluted algebra, and was done in practice with the help
of symbolic calculation software [30], with the final result for



(3/2)
L given by Eq. (38) in the main text, and repeated here for

the sake of completeness:



(3/2)
L (x) =

√
m + ω

4ω

[
ω

m
+ i

(6ω + 4m) �� · �∇
5m(m + ω)

− Mij∇i∇j

m(m + ω)
− i

2Tijk∇i∇j∇k

3m(m + ω)2

]
χ 3

2
(x).

APPENDIX C: 1/mN EXPANSION OF N N AND
N� BILINEARS

In this Appendix, we give the 1/mN expansion of covariant
nucleon-nucleon and nucleon-delta bilinears, in terms of heavy
fields N and �, as defined in Eq. (22). This is a straightforward
computation of Tables I and II, with Eqs. (33), (38), and (22)
applied.

1. N N bilinears

(i) Scalar s = ψDψD:

s=N †

[
1+ (

←
∇ − →

∇)2

8m2
N

−i

←
∇ × →

∇ · �σ
4m2

N

]
N.

(C1)

(ii) Pseudoscalar p = ψDγ 5ψD:

p = N †

[
−i

(
←
∇ + →

∇) · �σ
2mN

]
N. (C2)

(iii) Vector vµ = ψDγ µψD:

v0 = N †

[
1 + (

←
∇ + →

∇)2

8m2
N

+ i

←
∇ × →

∇ · �σ
4m2

N

]
N, (C3)

�v = N †

[
i
(
←
∇ − →

∇)

2mN

+ (
←
∇+→

∇) × �σ
2mN

]
N.
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(iv) Pseudovector aµ = ψDγ 5γ µψD:

a0 = N †

[
−i

(
←
∇ − →

∇) · �σ
2mN

]
N,

�a = N †

[
−�σ − (

←
∇ · �σ )

→
∇ + ←

∇(
→
∇ · �σ )

4m2
N

(C4)

− �σ (
←
∇ − →

∇)2

8m2
N

+ i

←
∇ × →

∇
4m2

N

]
N.

(v) Tensor Fµν = ψDσµνψD:

F 0i = N †

[ ←
∇ + →

∇
2mN

− i
(
←
∇ − →

∇) × �σ
2mN

]
i

N,

F ij = N †

[
εijkσk + i

←
∇ i

→
∇j − ←

∇j

→
∇ i

4m2
N

+εikl

←
∇kσl

→
∇j − εjkl

←
∇kσl

→
∇ i

4m2
N

(C5)

− (
←
∇ · �σ )εijk

→
∇k

4m2
N

+εijkσk(
←
∇2 +

→
∇2)

8m2
N

⎤
⎦N.

2. N� bilinears

(i) Gµν :

G0i = N †

[
Si + (

←
∇ · �S)

→
∇ i + ←

∇ i(�S · →
∇)

8m2
N

+3(�S · →
∇)

→
∇ i

4m2
N

− Si

8m2
N

(5
→
∇

2
− ←

∇
2

+ 4
←
∇ · →

∇) − i

←
∇ l

→
∇j + →

∇ l

→
∇j

2m2
N

×�klεijk + i

←
∇ l

→
∇j

4m2
N

�ikεjlk

]
�, (C6)

Gij = N †

[
i

Si

4mN

(←
∇j + 5

→
∇j − 5δ

mN

→
∇j

)

−i
Sj

4mN

(←
∇ i + 5

→
∇ i − 5δ

mN

→
∇ i

)

−
←
∇k + →

∇k

2mN

�klεij l + δ
→
∇k

2m2
N

�klεij l

]
�.

(ii) Fµνλ:

F 00i = N †

[
Si − (

←
∇ · �S)

→
∇ i + ←

∇ i(�S · →
∇)

8m2
N

+3(�S · →
∇)

→
∇ i

4m2
N

− Si

8m2
N

(5
→
∇2 −

←
∇2

− 4
←
∇ · →

∇) + i

←
∇j

→
∇ l − →

∇j

→
∇ l

2m2
N

×�jkεilk − i

←
∇ l

→
∇j

4m2
N

�ikεjlk

]
�,

F 0ij = N †

[
− i

Si

4mN

(←
∇j − 5

→
∇j + 5δ

mN

→
∇j

)

+ i
Sj

4mN

(←
∇ i − 5

→
∇ i + 5δ

mN

→
∇ i

)

+
←
∇k − →

∇k

2mN

�klεij l + δ
→
∇k

2m2
N

�klεij l

]
�,

F ij0 = N †

[
− i

Si

4mN

(←
∇j + →

∇j − δ

mN

→
∇j

)

−i
Sj

2mN

(←
∇ i − 2

→
∇ i + 2δ

mN

→
∇ i

)

+i
(
←
∇ · �S) − (

→
∇ · �S)

4mN

δij

+ i
δ(

←
∇ · �S)

4m2
N

δij −
→
∇k

mN

�ilεjkl

−
←
∇k + →

∇k

2mN

�jlεikl + δ
→
∇k

m2
N

�ilεjkl

+ δ
→
∇k

2m2
N

�jlεikl

]
�,

F ijk = N †

[
−i�ilεjkl − 1

2
Sjδik + 1

2
Skδij − (

←
∇ · �S)

4m2
N

× (
→
∇j δik − →

∇kδij ) − Si

4m2
N

(
←
∇j

→
∇k

− ←
∇k

→
∇j ) + Sj

16m2
N

[−10
←
∇ i

→
∇k

− 2
←
∇k

→
∇ i + 12

→
∇ i

→
∇k − (

←
∇ − →

∇)2δik]

− Sk

16m2
N

[−10
←
∇ i

→
∇j

− 2
←
∇j

→
∇ i + 12

→
∇ i

→
∇j − (

←
∇ − →

∇)2δij ]

−
←
∇m

→
∇n

4m2
N

Slεjklεimn

− i

←
∇m

→
∇ i + →

∇m

←
∇ i

4m2
N

�mlεjkl
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+ i

→
∇m

→
∇k

2m2
N

�ilεjml − i

→
∇m

→
∇j

2m2
N

�ilεkml

− i
(
←
∇ − →

∇)2

8m2
N

�ilεjkl

+ i

←
∇m

→
∇k + →

∇m

→
∇k

2m2
N

�jlεiml

− i

←
∇m

→
∇j + →

∇m

→
∇j

2m2
N

�klεiml

]
�. (C7)

(iii) Hµνλρ :

H 0i0j = N †

[
i
(
←
∇ · �S) + (

→
∇ · �S)

4mN

δij − i
δ(

→
∇ · �S)

4m2
N

δij

− i
3Si

8mN

(←
∇j + →

∇j − δ

mN

→
∇j

)

−i
3Sj

8mN

(←
∇ i + →

∇ i − δ

mN

→
∇ i

)

− �in

4mN

εjrn

(←
∇r − 3

→
∇r + 3δ

mN

→
∇r

)

− �jn

4mN

εirn

( ←
∇r − 3

→
∇r+ 3δ

mN

→
∇r

) ]
�,

H 0ijk = N †
[
−i�inεjkn + 1

8m2
N

[(
←
∇ · �S)(

→
∇j δik

−→
∇kδij ) − (

→
∇ · �S)(

←
∇j δik − ←

∇kδij )

]

+ Sj

16m2
N

(5
←
∇ i

→
∇k + ←

∇k

→
∇ i + 6

→
∇ i

→
∇k)

− Sk

16m2
N

(5
←
∇ i

→
∇j + ←

∇j

→
∇ i

+ 6
→
∇ i

→
∇j ) + Sn

16m2
N

[
←
∇r

→
∇s(εirsεjkn

− εirnεjks − 5εisnεjkr ) − 6
→
∇r

→
∇sεirnεjks]

+ 3Si

8m2
N

(
←
∇j

→
∇k − ←

∇k

→
∇j )

+ i
�in

8m2
N

(
←
∇n

→
∇rεjkr + ←

∇r

→
∇nεjkr

− 2
→
∇n

→
∇rεjkr ) + i

�rn

8m2
N

εjkn(
←
∇ i

→
∇r

+ ←
∇r

→
∇ i − 2

→
∇r

→
∇ i) + i

�in

8m2
N

εjkn

× (3
→
∇

2
− ←

∇
2
− 2

←
∇ · →

∇)
+ i

�jn

4m2
N

εirn(2
→
∇r

→
∇k − ←

∇r

→
∇k

− ←
∇k

→
∇r ) − i

�kn

4m2
N

εirn(2
→
∇r

→
∇j

− ←
∇r

→
∇j − ←

∇j

→
∇r )

]
�, (C8)

Hijkl = N †

{
i
(
←
∇ · �S)

8mN

(δilδjk − δikδjl) − i
(
→
∇ · �S)

8mN

×
(

1− δ

mN

)
(δilδjk−δikδjl)+i

Si

4mN

(
1 − δ

mN

)

× (
→
∇ lδjk − →

∇kδjl) − i
Sj

4mN

(
1 − δ

mN

)

× (
→
∇ lδik − →

∇kδil) + i
Sk

8mN

[←
∇j δil

− ←
∇ iδj l + (

→
∇j δil−

→
∇ iδj l)

(
1 − δ

mN

) ]

− i
Sl

8mN

[←
∇j δik − ←

∇ iδjk + (
→
∇j δik

−→
∇ iδjk)

(
1 − δ

mN

)]
+ i

Sn

8mN

×
[

3
←
∇rεijrεkln + →

∇rεijrεkln

(
1 − δ

mN

)]

+ i
Sn

4mN

[ ←
∇rεklr εijn+

→
∇rεklrεijn

(
1− δ

mN

)]

− 1

4mN

�inεkln

[←
∇j − 3

→
∇j

(
1 − δ

mN

)]

+ 1

4mN

�jnεkln

[←
∇ i − 3

→
∇ i

(
1 − δ

mN

)]

− 1

4mN

�knεijn

[←
∇ l − 3

→
∇ l

(
1 − δ

mN

)]

+ 1

4mN

�lnεijn

[←
∇k−3

→
∇k

×
(

1− δ

mN

)] }
�.
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U.-G. Meißner, M. Mojžiš, and S. Steininger, Ann. Phys. (NY)
283, 273 (2000).

[6] T. R. Hemmert, B. R. Holstein, and J. Kambor, Phys. Lett. B
395, 89 (1997); J. Phys. G: Nucl. Part. Phys. 24, 1831 (1998);
N. Fettes and U.-G. Meißner, Nucl. Phys. A 679, 629 (2001).

[7] V. Bernard, N. Kaiser, J. Kambor, and U.-G. Meißner, Nucl.
Phys. B 388, 315 (1992).

[8] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
[9] J. L. Friar, Phys. Rev. C 60, 034002 (1999).
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