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qq̄ potential at finite T , and weak coupling in N = 4 SUSY
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We compute the potential between a qq̄ color-singlet state for N = 4 SUSY with gauge group SU(N) at
finite temperature T , large distances rT � 1, and weak coupling g. As a first step, we only consider the electric
modes and compute the Debye mass mD , where we find that each of the 8(N2 − 1) bosonic degrees of freedom
contributes to m2

D (on average) with N

N2−1
1
6 g2T 2, while each of the 8(N2 − 1) fermionic degrees of freedom

contributes (on average) with N

N2−1
1
12 g2T 2, yielding m2

D = 2Ng2T 2. Then, motivated by results obtained in the
literature from both the weak-coupling results in QCD and the large-coupling investigations of N = 4 SUSY
through AdS/CFT, we attempt to include magnetic mode corrections. Our results illustrate that, for this particular
computation, N = 4 SUSY is in striking qualitative agreement with QCD.
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I. INTRODUCTION

Recently, the discovery of the AdS/CFT correspondence
[1–4] has created great interest in the N = 4 SUSY SU(N)
gauge theory because the duality allows for the investigation
of several aspects of the gauge theory (see, for instance, [5–42]
and [43] for a recent review on the field) at strong coupling
through gravitational and generally classical computations.

In particular, one of the first computations using the gauge
and gravity duality was the evaluation of the heavy-quark
potential at large ’t Hooft coupling (and large N ), both at
zero temperature [6] and also at finite temperature [21,44–46].
In particular, in [21,46] it was found that, at large enough
distances, the real part of the potential has a power-law falloff
extending the results (obtained earlier) in the literature [44,45].
The method of [21,46] involved an analytic continuation of the
solution of [44,45] applying the ideas of [47–49].

Amazingly enough, exactly the same power falloff was
found in [50] for perturbative QCD (pQCD) at finite temper-
ature. This fact partially motivated investigating the N = 4
SUSY SU(N) gauge theory at nonzero temperature in the
framework of a perturbative, field theoretical approach.

Therefore, in this paper, we compute the heavy-quark color-
singlet state potential of N = 4 SUSY at nonzero temperature
and weak ’t Hooft coupling. We compute the Debye mass and
apply the technique of [50] that had been previously applied to
QCD and investigate whether we may predict a similar power-
law falloff of the potential. Such an investigation allows for a
comparison with the result of [50] obtained in the framework of
pQCD and with the result of [21,46] obtained in the framework
of AdS/CFT. We note that the literature is rich with regard
to perturbative calculations at finite temperature for both the
heavy-quark potential for QCD [50–62] as well as for several
(other) contexts of the N = 4 SUSY theory [5,63–68].

We organize this paper as follows. In Sec. II, we set
up the problem arguing that the color-singlet potential is a
gauge-invariant quantity and, hence, it makes sense to compute
(perturbatively). We also give an elementary introduction of
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the objects that we need in this work and that appear in thermal
field theory. Section III deals with the relevant diagrams
involved in the calculation. For a subset of the diagrams under
consideration, we borrow results from the literature calculated
for QCD and show how these results may be adapted for our
case. In Sec. IV, we use the results of previous sections to
evaluate the quark-pair potential. We initially compute the
Debye mass giving rise to the expected Yukawa falloff and
then we extend the computation in the spirit of [50]. Finally, in
Sec. V, we summarize and discuss our results. In particular, we
find that the potential has a power falloff (at sufficiently large
distances) that agrees precisely with [50] and (the absolute
value of) [21,46]. The notation and conventions that we use, as
well as many useful formulas, may be found in Appendix A. In
Appendix B, we begin from the Lagrangian for N = 4 SUSY
in terms of superfields and write it in terms of component
fields, exhibit the vanishing of the beta function, and derive
the Feynman rules for both zero and nonzero temperature. In
the rest of the Appendices, we show which diagrams contribute
in the calculation that we are interested in and evaluate in great
detail (one of) the relevant diagram(s) to exhibit the general
idea behind these sorts of computations.

II. SETTING UP THE PROBLEM

A. qq̄ potential and gauge invariance

In QED, the magnetic and electric fields are gauge invariant.
In non-Abelian gauge theories, on the other hand, gauge
invariance (of the chromoelectromagnetic field) is not valid
as a consequence of the presence of the nonlinear terms in the
field strength tensor Fa

µν . However, a gauge-invariant quantity
that one may construct is the free energy (potential) of a static,
color-singlet (total color charge zero), quark-antiquark pair as
a function of the separation r of the pair [69]. As the quantity
that we wish to compute is gauge invariant, we choose to
compute it in the temporal axial gauge (TAG).

B. Elements of thermal field theory

In this section, we present the minimum knowledge about
field theory at finite temperature that one needs to perform
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the calculation in which we are interested. The self-energy of
the gauge boson [two-point irreducible diagram, the precise
definition of which is given below in Eq. (5)] at finite
temperature may be decomposed as

�µν = G(q0, |q|)P µν

T + F (q0, |q|)P µν

L , (1)

where qµ is the four-momentum of the gauge boson, G

and F are scalar functions of q0 and |q|, while PT and PL

are the transverse and longitudinal projection tensors (to q),
respectively, and their explicit form is given by

P
µν

T =
(

δij − qiqj

q2

)
giµgjν,

(2)

P
µν

L =
(

− gµν + qνqµ

q2

)
− P

µν

T , µ = 0, i.

These tensors satisfy

qiP
iν
T = qµP

µν

T = qµP
µν

L = P
µκ

T PLκ
ν = 0. (3)

Motivated by Eqs. (3) and (2), it is natural to associate G with
the chromomagnetic modes and F with the chromoelectric
ones. These factors may be expressed in terms of the diagonal
components of �µν as

F = k2

k2
�00, F + 2G = �ii − �00. (4)

Taking into account the expression for the bare propagator of
the gluon D

µν

0 from Fig. 1 written in the TAG gauge, one may,
formally at least, compute the exact (dressed) propagator to
all orders in perturbation theory, the nonzero components of
which are

Dij = Dik
0

∞∑
N=0

[(−�D0)N ]k
j = 1

G − k2

(
δij − qiqj

q2

)

+ 1

F − k2

k2

k2
0

kikj

k2
(TAG). (5)

This expression, in fact, provides the definition for �µν .
Now let us suppose that we place two oppositely

(cromo)charged fermions at a distance r and seek for the

mutual force of the two charges treating them as small (static)
perturbations in the thermal medium. Then, in the spirit of the
linear response theory, one may show [69] that the potential of
the qq̄ system as a function of the separation is given by

V (r) = Q1Q2

∫
d3q

(2π )3

eiqr

q2 + F (0, q)

= Q1Q2

∫
d3q

(2π )3

eiqr

q2 − �00(0, q)
, (6)

where the last equality is a consequence of the (left) equation
(4) and (A1). Thus, we conclude that, in order to compute
the potential, we only need the (00) component of �µν .
In this paper, we compute it perturbatively to O(g2T 2)
(see Sec. III).

C. Approximations

As we will see, �00 depends on the temperature T and
the chemical potential µi [the index i is associated with every
global symmetry (i) that gives rise to µi] through the ratio
µi/T , that is,

�00 = �00(q0, q; T ,µi/T ). (7)

We will work in the region where

1

µi

� 1

T
∀ i, r � 1

T
. (8)

In particular, the right approximation above implies that the
integral in Eq. (6) receives its main contribution from q → 0
and, as a result, (6) reduces to

V (r) = Q1Q2

∫
d3q

(2π )3

eiqr

q2 − lim
q→0

�00(0, q)
, (9)

where, in the color-singlet state, the product of charges is

Q1Q2 = (
gT a

G

) ⊗ ( − gT a
Ḡ

) = −C2(G)g2 = −Ng2. (10)

The expression T a
G ⊗ T a

Ḡ
is the tensor product of the adjoint

times the (anti)adjoint representation, resulting in the Casimir

iδ
ab

k2 gµν + 1
(k.n)2 (kµkν − (k.n) (kµtν + kνtµ))

n = (1, 0, 0, 0)

ν,bµ,a

p

−i
p2 p.σ̄

β̇αδijδ
ab or i

p2p.σαβ̇δijδ
ab

i, a, β̇ j, b, α

p

−i
p2 p.σ̄

β̇αδab or i
p2p.σαβ̇δ

ab

a, β̇ b, α i, a j, bp

i
p2δijδ

ab

FIG. 1. Bare propagators for the gauge boson (upper left), which is in the TAG gauge, the fermions (upper right), the gaugino (lower left),
and the scalars (lower right). The notation for the indices is explained in Appendix B, Eq. (B6). The choice of the appropriate rule for the
fermions (and the gaugino) is determined by the the rest of the diagram to which the propagators are attached.
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1PI ≡ −Πµν

µ ν

FIG. 2. Diagramatic definition of (the colored) �µν suppressing
color indices. There is no imaginary i involved in the definition.

operator and which, in turn, yields to the expected factor
of N .

III. EVALUATING THE RELEVANT DIAGRAMS

The gauge boson self-energy tensor is defined diagram-
matically in Fig. 2. The diagrams that one has to calculate
in order to compute V (r) to O(g2) are given in Appendix C.
Most of these have been calculated and may be found (for
example) in [69]. The important point here is that there is not
any scalar propagator involved in this computation because,
according to Sec. II A, the potential we compute involves a
color singlet and hence the fermion pair should be of the same
flavor. However, according to the Lagrangian (B3) and the
resulting Feynman rules for scalars (Fig. 3), the vertices change
the flavor of the fermions (observe the presence εijk in the
corresponding Feynman rules), which leads to the conclusion
that scalar propagators do not contribute to the calculation
under consideration. [In practice, one may imagine that the
two interacting fermions are massive, charged under color,
and couple (directly) only to the gauge bosons but not to the
scalars. It is evident that these fermions are external particles
to the N = 4 SUSY theory.]

A. Contribution of �00
g due to the gauge loops

The contribution due to the gluons arises from the diagrams
of Fig. 4. The result in the TAG is given by equation (8.65)

FIG. 4. Self-corrections of the gluon propagator.

of [69], and may also be found in [53], and is given by

�
00;ab
gmat (q0, |q|) = −δab g2N

4π2

∫ ∞

0
dk kNB(k)

× Re

{
4 −

(
q2 − 2kq0 − q2

0

)
(2k + q0)2

2k2(k + q0)2

+ (2k + q0)2

2k|q|
[

1 + [k2 + (k + q0)2 − q2]2

4k2(k + q0)2

× ln

(
Rg+
Rg−

) ]}
, q0 = i2πnT , k ≡ |k|

(11)

where NB(k) is defined in (A10a), Rg± = q2 − 2kq0 − q2
0 ±

2k|q|, while the operator Re is defined in (A12). In the limits
in which we are interested [see (8)], we eventually obtain that
the matter (thermal) part contribution is

�
00;ab
gmat (0, |q| → 0) = −δabNg2

(
1

3
T 2 − 1

4
T |q|

+O[q2 log(q2/T 2)]

)
, q � T (12)

where we have used the left equation of (A13b) and (A14b) to
extract the zeroth order and first order in |q|, respectively.

i, a

j, b, α

k, c, β

−ig
√

2 ijkf
abc × (δα

β or δβ
α)

i, a

j, b, α̇

k, c, β̇

−ig
√

2 ijkf
abc × (δα̇ β̇ or δβ̇ α̇)

i, a

j, b, α

c, β

+ig
√

2δijf
abc × (δα

β or δβ
α)

i, a

j, b, α̇

c, β̇

+ig
√

2δijf
abc × (δα̇ β̇ or δβ̇ α̇)

FIG. 3. Yukawa vertices for fermion-fermion and fermion-gaugino with a similar comment as in the caption of Fig. 1 regarding the choice
of the rule.
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FIG. 5. Corrections due to the fermions (left) and the gauginos
(right).

B. Contribution of �00
f due to the fermion loops

This is the contribution due to the diagrams of Fig. 5. For
a Dirac fermion, this contribution has been calculated in the
literature and has been reproduced by us. For instance, in [69],
equation (5.51) gives the answer (matter contribution) for an
Abelian gauge theory (QED). To adapt the answer to our case,
we must multiply (5.51) by f acdf acd = δabN to account for
the color factors times 4 to account for the four fermions [one
gaugino and three adjoint fermions; see (B3)].[Assume that
they have the same chemical potentials µi for simplicity; in
any case, the µi’s will not contribute (to zeroth order) in view
of (8).] Finally, we should multiply by (1/2) to account for the
fact that we deal with Weyl spinors with a corresponding trace
that involves (four) sigma (instead of gamma) matrices; in
view of (A9), the overall factor is 2 instead of 4, which occurs
with the gamma matrices. The antisymmetric part in the trace
cancels because �00 is symmetric in the space-time indices.
Therefore, we effectively multiply equation (5.51) of [69] by
2Nδab assuming massless fermions yielding to

�
00;ab
f mat (q0, |q|) = −2δab g2N

π2
Re

∫ ∞

0
dk k[N+

F (k) + N−
F (k)]

×
[

1+ 4kq0 − 4k2 − q2
0 + q2

4k|q| ln

(
Rf +
Rf −

)]
,

(13)
q0 = i2πnT

where Rf ± = q2
o − q2 − 2q0k ± 2k|q|. In the limits that we

are concerned with [see (8) and (9)], we obtain that the matter
(thermal) part is

�
00;ab
f mat (0, |q| → 0) = −4δab g2N

π2

∫ ∞

0
dk kNF (k)

×
[
1 − k

|q| ln

(
Rf +(q0 = 0)

Rf −(q0 = 0)

)]
+ O(q2)

= −2

3
δabNg2T 2 + O(q2), (14)

where, in extracting the zeroth contribution to |q|, we have
used (the right integral of) (A13b). We point out that there is
no linear term in qµ, unlike in (12), and, that in extracting the
leading terms in |q|, one should exercise caution [for example,
see proof of (A14a)].

C. Contribution of �00
si

due to the scalar loops

The contributions of �00
si

due to the scalar loops are shown
in the two diagrams of Fig. 6. The first contribution (s1) is due
to the diagram on the left of the figure and has been computed
in the literature for the case of φ4 theory [see equation (3.48)

a, µ b, ν

k + q

k

i, c k, e

j, d l, f

FIG. 6. Corrections due to the scalars.

of [69]]. To adapt it for our case, we should, according to
the Feynman rule of Fig. 7 (in the middle), replace λ →
g2(f cadf dbe + f cbdf dae)δceδiig

00 = −6g2Nδab as expected.
[A factor of 2 exists in scalar QED, while a factor 3 accounts
for the three flavors of the complex (colored) scalars in the
loop. The additional minus sign is traced simply to the fact
that, instead of −λ, g2 is used. The chemical potentials are
again ignored.] We find that the contribution of this diagram is

�
00;ab
s1mat(q0, |q|) = 6g2NδabT

∑
n

∫
d3k

(2π )3

1(
k0
n

)2 − k2

= −6g2Nδab

∫
d3k

(2π )3

1

k
NB(k)

= −δab 1

2
g2NT 2, (15)

where k0
n = i2πnT , n ∈ Z, k ≡ |k|, and NB is given by

(A10a). The first equality is a direct application of the Feynman
rules for thermal field theory, the second equality follows
by integrating in using (D2), and the third equality uses
the left integral of (A13b). We note that this diagram is qµ

independent.
The second contribution (s2) is due to the diagram on the

right of Fig. 6 and which we evaluate in Appendix D [we
evaluate this diagram in great detail (also ignoring the chemical
potential contribution) as the rest of the five diagrams, see (12),
(14), and (15), are evaluated in an analogous way] obtaining
Eq. (D5). For q0 = 0, which is what interests us, we have

�
00;ab
s2mat(q0, |q|) = −3

g2

4π2
δab

∫ ∞

0
dx

1

2
x2|q|2 ln

(
1 + x

|1 − x|
)

×NB

( |q|
2

x

)
, (16)

where we have made for the integral (D5) the substitution
2k = |q|x. Extracting the leading and subleading contribution
for small |q| is not straightforward, but it may be achieved by
working in the same way as in proving (A14a) yielding

�
00;ab
s2mat(0, |q| → 0) = −1

2
δabNg2T 2 + O(|q|2). (17)

It is crucial to highlight that, as in the fermion case, the scalars
have no linear contribution in |q|. This completes the set of
contributions to the order in g and |q| that we are interested in.
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gf cba(pµ + pµ)δij

b, µ

i, a

j, c
p

p

i, c

j, e

ν, a

µ, b

−ig2 f abdf dbe + f cbdf dae gµνδij

l, e i, b

j, c k, d

ig2[δijδklf
abcf ade + δkjδilf

adcf abe

−2 mik mjlf
abdf ace]

FIG. 7. Scalar-gluon and scalar-scalar interactions.

IV. CALCULATING THE POTENTIAL

Collecting the results from (12), (14), (15), and (17), the
self-energy tensor to O(g2) is

�00
mat(q0 = 0, |q → 0|) = −m2

D + 2mDt |q|
+ O[q2 log(q2/T 2)], (18)

where mD is the Debye mass and is given by

m2
D = 2Ng2T 2. (19)

This is one of the main results in this paper. On the other hand,
t is positive and is given by

t = 1

16

mD

T
. (20)

A. V (r) from pure electric mode corrections

Performing the integral of (9) using just the m2
D for �00,

we obtain

V (r) = −g2N

4π

1

r
e−mDr, (21)

which is the expected Yukawa potential.

B. V (r) from magnetic mode corrections

One may push the calculation a little further and include
corrections to the potential due to the linear contribution of
|q| in �(0, q). As this term is gauge invariant [50,70], it is
tempting to try to include it in the evaluation of the potential
extending the result of (21). Although it has not been rigorously
proved that this expansion in |q| is well defined, it is believed
[50] that it is very likely to be the case. Assuming this, and
applying the analysis of [50] for our case, we find that

V (r)
∣∣
rT �1 = 2g2N

π2

t

m3
Dr4

= 1

(4π )2

1

T 3r4
, (22)

which shows that, at sufficiently large distances, the potential
falls off as 1/r4 and is also repulsive and N and g independent.
This is the second main part of our investigation.

V. DISCUSSION

In this paper, we perform the calculation of the qq̄ potential
in a thermal medium for the N = 4 SUSY theory at weak
coupling. By considering the purely electric modes at high
temperatures, we find the expected Yukawa potential [Eq. (21)]
with the Debye mass given by Eq. (19). In particular, we
observe that each of the [8 ×(N2 − 1)] bosonic degrees
of freedom contribute to m2

D (on average) with N/(N2 −
1) × 1/6g2T 2 [see (12), (15), and (17)], while each of the
[8 × (N2 − 1)] fermionic degrees of freedom contributes (on
average) with N/(N2 − 1) × 1/12g2T 2 [see (14)] leading
to (19).

Next, and following [50], we include (a subset of the)
magnetic corrections obtaining the potential of Eq. (22), which
applies at large enough distances. In this approximation, the
potential is independent from the coupling and the number of
colors and falls off as 1/r4 but it is repulsive (as in [50]). On
the other hand, from AdS/CFT calculations, it was found [21]
that the same power-law falloff at large distances but with
an attractive force between the qq̄. Motivated by that result,
we were hoping, by including the scalar contributions for
the N = 4 SUSY theory at weak coupling, to obtain the
result of [50] with an additional overall negative sign agreeing
with [21] and also with our intuition. We find that both the
fermions and the scalars do not contribute to the magnetic
modes (linearly in |q|) and, hence, the analysis of [50] proceeds
(up to an overall factor) unaltered yielding to the repulsive
power-law falloff potential of Eq. (22), which is N and g2

independent. We note that a power-law falloff potential for
a singlet state in the QCD plasma was also found in [55].
We would like to point out the work of [60], in which a
different definition for the Debye mass is given. By using
this definition for mD , the author shows that the prefactor of
the Debye falloff of the potential may be gauge dependent.
However, the screening mass itself, Eq. (19), is indeed gauge
invariant.

This paper provides a concrete example of an observable
of N = 4 SUSY, the behavior of which is qualitatively
the same as the corresponding behavior of QCD. Conse-
quently, one may conclude that studying nonperturbative
phenomena of QCD by applying the AdS/CFT correspon-
dence may not be far from reality and has the potential to
yield to qualitatively correct results (see [71] for a related
discussion).
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APPENDIX A: CONVENTIONS, NOTATION, AND
USEFUL FORMULAS

The metric tensor and the four-vectors follow the standard
conventions

gµν = (1,−1,−1,−1), kµ = (k0, k) = (k0, ki),

µ = 0; 1, 2, 3 = 0; i. (A1)

We define the β factor to be inversely proportional to the
temperature T :

β = 1

T
. (A2)

The generators of SU(N), T a , in the fundamental representa-
tion are normalized as

T r[T aT b] = 1

2
δab, a, b = 1, 2, . . . , N (A3)

and they obey the algebra

[T a, T b] = if abcT c where f abc are the structure constants.

(A4)

The adjoint representation is defined by

(T b)ac = if abc. (A5)

The following summation formula for the structure constants
is valid:

f acdf bcd = Nδab. (A6)

The covariant derivative in the fundamental and the adjoint
representation for negative charge {this convention agrees
with [72] [see Eq. (2.96)], [73] [see Eq. (4.3.10)], and [74]
(see exercise 7, Chap. VII)}, that is, for charge −g = −|g|,
are defined by

Dµ = IN∂µ + igAa
µT a, δacDµ = δac∂µ − gAb

µf abc. (A7)

We define the Pauli matrices in a four-vector form with dotted
and undotted indices as in [73]:

σ
µ
αα̇ = (I2, σ ), σ̄ µ α̇α = (I2,−σ ). (A8)

The trace formulas for four (alternate) sigma matrices are

T r[σµσ̄ νσ ρσ̄ κ ] = 2(gµνgρκ − gµρgνκ + gµκgνρ + iεµνρκ ),

(A9a)

T r[σ̄ µσ νσ̄ ρσ κ ] = 2(gµνgρκ − gµρgνκ + gµκgνρ − iεµνρκ ).

(A9b)

We define the fermion and the boson distributions in the
presence of a chemical potential (which is a consequence of
some global symmetry) by

N±
F (p) = 1

exp[β(Ep ± µF )] + 1
,

(A10a)

N±
B (p) = 1

exp[β(Ep ± µB)] − 1
, β = 1/T

NF (p) = N±
F (µF = 0, p), NB(p) = N±

B (µB = 0, p).

(A10b)

We will also need the summation formulas

T
∑

n

f (p0 = iωn + µ)

= ± 1

2πi

∫ i∞+µ+ε

−i∞+µ+ε

dp0 f (p0)

eβ(p0−µ) ∓ 1

± 1

2πi

∫ i∞+µ−ε

−i∞+µ−ε

dp0 f (p0)

e−β(p0−µ) ∓ 1

+ 1

2πi

∫ i∞

−i∞
dp0f (p0) + 1

2πi

∮
C

dp0f (p0),

ε > 0, n ∈ Z (A11a)

ωn = 2π

β
n for bosonic modes,

(A11b)

ωn = 2π

β
(2n + 1) for fermionic modes,

and where C is a closed rectangular contour with long
sides along the real axis at p0 = 0 and p0 = µ, which
extend from i∞ to −i∞ and from −i∞ + µ to +i∞ + µ,
respectively. The contour closes at infinity and it evidently
has a counterclockwise direction. We note that the chemical
potential µ is not generally the same for bosons and fermions
and, hence, an extra index is (generally) required. The first two
terms of (A11a) show the thermal contribution of the particle
and antiparticle and they vanish at T = 0, the third term is the
vacuum piece at T = 0 just as in ordinary field theory, while
the last term is the contribution of the matter at finite density
but at T = 0.

It is useful to define

Re[f (k0, k, x)] ≡ 1
2 [f (k0, k, x) + f (−k0, k, x)]

for any set of parameters x. (A12)
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Finally, we will need the integrals

∫ ∞

0
dp

p

exp[β(p − µ)] ∓ 1
= ±T 2Li2(±eµ/T ), (A13a)

∫ ∞

0
dp

p

exp(βp) − 1
= π2T 2

6
,

(A13b)∫ ∞

0
dp

p

exp(βp) + 1
= π2T 2

12
,

where Li2 is the dilogarithm function. We also need the
asymptotic expansions

∫ ∞

0
dx

1

eax − 1
ln

(
1 + x

|1 − x|
)

= π2

2a
+ ln

(
a

2πe

)
+ γE + O(a),

(A14a)

∫ ∞

0
dk

1

ek/T − 1
ln

(
q + 2k

|q − 2k|
)

= 1

2
π2T + 1

2
q ln

( q

4πeT

)
+ 1

2
γEq + O(q2), (A14b)

where γE is the Euler constant while (A14b) follows
directly from (A14a). We sketch the proof of (A14a)
below.

Proof of (A14a): In order to prove (A14a), one has to
perform the following steps. Break the interval of integration
into the subintervals I1 = (0, 1) and I2 = (1,∞). For the
interval I1, expand the logarithm in powers of x and also
expand (eax − 1)−1 = 1/ax − 1/2 + O(ax) and multiply it
with the series resulting from the logarithm. Then, perform
the integrations recognizing singular and zeroth terms in a.
Resum the (two resulting) series to obtain I1 = π2/4a −
ln(2). For I2, expand the logarithm in inverse powers of
x and make the transformation ax → x. This makes the
integration range (1,∞) → (a,∞). Break this new integra-
tion region from I b

2 = (a, 1) to I a
2 = (1,∞). The I a

2 range
gives only a zeroth-order contribution, which is given by
I a

2 = 2
∫ ∞

1
dx
x

1
ex−1 . For the I b

2 range, expand (eax − 1)−1 =
c−1/ax + c0 + ∑

n�1 cnx
n for appropriate coefficients cn with

c−1 = 1 and c0 = −1/2. The inverse powers of a are in the c−1,
which, when the corresponding series (due to the logarithm)
is resummed, gives π2/4a − 2. The ln(a) term comes from c0,
where there is no series to be resummed. The zeroth orders in
a come either from c0 and an appropriate series, which yields
to ln(2) − 1 or from 2

∑
n�1

∫ 1
0 cnx

n−1 = 2
∑

n�1 cn/n. This

series may be written as 2
∫ 1

0
dx
x

( 1
ex−1 − 1/x + 1/2). Add the

pieces to obtain I = I1 + I2 = I1 + (I a
2 + I b

2 ), which yields
to I = π2/2a + ln(a) − 1 + 2[−1 + ∫ 1

0
dx
x

( 1
ex−1 − 1

x
+ 1

2 ) +∫ ∞
1

dx
x

1
ex−1

] + O(a). Now, the bracket is evaluated by noting
that it has well-behaved integrals and it equals to the zeroth-
order term of ζ (s)�(s) = ∫ ∞

0 dx xs−1

ex−1 as s → 0. But, this
expansion equals −1/2s + 1/2[γE − ln(2π )] + O(s) and this
completes the proof.

APPENDIX B: A BRIEF INTRODUCTION TO N = 4 SUSY

1. The Lagrangian: From N = 1 superfields to component fields

We fix our notation by assigning λa to the gaugino, f abc

are the structure constants of the gauge group SU(N), and so
a, b, c = 1, 2, . . . , N2 − 1 while i, j, k = 1, 2, 3 are the three
flavors of the fermions ψa

j . The fermions and the gaugino
are left Weyl spinors. There is one gauge field and three
colored complex scalars φa

i that match the fermionic degrees
of freedom.

The N = 4 SUSY Lagrangian with a non-Abelian group
may be written compactly as

LN4 = LSYM + LWZYM
+ WN4 , (B1)

where the first two terms may be found in any supersymmetry
textbook [72,74]. These two terms always exist in any N = 1
SYM, they respect N = 4 SYM trivially and may be written
easily in terms of N = 1 superfields [see first two terms of
(7.6) and exercise 7 of Chap. VII in [74] or (2.134)–(2.136)
of [72]], while the last term is a particular superpotential (given
below) which respectsN = 4 in a nontrivial way. In particular,
LSYM contains the first two terms of (B3) (see below) and,
in addition, the bosonic auxiliary field Da in the form
1/2DaDa . The LWZYM

(Wess-Zumino gauged terms) contains
the gauge interactions of the ψ’s and φ’s, the λψφ interactions
[see third, fourth, and fifth terms of (B3), respectively],
the term igf abcDbφ

†a
i φc

i and also the combination Fa
i F

†a
i ,

where Fa
i is another auxiliary field. Finally, WN4 written

in terms of N = 1 superfields �a
i [see Eq. (14.32) of [72]]

yields

WN4 = g

3
√

2
εijkf

abc�a
i �

b
j�

c
k

∣∣
θθ

+ H.c.

= g√
2
εijkf

abc
(
Fa

i φb
j φ

c
k − ψa

i ψb
j φc

k

) + H.c., (B2)

where, in the second equality, we have expanded out the �’s
according to Eqs. (5.3) and (5.8) of [74]. Thus, the WN4

contribution gives the sixth term of (B3) and one additional
term containing the auxiliary field Fa

i . The remaining φ4 terms
of (B3) are obtained by eliminating the two auxiliary fields in
terms of the scalars setting the action on shell and yielding to
(14.33) of [72] [we choose the standard conventions for the
fermions as in [73,74] rather the convention of [72] used for
(14.33)]:

LN4 = −1

4
FµνF

µν − iλ†aσ̄ µDµλa − iψ
a†
i σ̄ µDµψa

i

+Dµφ
a†
i Dµφa

i − g
√

2f abc
(
φ
†c
i λaψb

i − ψ
†c
i λ†aφb

i

)
− g√

2
εijkf

abc
(
φc

i ψ
a
j ψb

k + ψ
†c
i ψ

†a
j φ

†b
k

)

+ g2

2

(
f abcφb

i φ
†c
i

)(
f adeφd

j φ
†e
j

)

− g2

2
εijkεilm

(
f abcφb

j φ
c
k

)(
f adeφ

†d
l φ†e

m

)
. (B3)
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2. The vanishing of the beta function

It is known that the beta function for an SU(N) gauge theory
(for positive charge g) is given by

β(g) = − 1

(4π )2
g3

(
11

3
N − 4

3

1

2
nf

)
, (B4)

where nf is the number of Dirac fermions while the factor of
1/2 comes from the trace of two generators of the group. In
the N = 4 SUSY case, one should replace the 1/2 by N as
the trace takes place in the adjoint representation and set nf =
1/2 × (3 + 1) = 2 for the four (three matter fermions and one
gaugino) Weyl spinors. On the other hand, the contribution of
the scalars to the gauge boson self-energy should be included
as well. {We note that there are no additional corrections to
the self-energy of the fermions as the additional interactions
that exist in the N = 4 theory concerning the fermions would
completely change the fermion [see fourth term of (B3)] or the
flavor and the color [see fifth term of (B3)].}

This contribution is due to the diagrams of Fig. 6 where the
complex scalar QED case yields to a combined contribution of
1/(48π2)g3 [75]. Hence, for our case, one should replace g2 →
3f acdf bcdg2 = 3Ng2δab in order to account for the trace of
the three adjoint (complex) scalars inside the loops yielding
to 1/(4π )23/3g3N . Therefore, by adding all the contributions,
one gets

β(g) = − 1

(4π )2
g3

(
11

3
N − 4

3
2N − 3

3
N

)
= 0, (B5)

that is the vanishing of the beta function.

3. Feynman rules at T = 0

The Feynman rules for two-dimensional spinors may be
found in [73], while the rest may be either derived from the
Lagrangian (B3) or they are known. As we work in TAG,
there are no ghost propagators and vertices. The notation for

the indices we use is

i, j, k = 1, 2, 3 for flavor,

a, b, c = 1, 2, . . . , N2 − 1 for color,

α, α̇ = 1, 2 for spinors. (B6)

4. Feynman rules at finite T

The Feynman rules are obtained from those of T = 0 using
the following empirical rule: by multiplying all of the rules for
T = 0 by (−i) and by including an additional minus sign to
the gluon propagator (Fig. 1, upper left), and the gluon-gluon
interactions (left and middle diagrams of Fig. 8). In addition,
the following modifications are required:∫

d4p

(2π )4
→ T

∑
n

∫
d3p

(2π )3
, p0 → i2πT × n (bosons)

or × (2n + 1) (fermions), n ∈ Z. (B7)

APPENDIX C: DIAGRAMS FOR THE DRESSED
PROPAGATOR TO O(g2)

There are six diagrams to O(g2) that contribute, and they
all involve the gluon propagator as, according to (B3), the
scalar vertices change the flavor of the outcoming fermions
and, hence, the related diagrams do not contribute.

APPENDIX D: EVALUATING �00
s2

Using the appropriate Feynman Rules of Figs. 1 and 7, the
right diagram of Fig. 6 reads as

�00ab
s2

= g2δiif
cadf f beδceδdf T

∑
n

∫
d3k

(2π )3

× (2k0 + q0)(−2k0 − q0)

[(k0)2 − k2][(k0 + q0)2 − (k + q)2]
, (D1a)

k0 = i2πT n, q0 = i2πT m, n,m ε Z. (D1b)

−gf abc[gµν(k − p)ρ

+gνρ(p− q)µ + gρµ(q − k)ν]

b, ν

a, µ

c, ρ

p

k

q

a, µ b, ν

c, ρ d, σ
−ig2[f abef cde(gµρgνσ − gµσgνρ)

+f acef bde(gµνgρσ − gµσgνρ)
+f adef bce(gµνgρσ − gµρgνσ)]

b, µ

j, c, βi, a, α̇

gf abcσ̄µα̇βδij or − gf abcσµ
βα̇δij

FIG. 8. Gluon-gluon and gluon-fermion interactions (with negative charge g). For the gluon-fermion vertex, a similar comment as the one
in the caption of Fig. 1 applies regarding the choice of the right rule. There also exists the analog rule for the gaugino-gluon vertex without
the δij .
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ε0 k

−q0 + |k + q|

FIG. 9. Contour of integration in the k̃0 complex plane.

The thermal part of the summation formula (A11a) for bosons
at zero chemical potential may take the form

T
∑

n

f (i2πT n) = 1

2πi

∫ i∞+ε

−i∞+ε

dk0[f (k0) + f (−k0)]NB(k0).

(D2)

However, the corresponding f (k0) in the case of (D1a) may
be taken to be the integrand, which has the property that
the operation k0 → −k0 is equivalent to q0 → −q0. This
observation will reduce our operations by a factor of 2 as
we will only deal with the +k0 piece and then just add the −q0

contribution. In order to perform the integration, we use the the

contour of Fig. 9, where there exist two simple poles. Using
(A6) and performing the sum (in practice the integrations),
(D1a) becomes

�00ab
s2

∣∣
+q0 = 3g2Nδab

∫
d3k

(2π )3

(
(2k + q0)2NB(k)

2k[(k + q0)2 − (k + q)2]

+ (2|k + q| − q0)2NB(−q0 + |k + q|)
2[(−q0 + |k + q|)2 − k2]|k + q|

)
,

(D3)

where k ≡ |k|. Now, using the property that NB(x + i2πn) =
NB(x) ∀ x and changing variables in the second piece of the
integrand from k to −k − q results in the symmetrization of
the two integrands under q0 ↔ −q0:

�00ab
s2

∣∣
+q0 = 3g2Nδab

∫
d3k

(2π )3

NB(k)

2k

×
(

(2k + q0)2

[(k + q0)2 − (k + q)2]
+ (2k − q0)2

[(k − q0)2 − (−k − q)2]

)
.

(D4)

Finally, taking into account the −q0 contribution [effectively
multiplying (D4) by a factor of 2] and performing the angular
integrations yields

�00ab
s2

= 3
g2

4π2
NδabRe

∫ ∞

0
dk

1

|q| (2k + q0)2 ln

(
R+s(q0)

R−s(q0)

)

NB(k), (D5)

where the operator Re is defined in (A12) while R±s = (q0)2 −
q2 + 2kq0 ± 2k|q| and k ≡ |k|.

[1] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[2] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y.

Oz, Phys. Rep. 323, 183 (2000).
[3] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[4] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B

428, 105 (1998).
[5] S.-J. Rey and J.-T. Yee, Eur. Phys. J. C 22, 379 (2001).
[6] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998).
[7] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[8] Y. V. Kovchegov and A. Taliotis, Phys. Rev. C 76, 014905 (2007).
[9] R. C. Brower, M. Djuric, I. Sarcevic, and C. I. Tan, J. High

Energy Phys. 11 (2010) 051.
[10] G. Beuf, M. P. Heller, R. A. Janik, and R. Peschanski, J. High

Energy Phys. 10 (2009) 043.
[11] J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, J. High Energy

Phys. 07 (2008) 100.
[12] R. A. Janik (unpublished), arXiv:1003.3291.
[13] M. P. Heller and R. A. Janik, Phys. Rev. D 76, 025027 (2007).
[14] Y. V. Kovchegov and S. Lin, J. High Energy Phys. 03 (2010)

057.
[15] S. Lin and E. Shuryak, Phys. Rev. D 79, 124015 (2009).
[16] R. A. Janik and R. Peschanski, Phys. Rev. D 73, 045013 (2006).
[17] J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, J. High Energy

Phys. 05 (2009) 060.
[18] R. Peschanski and E. N. Saridakis, Nucl. Phys. A 849, 147

(2011).

[19] S. S. Gubser, S. S. Pufu, and A. Yarom, Phys. Rev. D 78, 066014
(2008).

[20] S. S. Gubser, A. Nellore, S. S. Pufu, and F. D. Rocha, Phys. Rev.
Lett. 101, 131601 (2008).

[21] J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, Phys. Rev. D
78, 115007 (2008).

[22] I. Iatrakis, E. Kiritsis, and A. Paredes, J. High Energy Phys. 11
(2010) 123.

[23] U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, and
F. Nitti, Lect. Notes Phys. 828, 79 (2011).

[24] U. Gursoy, E. Kiritsis, G. Michalogiorgakis, and F. Nitti, J. High
Energy Phys. 12 (2009) 056.

[25] Y. V. Kovchegovp (unpublished), arXiv:1011.0711.
[26] J. Bartels et al., Proceedings of the 38th International Sympo-

sium on Multiparticle Dynamics (ISMD08).
[27] L. Cornalba, M. S. Costa, and J. Penedones, Phys. Rev. Lett.

105, 072003 (2010).
[28] L. Cornalba, M. S. Costa, and J. Penedones, J. High Energy

Phys. 03 (2010) 133.
[29] A. Taliotis, J. High Energy Phys. 09 (2010) 102.
[30] S. Lin and E. Shuryak, Phys. Rev. D 83, 045025

(2011).
[31] C. Athanasiou, P. M. Chesler, H. Liu, D. Nickel, and

K. Rajagopal, Phys. Rev. D 81, 126001 (2010).
[32] F. D’Eramo, H. Liu, and K. Rajagopal (unpublished),

arXiv:1006.1367.

045204-9

http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1007/s100520100799
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://dx.doi.org/10.1103/PhysRevC.76.014905
http://dx.doi.org/10.1007/JHEP11(2010)051
http://dx.doi.org/10.1007/JHEP11(2010)051
http://dx.doi.org/10.1088/1126-6708/2009/10/043
http://dx.doi.org/10.1088/1126-6708/2009/10/043
http://dx.doi.org/10.1088/1126-6708/2008/07/100
http://dx.doi.org/10.1088/1126-6708/2008/07/100
http://arXiv.org/abs/arXiv:1003.3291
http://dx.doi.org/10.1103/PhysRevD.76.025027
http://dx.doi.org/10.1007/JHEP03(2010)057
http://dx.doi.org/10.1007/JHEP03(2010)057
http://dx.doi.org/10.1103/PhysRevD.79.124015
http://dx.doi.org/10.1103/PhysRevD.73.045013
http://dx.doi.org/10.1088/1126-6708/2009/05/060
http://dx.doi.org/10.1088/1126-6708/2009/05/060
http://dx.doi.org/10.1016/j.nuclphysa.2010.10.009
http://dx.doi.org/10.1016/j.nuclphysa.2010.10.009
http://dx.doi.org/10.1103/PhysRevD.78.066014
http://dx.doi.org/10.1103/PhysRevD.78.066014
http://dx.doi.org/10.1103/PhysRevLett.101.131601
http://dx.doi.org/10.1103/PhysRevLett.101.131601
http://dx.doi.org/10.1103/PhysRevD.78.115007
http://dx.doi.org/10.1103/PhysRevD.78.115007
http://dx.doi.org/10.1007/JHEP11(2010)123
http://dx.doi.org/10.1007/JHEP11(2010)123
http://dx.doi.org/10.1007/978-3-642-04864-7_4
http://dx.doi.org/10.1088/1126-6708/2009/12/056
http://dx.doi.org/10.1088/1126-6708/2009/12/056
http://arXiv.org/abs/arXiv:1011.0711
http://dx.doi.org/10.1103/PhysRevLett.105.072003
http://dx.doi.org/10.1103/PhysRevLett.105.072003
http://dx.doi.org/10.1007/JHEP03(2010)133
http://dx.doi.org/10.1007/JHEP03(2010)133
http://dx.doi.org/10.1007/JHEP09(2010)102
http://dx.doi.org/10.1103/PhysRevD.83.045025
http://dx.doi.org/10.1103/PhysRevD.83.045025
http://dx.doi.org/10.1103/PhysRevD.81.126001
http://arXiv.org/abs/arXiv:1006.1367


ANASTASIOS TALIOTIS PHYSICAL REVIEW C 83, 045204 (2011)

[33] A. Dumitru, Y. Guo, A. Mocsy, and M. Strickland, Phys. Rev.
D 79, 054019 (2009).

[34] J. Noronha and A. Dumitru, Phys. Rev. D 80, 014007 (2009).
[35] E. Kiritsis, J. High Energy Phys. 10 (1999) 010.
[36] A. N. Atmaja and K. Schalm (unpublished), arXiv:1012.3800.
[37] J. Erdmenger, S. Lin, and T. H. Ngo (unpublished),

arXiv:1101.5505.
[38] H. R. Grigoryan and Y. V. Kovchegov, J. High Energy Phys. 04

(2011) 010.
[39] M. Giordano (unpublished), arXiv:1009.2971.
[40] R. A. Janik (unpublished), arXiv:1101.0419.
[41] W. Mueck, Phys. Rev. D 83, 066006 (2011).
[42] A. Bernamonti and R. Peschanski (unpublished),

arXiv:1102.0725.
[43] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and

U. A. Wiedemann (unpublished), arXiv:1101.0618.
[44] S.-J. Rey, S. Theisen, and J.-T. Yee, Nucl. Phys. B 527, 171

(1998).
[45] A. Brandhuber, N. Itzhaki, J. Sonnenschein, and

S. Yankielowicz, Phys. Lett. B 434, 36 (1998).
[46] J. L. Albacete, Nucl. Phys. A 830, 311c (2009).
[47] J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, J. High Energy

Phys. 07 (2008) 074.
[48] A. Taliotis, Nucl. Phys. A 830, 299c (2009).
[49] J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, AIP Conf. Proc.

1105, 356 (2009).
[50] C. Gale and J. I. Kapusta, Phys. Lett. B 198, 89 (1987).
[51] J. Kuti, J. Polonyi, and K. Szlachanyi, Phys. Lett. B 98, 199

(1981).
[52] A. Dumitru (unpublished), arXiv:1010.5218.
[53] K. Kajantie and J. I. Kapusta, Ann. Phys. 160, 477 (1985).
[54] T. A. DeGrand and C. E. DeTar, Phys. Rev. D 34, 2469 (1986).
[55] Y. Burnier, M. Laine, and M. Vepsalainen, J. High Energy Phys.

01 (2010) 054.

[56] P. Chakraborty, M. G. Mustafa, R. Ray, and M. H. Thoma,
J. Phys. G: Nucl. Part. Phys. 34, 2141 (2007).

[57] N. Brambilla, J. Ghiglieri, P. Petreczky, and A. Vairo, Phys. Rev.
D 82, 074019 (2010).

[58] N. Brambilla, M. A. Escobedo, J. Ghiglieri, J. Soto, and A. Vairo,
J. High Energy Phys. 09 (2010) 038.

[59] N. Brambilla, J. Ghiglieri, A. Vairo, and P. Petreczky, Phys. Rev.
D 78, 014017 (2008).

[60] A. K. Rebhan, Phys. Rev. D 48, 3967 (1993).
[61] U. Kraemmer, A. K. Rebhan, and H. Schulz, Ann. Phys. 238,

286 (1995).
[62] E. Braaten and A. Nieto, Phys. Rev. Lett. 73, 2402 (1994).
[63] C.-J. Kim and S.-J. Rey, Nucl. Phys. B 564, 430 (2000).
[64] P. M. Chesler and A. Vuorinen, J. High Energy Phys. 11 (2006)

037.
[65] A. Fotopoulos and T. R. Taylor, Phys. Rev. D 59, 061701 (1999).
[66] C. P. K. Altes (unpublished), arXiv:0904.3117.
[67] J. P. Blaizot, E. Iancu, U. Kraemmer, and A. Rebhan, J. High

Energy Phys. 06 (2007) 035.
[68] D. Yamada and L. G. Yaffe, J. High Energy Phys. 09 (2006) 027.
[69] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory:

Principles and Applications (Cambridge University Press,
Cambridge, UK, 2006), p. 428.

[70] T. Toimela, Phys. Lett. B 124, 407 (1983).
[71] J. D. Edelstein, J. P. Shock, and D. Zoakos, AIP Conf. Proc.

1116, 265 (2009).
[72] J. Terning, Modern Supersymmetry: Dynamics and Duality

(Clarendon, Oxford, UK, 2006), p. 324.
[73] H. K. Dreiner, H. E. Haber, and S. P. Martin, Phys. Rep. 494, 1

(2010).
[74] J. Wess and J. Bagger, Supersymmetry and Supergravity (Prince-

ton University, Princeton Press, NJ, 1992), p. 259.
[75] M. Srednicki, Quantum Field Theory (Cambridge University

Press, Cambridge, UK, 2007), p. 641.

045204-10

http://dx.doi.org/10.1103/PhysRevD.79.054019
http://dx.doi.org/10.1103/PhysRevD.79.054019
http://dx.doi.org/10.1103/PhysRevD.80.014007
http://dx.doi.org/10.1088/1126-6708/1999/10/010
http://arXiv.org/abs/arXiv:1012.3800
http://arXiv.org/abs/arXiv:1101.5505
http://dx.doi.org/10.1007/JHEP04(2011)010
http://dx.doi.org/10.1007/JHEP04(2011)010
http://arXiv.org/abs/arXiv:1009.2971
http://arXiv.org/abs/arXiv:1101.0419
http://dx.doi.org/10.1103/PhysRevD.83.066006
http://arXiv.org/abs/arXiv:1102.0725
http://arXiv.org/abs/arXiv:1101.0618
http://dx.doi.org/10.1016/S0550-3213(98)00471-4
http://dx.doi.org/10.1016/S0550-3213(98)00471-4
http://dx.doi.org/10.1016/S0370-2693(98)00730-8
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.134
http://dx.doi.org/10.1088/1126-6708/2008/07/074
http://dx.doi.org/10.1088/1126-6708/2008/07/074
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.026
http://dx.doi.org/10.1063/1.3122211
http://dx.doi.org/10.1063/1.3122211
http://dx.doi.org/10.1016/0370-2693(87)90165-1
http://dx.doi.org/10.1016/0370-2693(81)90987-4
http://dx.doi.org/10.1016/0370-2693(81)90987-4
http://arXiv.org/abs/arXiv:1010.5218
http://dx.doi.org/10.1016/0003-4916(85)90153-8
http://dx.doi.org/10.1103/PhysRevD.34.2469
http://dx.doi.org/10.1007/JHEP01(2010)054
http://dx.doi.org/10.1007/JHEP01(2010)054
http://dx.doi.org/10.1088/0954-3899/34/10/004
http://dx.doi.org/10.1103/PhysRevD.82.074019
http://dx.doi.org/10.1103/PhysRevD.82.074019
http://dx.doi.org/10.1007/JHEP09(2010)038
http://dx.doi.org/10.1103/PhysRevD.78.014017
http://dx.doi.org/10.1103/PhysRevD.78.014017
http://dx.doi.org/10.1103/PhysRevD.48.R3967
http://dx.doi.org/10.1006/aphy.1995.1023
http://dx.doi.org/10.1006/aphy.1995.1023
http://dx.doi.org/10.1103/PhysRevLett.73.2402
http://dx.doi.org/10.1016/S0550-3213(99)00532-5
http://dx.doi.org/10.1088/1126-6708/2006/11/037
http://dx.doi.org/10.1088/1126-6708/2006/11/037
http://dx.doi.org/10.1103/PhysRevD.59.061701
http://arXiv.org/abs/arXiv:0904.3117
http://dx.doi.org/10.1088/1126-6708/2007/06/035
http://dx.doi.org/10.1088/1126-6708/2007/06/035
http://dx.doi.org/10.1088/1126-6708/2006/09/027
http://dx.doi.org/10.1016/0370-2693(83)91484-3
http://dx.doi.org/10.1063/1.3131566
http://dx.doi.org/10.1063/1.3131566
http://dx.doi.org/10.1016/j.physrep.2010.05.002
http://dx.doi.org/10.1016/j.physrep.2010.05.002

