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Born term of the π N scattering amplitude in the Skyrme model
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The Skyrme model is applied to the study of the πN scattering amplitude. The useful expression of amplitude
given by the chiral reduction formula is employed. The calculation is performed in the lowest order of 1/Nc:
a source of interaction is a classical soliton taking a hedgehog configuration. It is important to consider the
zero modes both for the translation invariance and for the isospin symmetry simultaneously. Despite the former
negative impression, the Skyrme model correctly produces the Born term in the scattering amplitude.
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I. INTRODUCTION

Skyrme’s inventive idea of baryon structure was revived by
Adkins, Nappi and Witten, by whom a baryon is described as a
soliton of the nonlinear pseudoscalar meson field. The Skyrme
model reproduces the static properties of nonstrange baryons
(N and �) with about “30% accuracy” [1].

If the Skyrme model were also effective for the dynamical
properties of baryons, we would accept it as a reliable model
for low-energy QCD [2]. Among the many people who have
attempted to apply this model to scattering problems, Hayashi
et al. obtained negative results regarding its applicability [3,4].
Although the general canonical quantization method for the
nonlinear field theory has been used [5–7], the Born term was
not derived from the classical soliton solution and its zero
modes in the Skyrme model.

The Born term is actually suppressed in the lowest order cal-
culation when the isoscalar field is considered. The mechanism
of this suppression is relevant to the zero mode for the spatial
translation invariance of the soliton. This argument is not,
however, applicable to the Skyrme model straightforwardly:
there is another zero mode related to the isospin rotation of the
soliton.

The claim in Ref. [3] regarding the Born term is not decisive
regarding the Skyrme model, because the isospin rotation is
completely excluded from consideration. It is not quite evident
whether the Born term disappears from the Skyrme model as
explained in Ref. [3]. Another method of analysis using the
Feynman path integral was also tried by Dorey et al. [8,9], but
the Born term problem in the Skyrme model remained to be
solved.

In this paper we show that the Born term actually exists
in the πN amplitude if all the zero modes are properly taken
into account in the classical soliton solution. Thus the Skyrme
model is treated consistently with the general quantization
method for the nonlinear field theory. Because the recent
progress of the string theory reinforces the argument of a large
Nc world of QCD, it is worth examining the Skyrme model in
more depth as an effective model of hadron phenomenology.

Our approach to the Born term problem is different from
that of Hayashi et al. They used the popular LSZ formula. We
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apply the chiral reduction formula developed by Yamagishi
and Zahed [10] to examine the scattering problem in the
Skyrme model.

The S matrix is determined by the field operator and its
time evolution, which usually takes the form of a differential
operator on the time-ordered product of fields in the LSZ
formula. There exists another specific method for the theory
with chiral symmetry: The time evolution of the chiral field is
subjected to the Veltman-Bell equation along with the chiral
currents given by Schwinger’s action principle and the external
field method. This equation reduces the S matrix as the sum
of responses to external sources. This is the chiral reduction
formula.

The dynamical aspect of the chiral field is determined by
the currents and their algebraic relations [11], so that the
chiral reduction formula is essentially composed of chiral
currents. Although the spontaneous breaking of symmetry
gives a nonlinear character to the field and makes its definition
arbitrary, this does not matter for this formula because the
chiral currents are uniquely defined everywhere. The Nambu-
Goldstone boson is taken into account as an asymptotic form
of the axial vector current. Its validity is not limited to the πN

threshold region; the chiral dynamics of hadron resonances is
also within the scope of this formula [12,13].

A practical advantage is that the chiral reduction formula is
free of the differential operator, and each term in this formula
respects all symmetry. In the popular LSZ formula, in contrast,
the differential operator produces terms that apparently break
the Lorentz invariance, such as the Schwinger term. Careful
treatment is required to make sure that they are finally canceled
out.

Crucial to our attempt is the proper treatment of the zero
mode for the isospin rotation in the lowest order calculation
with respect to 1/Nc. The collective coordinate method of
quantization is used to consider the spin-isospin property in
the Skyrme model [1]. If this property is overlooked in the
analysis, we will not find the Born term in the πN scattering
amplitude.

We note that because the soliton is regarded as a heavy
object with the mass of order Nc, the nonrelativistic ap-
proximation is always assumed. The relativistic collection is
included if the higher order contributions with respect to 1/Nc

is considered.
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This paper is organized as follows. Section II gives a brief
introduction of the Skyrme model. In Sec. III, we calculate the
Born term using the Skyrme model with the chiral reduction
formula. The summary is given in Sec. IV.

II. SKYRME MODEL: A MODEL OF NUCLEON

A. Effective Lagrangian

A starting point of the Skyrme model is the nonlinear
realization of chiral symmetry. For nonstrange hadrons this
symmetry takes the form of SUR(2) × SUL(2), which is
broken spontaneously to the diagonal vector (isospin) SUV (2)
symmetry. The pion field appears as the Nambu-Goldstone
boson field, which is parametrized by the representative ξ for
the left coset SUR(2) × SUL(2)/SUV (2).

Any group element g ∈ SUR(2) × SUL(2) is decomposed
as

g = ξh = exp

(
i

fπ

φ · A

)
h, (1)

where h ∈ SUV (2), the generator Ai (i = 1, 2, 3) spans the
tangent space of the left coset, φi defines the isovector pion
field, and fπ is the pion decay constant [14]. The fundamental
quantity for the effective Lagrangian is the projection of the
Maurer-Cartan one-form, ξ †∂µξ , on this tangent space [15,16];

αµ ≡ (ξ †∂µξ )⊥ =
3∑

i=1

αµiAi. (2)

The group element g ∈ SUR(2) × SUL(2) transforms this one-
form as ξ †∂µξ → ξ ′†∂µξ ′ = hξ †∂µξh† + h∂µh†, where ξ ′ =
gξh† and h ∈SUV (2) (h depends on both g and ξ ). The pion
field φi is transformed nonlinearly by g. However, if g belongs
to SUV (2), the transformation becomes linear.

The one-form αµ is h invariant because h∂µh† belongs to
the algebra of SUV (2). Thus αµ is a basic building block to
compose an h-invariant effective Lagrangian. In terms of φi ,
αµ is written explicitly as

αµi = i

fπ

(j0(|φ|)∂µφi + (1 − j0(|φ|))φ̂ · ∂µφφ̂i), (3)

where φ̂i = φi/|φ|, |φ| =
√

φ2
1 + φ2

2 + φ2
3 , and j0 is the

spherical Bessel function.
Among many possible forms of the effective Lagrangian,

the Skyrme model chooses

L = −f 2
π

4
trαµαµ + 1

32e2
tr[αµ, αν][αµ, αν]

+ m2
πf 2

π

4
tr(ξ 2 + (ξ 2)†), (4)

where two-dimensional representation is assumed for Ai , and
the dimensionless parameter e determines the strength of the
so-called the Skyrme term. The last term, which explicitly
breaks the chiral symmetry, is required by the PCAC condition
[17], where mπ is the pion mass.

B. Hedgehog configuration

The parametrization, Eq. (1), shows that φi is defined on
the manifold S3. The homotopy relation π3(S3) = Z suggests
the existence of a classical nontrivial solution that fulfills the
least-action principle for the effective Lagrangian, Eq. (4).
According to Coleman and Palais [18,19], this solution is static
and takes a “hedgehog” configuration,

U0(�r) ≡ (ξ0(�r))2 = eiF (r)r̂·τ , (5)

where the Pauli matrix τi is used instead of Ai . The
function F (r) satisfies the Eular-Lagrange equation derived
from the Lagrangian, Eq. (4), with the boundary conditions
F (0) = π and F (∞) = 0, so that the soliton has winding
number 1.

The hedgehog configuration, Eq. (5), constrains the direc-
tion of the isovector field φi to be in parallel with the spatial
position vector. While this configuration is not compatible with
the isospin symmetry, because the system itself must preserve
this symmetry, the isospin rotation produces the zero mode.
We quantize this zero mode so as to provide a suitable isospin
property for the Skyrme model using the collective coordinate
method of Ref. [1].

The hedgehog soliton U0(�r) is rotated by a time-dependent
matrix A(t) [A(t) ∈ SUV (2)], which is the two-dimensional
representation of isospin rotation,

U (t, �r) = A(t)U0(�r)A†(t). (6)

The Eular angle parametrizes A(t) and is treated as the
collective coordinate for this zero mode [20]. The isospin Î is
defined by means of A(t) as

Îi = iItrτiȦ(t)A†(t), (7)

where I is the moment of inertia. This isospin, Eq. (7), is
quantized and then satisfies the commutation relation of the
Lie algebra of SUV (2). Owing to the hedgehog configuration,
the spin Ĵ is related to the isospin Î through

Îi = −
3∑

j=1

D1
ij Ĵj , (8)

whereD1
ij is the D function of SUV (2) in the three-dimensional

representation:

D1
ij (α, β, γ ) = 1

2 trτiA(t)τjA
†(t). (9)

As far as the zero mode is considered only for the isospin
rotation, the spin of the baryon is always equal to its isospin:
Ĵ 2 = Î 2.

The baryon state is the simultaneous eigenstate of Î and Ĵ .
The nucleon state is, for example, written as a function of the
Eular angle (α, β, γ ),

〈αβγ |1/2, I3, J3〉 = (−1)I3

2π
D1/2

−I3 J3
(α, β, γ ), (10)

which is normalized on S3.
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C. Axial vector current

The external field method is a convenient way to de-
fine the axial vector current for the chiral field. When
the minimal scheme is assumed, the external vector and
axial vector fields (ρµ and aµ, respectively) are intro-
duced into the effective Lagrangian through the covariant
derivative [21]

�µU = ∂µU − i

[
3∑

a=1

ρµaVa, U

]
− i

{
3∑

a=1

aµaAa,U

}
,

(11)

where the generator Va is for SUV (2). The linear response of
the Lagrangian to the variation of a

µ
a gives the axial vector

current JA,µa composed of the chiral field,

JA,µa = ∂L
∂a

µ
a

∣∣∣∣
ρµ=aµ=0

= if 2
π

(
cos |φ|αµa + 2 sin2 |φ|

2
φ̂ · αµφ̂a

)

− i

e2

(
cos |φ|((αµ × αν) × αν)a

+ 2 sin2 |φ|
2

(αµ × αν) × αν · φ̂ φ̂a

)
, (12)

where the parametrization, Eq. (1), is used to write JA,µa

explicitly in terms of φa and αµa . The power expansion of
JA,µa on φa shows that this current has a pion pole contribution
in the asymptotic region:

JA,µa → −fπ∂µφa. (13)

The formal definition of the scalar and pseudoscalar
currents is given by introducing an additional coupling
term,

f 2
π

4
tr((s − iτ · p)U + U †(s + iτ · p)), (14)

in the effective Lagrangian, Eq. (4). The external scalar
and pseudoscalar fields (s and p, respectively) compose
the four-dimensional representation of SO(4) ∼ SUR(2) ×
SUL(2). The pseudoscalar current and its asymptotic
form are

πa = 1

fπ

∂L
∂pa

= i

4
trτa(U † − U ) → φa. (15)

III. SKYRME MODEL AND BORN TERM

According to the chiral reduction formula, the scattering
amplitude consists of responses to the external sources. The
Born term in the πN scattering amplitude is relevant to the

axial vector current,

〈πb(k′)N (p′)|Ŝ|πa(k)N (p)〉A
= − 1

f 2
π

kµk′ν
∫

d4xd4x ′e−ikx+ik′x ′

× 〈N (p′)|T ∗(jA,µa(x)jA,νb(x ′))|N (p)〉, (16)

where Ŝ is the S matrix operator, jA,µa is the axial vector
current, k(k′) is the initial(final) pion momentum, and µ, ν(a,
b) are the Lorentz(isospin) indices. The initial(final) nucleon
state with momentum p(p′) is represented by |N (p)〉(|N ′(p)〉),
which is the spin-isospin eigenstate.

Because the spontaneous breaking of chiral symmetry leads
to mixing between the axial vector current and the gradient of
the pseudoscalar field [see Eq. (13)], the axial vector current
does not vanish in the asymptotic region in general. In the
chiral reduction formula this mixing is removed by redefining
the current as

jA,µa = JA,µa + fπ∂µπa, (17)

which is free from the pion pole contribution in the asymptotic
region.

The current jA,µa consists of the classical soliton solution
in the lowest order of 1/Nc. The zero mode of the soliton
and its quantization add the operator character and the time
dependence to this current.

First, we consider the zero mode for the translation
invariance. The spatial translation of the localized soliton does
not change the energy and produces the zero mode of the
system. We quantize the position of the classical soliton as
a quantum mechanical operator and write it as X̂(t) in the
Heisenberg picture. The axial vector current depends on X̂(t)
as jA,µa(�x − X̂(t)), and its coordinate representation becomes

〈 �X, t |jA,µa(�x − X̂(t))| �X′, t〉 = jA,µa(�x − �X)δ( �X − �X′),
(18)

where | �X, t〉 is the eigenstate of X̂(t) with eigenvalue �X.
The nucleon state is 〈 �X, t |N ( �p)〉 = ei �p· �X−ip0t |N〉, where

p0 =
√

m2
N + | �p|2 is the energy of a nucleon with momentum

�p and mass mN , and |N〉 stands for the nucleon-state vector in
the spin-isospin space. The nucleon matrix element of jA,µa

becomes

〈N ′( �p′)|jA,µa(�x − X̂(x0))|N ′′( �p′′)〉
= ei(p′−p′′)x〈N ′|j̃A,µa( �p′′ − �p′)|N ′′〉, (19)

where j̃A,µa(�k) is defined as

〈N ′|j̃A,µa(�k)|N ′′〉 =
∫

d3xe−i�k·�x〈N ′|jA,µa(�x)|N ′′〉. (20)

The nucleon pole contribution to the πN scattering ampli-
tude, Eq. (16), is

− 1

f 2
π

∫
d4xd4x ′e−ikx+ik′x ′ 〈N ′( �p′)|T ∗(kµjA,µa(�x − X̂(x0))k′νjA,νb(�x ′ − X̂(x ′

0))|N ( �p)〉

= − 1

f 2
π

{ 〈N ′|kµj̃A,µa(−�k)|N ′′〉〈N ′′|k′ν j̃A,νb(�k′)|N〉
p′

0 − p′′
0 − k0 + iε

+ 〈N ′|k′ν j̃A,νb(�k′)|N ′′〉〈N ′′|kµj̃A,µa(−�k)|N〉
p0 − p′′

0 + k0 + iε

}
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× i(2π )4δ(k′ + p′ − k − p) ∼ 1

f 2
π k0

{〈N |�k · �̃jA,a(−�k)|N ′′〉〈N ′′| �k′ · �̃jA,b(�k′)|N〉

− 〈N ′| �k′ · j̃A,b(�k′)|N ′′〉〈N ′′|�k · �̃jA,a(−�k)|N〉}i(2π )4δ(k′ + p′ − k − p), (21)

where the single-nucleon state (N ′′) is assumed to dominate
the intermediate state; its momentum and the state vector in
the spin-isospin space are denoted p′′ and |N ′′〉, respectively.

Each matrix element of �k · �̃jA in Eq. (21) corresponds to
the π -nucleon vertex. The approximations p0 ∼ p′

0 ∼ p′′
0 ∼

mN , mN � k0, are used in the last step. The soliton mass
(the nucleom mass mN ) is so heavy that the nonrelativistic
approximation is applicable here.

Next we calculate the π -nucleon vertex by considering the
zero mode for the isospin rotation. The current jA,µa is still
an operator in the isospin space and depends on the Eular
angle introduced in the isospin rotation, Eq. (6). This operator
property is important for finding the Born term; otherwise,
Eq. (21) will vanish. The spatial ith component of the axial
vector current in the lowest order of 1/Nc is explicitly written
as

jA,ia(�x) =
(

f 2
π

sin 2F

2r
+ 1

e2

(
F ′2 + sin2 F

r2

)
sin 2F

2r

)
× δacD1

ic(α, β, γ )

+
[
f 2

π

(
F ′ − sin 2F

2r

)
− 1

e2

((
F ′2 + sin2 F

r2

)

× sin 2F

2r
− 2F ′ sin2 F

r2

)]
r̂a r̂cD1

ic(α, β, γ )

= (
jA1(r)δac + jA2(r)r̂a r̂c

)
D1

ic(α, β, γ ), (22)

where F is defined in Eq. (5), r = |�x|, r̂ = �x/r , and a, c stand
for the isospin indices. The dependence on the Eular angle
appears through the D function D1

ic(α, β, γ ).
Using Eqs. (10) and (22) and the integration for the Eular

angle, we obtain

〈N ′|�k · �̃jA,a(−�k)|N ′′〉 = − 1
3J (k)〈N ′|τ · ϕσ · �k|N ′′πa〉, (23)

where

J (k) = 4π

∫ ∞

0
drr2

(
j0(kr)

(
jA1(r) + 1

3
jA2(r)

)

− 2

3
j2(kr)jA2(r)

)
, (24)

with the spherical Bessel functions j0 and j2, and 〈0|ϕc|πa〉 =
δca .

Finally, we find the Born term in the πN scattering
amplitude with the nonrelativistic approximation. When we
properly evaluate the spin-isospin structure of the π -nucleon
vertex, the Born term becomes

〈πb(k′)N ′(p′)|Ŝ|πa(k)N (p)〉
= −i(2π )4δ(k′ + p′ − k − p)

J (k′)J (k)

9f 2
π

1

ω

× (〈N ′πb|τ · ϕσ · k′|N ′′〉〈N ′′|τ · ϕσ · k|Nπa〉
− 〈N ′|τ · ϕσ · k|N ′′πa〉〈N ′′πb|τ · ϕσ · k′|N〉), (25)

where ω = k0 is the pion energy.
The Born term actually exists in the πN scattering

amplitude in the Skyrme model. We arrive at this result
in the lowest order calculation with respect to 1/Nc using
the classical soliton solution. We stress here that it is quite
important to take account of the zero mode both for the spatial
translation and for the isospin rotation simultaneously. The
argument regarding the missing Born term is caused by the
lack of consideration of the zero mode for the isospin rotation
in the lowest order calculation.

Before closing our discussion, we compare our results with
the standard expression of the πN scattering amplitude. The
nucleon matrix element of the axial vector current, in the
nonrelativistic limit, is generally written as

〈N ′( �p′)|Aia(x)|N ( �p〉
= 〈N ′|τa

2
(δij gA(q2) + qiqjhA(q2))σj |N〉e−iqx, (26)

where q = p − p′. The axial vector coupling constant is
defined by gA = gA(0). In the Skyrme model the left-hand
side corresponds to

〈N ′( �p′)|jA,ia(�x − X̂(x0))|N ( �p〉 = 〈N ′|j̃A,ia(�q)|N〉. (27)

This relation gives gA in the |�q| → 0 limit as gA = 2
3J (0).

We note that the spatial integral of J converges in
our calculation, but the corresponding integral in Ref. [1]
does not. Thus the value is well defined for the axial
vector coupling constant obtained in our calculation. This
is due to the definition, Eq. (17), in which the pion pole
contribution is extracted from the axial vector current. The
numerical integration gives 0.6 for gA when the value
from Ref. [1] is used for fπ and e. This result shows
that our calculation is qualitatively consistent with that in
Ref. [1].

The πNN coupling constant gπNN is given by a residue of
the S matrix, and the strength of the Born term is written
as g2

πNN/4m2
N . Then we obtain the Goldberger-Treimann

relation, gπNN = mNgA/fπ .

IV. SUMMARY

We can determine the Born term in the πN scattering
amplitude in the Skyrme model. Not only the zero mode
for the spatial translation, but also that for the isospin
rotation must be included in the lowest order calcuation with
the classical soliton solution. The chiral reduction formula
holds promise as a way to study the πN interaction in
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the Skyrme model. Despite the former negative argument,
we find that it is worthwhile to examine the Skyrme
model as an effective model of baryon and meson-baryon
interaction.

We are now going to include the higher order contributions
with respect to 1/Nc. The fluctuation of the classical soliton,
which is not dealt with in this paper, is the same-order
contribution as the zero mode’s. We expect that the inclusion

of the fluctuation will improve the accuracy of the calculation
(e.g., the axial vector coupling constant).
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