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Hadron-quark phase transition in asymmetric matter with boson condensation
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In the present work we study the hadron-quark phase transition with boson condensation in asymmetric matter
by investigating the binodal surface and extending it to finite temperature to mimic the QCD phase diagram. We
consider a system with two conserved charges (isospin and baryon densities) using the Gibbs’ criteria for phase
equilibrium. To obtain these conditions we use two different models for the two possible phases, namely, the
nonlinear Walecka model (NLWM) for the hadron matter (also including hyperons) and the MIT bag model for
the quark phase. It is shown that the phase transition is very sensitive to the density dependence of the equation
of state and the symmetry energy. For an isospin asymmetry of 0.2 and a mixed phase with a fraction of 20% of
quarks, a transition density in the interval 2ρ0 < ρt < 4ρ0 was obtained for temperatures 30 < T < 65 MeV.
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I. INTRODUCTION

Since some decades ago just after the discovery of the
asymptotic freedom of QCD [1] the possibility of the existence
of a new state of matter in high-energy physics is under consid-
eration, namely, a color deconfined phase of quarks and gluons,
the so-called quark-gluon plasma (QGP) [2]. The main goal of
the heavy-ion collision experiments at ultrarelativistic energies
is to create, under controlled conditions, and understand the
properties of this new state of matter. This opens a new field
of study in strong interaction physics.

Many experiments have been proposed and accelerators
have been built in the search for QGP at different ener-
gies at SIS/GSI, AGS/BNL, SPS/CERN, RHIC/BNL, and
LHC/CERN to look for some signs and signatures of the
production of QGP that subsequently hadronizes [3]. The
study of particle production in ion collisions contributes to
the understanding of the conditions under which QGP may be
produced and also to determine the equations of state (EOS)
of strongly interacting matter.

In hydrodynamical models the system that arises from
a high-energy collision (fireball) reaches an approximately
local thermal equilibrium (thermalization) and expands,
evolving collectively up to the point when the mean
free path of the created and interacting particles becomes
large enough for the particles to escape from the fluid;
i.e., the interactions among the particles of the system
cease because the system has reached the freeze-out point.
The approximately local thermalization is considered to
be due to detailed computations of the expansion stage
that takes much longer than the typical scattering times
[4]. Although, nonequilibrium processes are also impor-
tant for the dynamics, equilibrium processes are a quite
good approximation to be used in theoretical models and
are a reasonable first approximation at freeze-out. Some

authors consider both the temperature at which the in-
elastic collisions cease (chemical freeze-out) and the tem-
perature at which the elastic collisions cease (kinetic
freeze-out) [5].

At the end of the eighties of the last century the existence
of the (chiral) critical end point (CEP) in the QCD phase
diagram was suggested [6,7] and since then its properties
have been extensively studied [8]. Although, most lattice
QCD calculations indicate the existence of the CEP for
µB > 160 MeV [9–11], its exact location is not well known
since it depends, for example, on the mass of the strange
quark. The CEP separates the second-order transitions at high
temperatures (or even a smooth crossover) from the first-order
transitions at high chemical potentials in the QCD phase
diagram. However, according to the findings of Ref. [12]
there might not even exist a chiral critical point. Studying this
intermediate region is a hard task since perturbation theory
cannot be applied to QCD at this regime and additionally
at finite chemical potential the usual lattice approach fails.
Moreover, new techniques have been proposed to study lattice
QCD at finite T and µ [13]. On the other hand the lattice QCD
simulations of different groups disagree with each other on the
location of the CEP.

Subsequently in the late nineties a hypothesis arose [14] that
the onset of the deconfinement phase transition was located
between the top AGS and SPS energies. The CERN energy
scan program of the NA49 experiment at SPS has given signs
of a phase change at Elab ∼ 30 A GeV particularly from the
hornlike peak in the K+/π+ ratio [15].

Furthermore, the hadronic freeze-out estimated for different
colliding energies [16] shows a maximum at

√
sNN = 4 +

4 GeV, which can be reached for a fixed-target bombarding
energy of 20–30 A GeV at the baryonic chemical potential
region µB = 400–500 MeV. In addition, hydrodynamical
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TABLE I. Ion beam top energies in some collision experiments.

SIS/GSI Synchr./JINR AGS/BNL ↓ SPS/CERN RHIC/BNL LHC/CERN

Elab (A GeV) 2.0 4.2 14.6 158 2.1 × 104 1.6 × 107

√
sNN (GeV) 2.7 3.4 5.6 17.3 200 5400

FAIR/GSI NICA/JINR

Elab (A GeV) 34 40 (← planned facilities)√
sNN (GeV) 8.2 9

calculations [17,18] of phase trajectories during collisions,
in the QCD phase diagram, indicate that for Elab ∼ 30 A GeV
(
√

sNN ∼ 8 GeV) the trajectory goes near the CEP.
Since then, the interest in the intermediate energies (not

ultrarelativistic) in collision experiments has increasd as well
as the theoretical study of the phase transition in that regime.

For this purpose the new facilities, namely, the Nuclotron-
based ion collider facility (NICA) at JINR/Dubna [19] and
the Facility for Antiproton and Ion Research (FAIR) at
GSI/Darmstadt [20], give the opportunity to explore an
interesting region of the phase diagram, in search of QGP
and where the CEP is expected to exist, complementing other
heavy-ion collision experiments (NA61-SHINE, low-energy
RHIC) compatible with the energy range Elab = 2–40 A GeV.
It is also important to consider the possibility that new features
arise at still lower temperatures and higher densities as the
color superconducting quark matter phases like the CFL
(color-flavor locked) phase [21] and the recently conjectured
quarkyonic phase [22]. Different possible patterns for color
superconductivity have been conjectured (see e.g., Ref. [23]
and references therein). However, in the present work we do
not consider these phases. A summary of ion beam top energies
used in some collision experiments is shown in Table I.

It is also possible to study the phase transition from hadronic
matter to a quark phase within the effective models that
describe two separated phases, and also the structure of the
mixed phase can be obtained through the Gibbs’ conditions
[24]. Some features of this phase transition can be obtained
by means of the binodal surface, which is a phase coexistence
curve in the parameter space.

The different ion beams used in collision experiments
present different numbers of neutrons (N ) and protons (Z).
It is also interesting to study the isospin effects on the
transition to a mixed phase of hadrons and quarks. We can
define the asymmetry parameter (isospin ratio) of a nucleus
(or the hadron phase) as α ≡ (N − Z)/(N + Z), such that α

runs from 0 (symmetric matter) to 1 (pure neutron matter).
From Table II one sees some ions used in nucleus-nucleus
collisions and the respective asymmetry parameter of each
system. Systems with isospin ratios 0 � α � 0.23 are up to
now experimentally accessible in ion collisions and the case
α = 1.0 corresponds to neutron matter which is relevant in
some astrophysical applications.

We study the phase transition from hadrons to a QGP in
asymmetric matter using a two-phase model, analyzing the fea-
tures that depend on the isospin and may be relevant in a phe-
nomenological description of heavy-ion collisions [25–28].

It is interesting to investigate asymmetric systems since in
the liquid-gas phase transition of nuclear matter the asym-
metric case shows different properties from the symmetric
one [25,29,30]. It is shown that the transition of an asymmetric
system is of the second order (continuous) rather than the
first-order (discontinuous) as in symmetric systems [25–28].

Hence, an interesting task is to investigate the isospin effect
on the hadron-quark phase transition at lower temperatures
and densities higher than the saturation density of the normal
nuclear matter, which can be probed in heavy-ion collisions
at intermediate energies. In addition, the presence of bosons
can modify the isospin of the hadron phase. Also, at low
temperatures these features depend strongly on the nuclear
symmetry energy. On the other hand, at higher temperatures
the inclusion of bosons shows an interesting feature due to
the onset of a boson condensate in asymmetric systems if we
consider an approximately local thermal equilibrium.

This approach is useful for providing a qualitative orien-
tation on the features that arise when a phase transition from
hadrons to quarks takes place and two conserved charges are
considered, i.e., at finite baryon density and isospin.

As already mentioned, the problem we investigate in the
present paper has already been studied in previous works
[26–28] within different perspectives, based on different
parametrizations and containing different ingredients. In
Ref. [26] the hadronic phase is given by one parametrization
of the nonlinear Walecka model, the quark phase is calculated
with the MIT bag model for one specific value of the bag
constant, and pions are included. In Refs. [27,28] a mixed
phase of hadrons and quarks is particularly emphasized and
the influence of the symmetry energy on the phase transition
is investigated. In Ref. [28] neither bosons nor gluons are
considered and the quark phase is described within the MIT

TABLE II. Some ions used in collision experiments and the
respective asymmetry parameter (α) of the system.

12C + 12C 20Ne + 20Ne 58Ni + 58Ni
α 0 0 0.034

20Ne + 63Cu 20Ne + 118Sn 118Sn + 118Sn
α 0.060 0.130 0.150

20Ne + 209Bi 197Au + 197Au 20Ne + 238U
α 0.188 0.198 0.201

197Au + 208Pb 208Pb + 208Pb 238U + 238U
α 0.205 0.211 0.227
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bag model, and in Ref. [27] two different quark models
are used: the MIT bag model (with and without gluons)
and the color dielectric quark model. In these works five
different parametrizations of the nonlinear Walecka model are
considered and one of them includes the δ mesons. All these
models have a quite high value of the symmetry energy slope,
namely, 85 < L < 103 MeV, and therefore they have a quite
hard symmetry energy at intermediate densities, the densities
of interest for the present work.

In the present work we consider seven different
parametrizations of the nonlinear Walecka model, which span
a large variety of EOS: they include hard and soft EOS with
hard and soft symmetry energies at intermediate densities.
This allows us to see the effect of both the isoscalar and the
isovector interaction on the phase transition. For the quark
model we have considered the MIT bag model with various
values of the bag constant and with gluons. The bag constant
was chosen in accordance with heavy-ion collision data. In the
hadronic phase we have studied the effect of including two
kinds of bosons, pions and kaons. This more complete picture
allows us to discuss various aspects of the phase transition at
finite temperature which have not been discussed before.

The remainder of this article is organized as follows: In
Sec. II we present the formalism used in this work. In Sec. III
the mixed phase features are presented and in Sec. IV we show
the numerical results and discussion. Finally, in Sec. V we
summarize the results and give a brief concluding discussion.

II. THE FORMALISM

In the present section we present the EOS for the hadron
phase and for the quark phase used in this work and their
respective definitions. Bosons are included using a meson-
exchange-type Lagrangian that couples the bosons to meson
fields and the possibility of a boson condensate is also
presented.

A. Quark phase: Quarks u and d (+ gluons)

Quark matter has been extensively described by the MIT
bag model [31]. In its simplest form, the quarks are considered
to be free inside a bag and the thermodynamic properties are
derived from the Fermi gas model in two limits: T = 0, mq �= 0
and T �= 0, mq = 0. The energy density, the pressure, and the
quark q density are, respectively, given by

Eq = 3 × 2
∑

q=u,d

∫
d3p

(2π )3

√
p2 + m2

q(fq+ + fq−) + B, (1)

Pq = 1

π2

∑
q

∫
dp

p4√
p2 + m2

q

(fq+ + fq−) − B, (2)

nq = 3 × 2
∫

d3p

(2π )3
(fq+ − fq−), (3)

fq± = 1

1 + e[(εq∓µq )/T ] , (4)

where 3 stands for the number of colors, 2 stands for the spin
degeneracy, mq stands for the quark masses, B represents the
bag pressure, fq± represents the distribution functions for the

quarks and antiquarks, εq =
√

p2
q + m2

q , ± µq is the chemical
potential for quarks and antiquarks of type q,

µu = 2µp − µn

3
, µd = 2µn − µp

3
. (5)

The quark density is

nq = nu + nd, (6)

and the “quark baryon density” is given by

n
Q
B = nu + nd

3
. (7)

The thermodynamic potential per unit volume of the MIT bag
model (two-flavor case) and the corresponding EOS [26,32]
for massless quarks and a Bose gas of gluons of degeneracy
γg = 2 × 8 with the lowest-order gluon interaction (αs) is

�QGP

V
= −π4

45
T 4

(
8 + 21

4
Nf

)
− 1

2

∑
q=u,d

(
T 2µ2

q + µ4
q

2π2

)

+ 2π

9
αs

[
T 4

(
3 + 5

4
Nf

)
+ 9

2

∑
q=u,d

(
T 2µ2

q

π2
+ µ4

q

2π4

)]

+B, (8)

from which we can obtain the pressure PQGP = −�QGP/V ,
the energy density, and the quark number density:

PQGP = 8π2

45
T 4

(
1 − 15αs

4π

)
+

∑
q

[
7

60
π2T 4

(
1 − 50αs

21π

)

+
(

1

2
T 2µ2

q + 1

4π2
µ4

q

)(
1 − 2αs

π

)]
− B, (9)

EQGP = 3PQGP + 4B;

nq =
∑

q

(
T 2µq + µ3

q

π2

) (
1 − 2αs

π

)
. (10)

The strong coupling αs is taken as a constant in the present
work (αs = 0.349) and Nf stands for the number of flavors
(Nf = 2, quarks u and d).

In fact the strange quark should have been included in
the quark phase since, although we have in mind a zero net
strangeness, at finite temperature strange quark-antiquark pairs
will be formed. However, since we are mainly interested in
high-density hadronic matter at a temperature below 70 MeV,
the effect of including the strange quarks is negligible. We
have verified that for T = 60 MeV and a baryonic density
larger than 2 times the saturation density the contribution of
the s quarks to the pressure is below 1%.

B. Hadron phase: Nucleons (+ hyperons)

The equations of state of asymmetric matter within
the framework of the relativistic nonlinear Walecka model
(NLWM) [33] are presented next. In this model the nucleons
are coupled to neutral scalar σ , isoscalar-vector ωµ, and
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isovector-vector �ρµ meson fields. The Lagrangian density
reads

LB = ψ̄[γµ(i∂µ − gωjω
µ − gρj �τj · �ρµ) − m∗

j ]ψ

+ 1

2
∂µσ∂µσ − 1

2
m2

σ σ 2 − 1

3!
kσ 3 − 1

4!
λσ 4

− 1

4
�µν�

µν + 1

2
m2

ωωµωµ + 1

4!
ξg4

ω(ωµωµ)2

− 1

4
�Rµν · �Rµν + 1

2
m2

ρ �ρµ · �ρµ

+�v(g2
ρ �ρµ · �ρµ)(g2

ωωµωµ), (11)

where m∗
j = mj − gσjσ is the baryon effective mass, �µν =

∂µων − ∂νωµ, �Rµν = ∂µ �ρν − ∂ν �ρµ − gρ

( �ρµ × �ρν

)
, gij are the

coupling constants of mesons i = σ, ω, ρ with baryon j , and
mi is the mass of meson i. The couplings k (k = 2MNg3

σ b)
and λ (λ = 6g4

σ c) are the weights of the nonlinear scalar terms
and �τ is the isospin operator. This Lagrangian includes an
isoscalar-isovector mixing term �v(g2

ρ �ρµ · �ρµ)(g2
ωωµωµ) as

presented in Ref. [34] that plays an important role in high
densities. It can also be extended to include all the hyperons
from the baryon octet.

Within the relativistic mean field (RMF) framework the
thermodynamic potential per unit volume corresponding to
the Lagrangian density (11) is

�B

V
= 1

2
m2

σ σ 2
0 + 1

3!
kσ 3

0 + 1

4!
λσ 4

0 − 1

2
m2

ωω2
0 − 1

4!
ξω4

0

− 1

2
m2

ρρ
2
03 − 2T

∑
j

∫
d3p

(2π )3
{ln[1 + e−β(E∗

j −νj )]

+ ln[1 + e−β(E∗
j +νj )]} − �vg

2
ρg

2
ωω2

0ρ
2
03, (12)

where β = 1/T , E∗
j = (p2

j + M∗2
j )1/2, and the effective chem-

ical potential of baryon j is given by

νj = µj − gωω0 − τ3j gρρ03. (13)

The EOS for the baryons can then be calculated as

PB = 1

3π2

∑
j

∫
p4dp√

p2 + m∗2
j

(fFj+ + fFj−) + m2
ω

2
ω2

0

+ ξ

24
ω4

0 + m2
ρ

2
ρ2

03 − m2
σ

2
σ 2

0 − k

6
σ 3

0 − λ

24
σ 4

0

+�vg
2
ρg

2
ωω2

0ρ
2
03, (14)

EB = 1

π2

∑
j

∫
p2dp

√
p2 + m∗2

j (fFj+ + fFj−) + m2
ω

2
ω2

0

+ ξ

8
ω4

0 + m2
ρ

2
ρ2

03 + m2
σ

2
σ 2

0 + k

6
σ 3

0 + λ

24
σ 4

0

+ 3�vg
2
ρg

2
ωω2

0ρ
2
03, (15)

n
j

B = 2

(2π )3

∫
(fFj+ − fFj−) d3p. (16)

Here, fFj± is the Fermi distribution for the baryon (+) and the
antibaryon (−) j :

fFj± = 1

eβ(E∗
j ∓νj ) + 1

. (17)

C. Hadron phase: Bosons (pions + kaons)

It is possible to include the boson fields using terms from
the chiral perturbation theory [35]. In the present work we
prefer to use a meson-exchange-type Lagrangian that couples
the bosons to meson fields and for simplicity we apply the
same approach to the kaons and pions.

An effective chiral Lagrangian like the one introduced
by Kaplan and Nelson [35] could have been used to de-
scribe hadronic matter with pion and kaon condensation.
However, the baryon sector is more easily described within
a relativistic field theory of the Walecka type, namely, the
choice of the model parameters that reproduce saturation
properties on nuclear matter have been intensively discussed.
In Ref. [36] the Kaplan-Nelson chiral Lagrangian has been
used to describe the kaon-baryon sector while a Walecka-like
Lagrangian was chosen for the baryon-baryon sector. However,
as argued in Ref. [37], there is some lack of consistency that
may influence the results. Using a meson-exchange model
allows the simultaneous inclusion of baryons (nucleons and
hyperons) and pions (kaons) and uses the same kind of inter-
action to describe the baryon-baryon and baryon-pion (kaon)
interaction.

The Lagrangian density in the minimal coupling scheme
[37–43] is given by

Lb = D∗
µ�∗Dµ� − m∗2

b �∗�, (18)

where the covariant derivative is

Dµ = ∂µ + iXµ, (19)

Xµ ≡ gωbωµ + gρb �τb · �ρµ, (20)

and the boson effective mass m∗
b = mb − gσbσ . The boson

field can then represent either the kaons or pions (particles and
antiparticles):

� ≡ (K+,K0), �∗ ≡ (K−, K̄0), (21)

or

� ≡ (π−, π0), �∗ ≡ (π+, π0). (22)

The isospin third-component to the bosons is given by

τ3π =

⎧⎪⎨
⎪⎩

+1, π+;

0, π0;

−1, π−;

τ3K =
{+ 1

2 , K+, K̄0.

− 1
2 , K−,K0.

(23)

We determine the thermodynamic potential within the
mean-field approximation and perform a calculation similar to
that carried out in Ref. [43] with the respective modifications
in the covariant derivative (19).

For simplicity we have set gσπ = 0, then m∗
π = mπ , and

also gωπ = 0 such that the σ -π and ω-π interactions have been
turned off. The neutral pion is its own antiparticle (τ30 = 0),
so in the mean-field approximation and taking into account
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the above considerations, Eq. (20) becomes Xµ = 0. Thus the
π0 EOS is that of a free boson gas at temperature T and zero
chemical potential.

In the Appendix we show the calculation of the bosonic
EOS:

Pb = ζ 2[(µb − X0)2 − m∗2
b

] − T

∫
d3p

(2π )3
{ln[1 − e−β(ω+−µ)]

+ ln[1 − e−β(ω−+µ)]}, (24)

Eb = ζ 2
[
m∗2

b + (
µ2

b − X2
0

)] +
∫

d3p

(2π )3
{ω+fB+ + ω−fB−},

(25)

nb = 2ζ 2(µb − X0) +
∫

d3p

(2π )3
{fB+ − fB−}, (26)

where the Bose distribution for particles (fB+) and antiparti-
cles (fB−) appears naturally in the EOS and reads

fB± = 1

eβ(ω±∓µb) − 1
= 1

eβ[(ε∗
b±X0)∓µb] − 1

= 1

eβ(ε∗
b∓νb) − 1

,

(27)

with ε∗
b =

√
p2 + m∗2

b , and hence we define the boson effective
chemical potential as

νb ≡ µb − X0. (28)

From Eq. (26) one notes two contributions in the boson density
and we can define them as the “condensate” and the “thermal”
contribution,

nb = nc
b(ζ ) + nT

b (T ), (29)

and the entropy density is given by sb = β(Pb + Eb − µbnb).
The order parameter ζ can be obtained through the minimiza-
tion of the thermodynamic potential.

D. Hadron phase equations

The thermodynamic potential of the hadron phase (HP),
including both the baryons and the bosons, is given by

�HP = �B + �b, (30)

where �B is given by Eq. (12) and �b by Eq. (A19). By
minimizing the thermodynamic potential �HP with respect
to the meson fields σ , ω, and ρ, and also with respect
to the order parameter ζ , within the mean-field approx-
imation (σ → 〈σ 〉 = σ0; ωµ → 〈ωµ〉 = δµ0ω0; �ρµ → 〈�ρµ〉 =
δµ0δ

i3ρ3
0 ≡ δµ0δ

i3ρ03), we obtain the equations for the hadron
phase:

m2
σ σ0 = −k

2
σ 2

0 − λ

6
σ 3

0 +
∑

j

gσjn
s
j +

∑
b

gσb

(
nc

b + ns
b

)
,

m2
ωω0 = −ξg4

ω

6
ω3

0 +
∑

j

gωjnj +
∑

b

gωbnb

− 2�vg
2
ρg

2
ωρ2

03ω0, (31)

m2
ρρ03 =

∑
j

gρj τ3j nj +
∑

b

gρbτ3bnb − 2�vg
2
ρg

2
ωω2

0ρ03,

and

ζ [µb − ω+
b (0)][µb + ω−

b (0)] = 0, (32)

where

ns
j = 2

∫
d3p

(2π )3

m∗
j

E∗
j

(fF+ + fF−) (33)

is the baryon scalar density of particle j , and the respective
baryon density is

nj = 2

(2π )3

∫
d3p(fF+ − fF−). (34)

The “boson scalar density” for the boson b is given by

ns
b =

∫
d3p

(2π )3

m∗
b

ε∗
b

(fB+ + fB−), (35)

and the boson density is given by Eq. (26).
From the Eq. (32) we obtain the conditions for the

possibility of a boson condensate (ζ = 0, no condensate),
resulting in

µb = ω+
b (p = 0) or µb = −ω−

b (p = 0), (36)

depending on the signal of µb (either positive or negative).
Thus

µb = m∗
b + X0 or µb = −(m∗

b − X0), (37)

and

µb − X0 = m∗
b or µb − X0 = −m∗

b, (38)

such that the condition for the onset of the condensate state is

νb → m∗
b or νb → −m∗

b. (39)

According to Eqs. (24) and (39) the condensate (zero momen-
tum state) does not contribute to the pressure of the system as
expected. When the condensate is not present, ζ = 0.

III. THE MIXED PHASE

In the following, three situations for the phase coexistence
are discussed in detail: (A) hadron matter consisting of
nucleons and quark matter consisting of quarks u and d; (B)
hadron matter consisting of nucleons and pions and quark
matter consisting of quarks u and d; and (C) hadron matter
consisting of nucleons, hyperons, pions, and kaons with zero
net strangeness and quark matter consisting of quarks u and d.

A. Nucleons and quarks

According to the Gibbs’ conditions [24] for the phase coex-
istence, the chemical potentials, temperatures, and pressures
have to be identical in both phases (H = hadron phase; Q =
quark phase):

µH
u = µQ

u ,

µH
d = µ

Q
d ,

T H = T Q,

P H
(
µH

u , µH
d , T

) = P Q
(
µQ

u ,µ
Q
d , T

)
.

(40)
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The conservation of the isospin (n3) and baryon densities (nB)
is also required, so that in terms of these two charges [25] and
including the mixed phase we can write

P H
(
nH

B , nH
3 , T

) = P Q
(
n

Q
B , n

Q
3 , T

)
,

µH
B

(
nH

B , nH
3 , T

) = µ
Q
B

(
n

Q
B , n

Q
3 , T

)
,

µH
3

(
nH

B , nH
3 , T

) = µ
Q
3

(
n

Q
B , n

Q
3 , T

)
, (41)

nB = (1 − χ )nH
B + χn

Q
B ,

n3 = (1 − χ )nH
3 + χn

Q
3 ,

where for the hadron phase

nH
B = np + nn, nH

3 = np − nn

2
,

(42)
µH

B = 1
2 (µp + µn), µH

3 = µp − µn,

and for the quark phase

n
Q
B = 1

3 (nu + nd ), n
Q
3 = nu − nd

2
,

(43)
µ

Q
B = 3

2 (µu + µd ), µ
Q
3 = µu − µd,

and χ represents the fraction of quarks in the mixed phase.
The asymmetry parameter α (isospin ratio) of the nuclei was
defined as

α ≡ N − Z

N + Z
= nn − np

nB

, (44)

and the asymmetry parameter of the hadron and quark phases
can be defined by

αH ≡ −2
nH

3

nH
B

, αQ ≡ −2
n

Q
3

n
Q
B

, (45)

hence

αH = nn − np

nn + np

, αQ = 3
nd − nu

nd + nu

, (46)

such that 0 � αH � 1 (just nucleons case) and 0 � αQ � 3
(the quark case).

B. Nucleons, pions, and quarks

When bosons are present the isospin density of the hadron
phase is modified according to Eq. (32) and αH can be greater
than 1. The isospin density of the hadron phase with π−
becomes

nH
3 = np − nn

2
− nπ, (47)

where nπ = nc
π + nT

π and we assume gρN = gρ = gπ . In order
to obtain the simplest thermodynamic features for the pions
we set gωπ = 0 and for simplicity we set gσπ = 0, so that in
this case m∗

π = mπ . The in-medium (s wave) Bose effective
pion energy is

ωπ− (p = 0) = mπ − gρρ03, (48)

and the pion chemical potentials and the effective π− chemical
potential are

µπ− = µn − µp, µπ+ = −µπ− , (49)

µπ0 = 0, νπ− = µπ− + gρρ03. (50)

Because µn > µp, then µπ− > 0, and according to Eq. (39)
the onset of the pion (π−) condensation takes place when

νπ− → mπ. (51)

The EOS for the hadronic phase are

PH = PB + Pπ + Pπ0 , EH = EB + Eπ + Eπ0 , (52)

where Pπ and Eπ are given by Eqs. (24) and (25) and we have
also included the neutral pions as a free Bose gas.
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FIG. 1. (Color online) (a) A simple qualitative overview on the
T × µB curve in the MIT bag model (dashed curves) for the case
µu = µd , compared with the freeze-out curve (continuous line) from
panel (b). The bag constant values from I to IV are B1/4 = 145,
160, 190, and 210 MeV. (b) A parametrization of the freeze-out
curve deduced from particle multiplicities in heavy-ion collisions
(Cleymans et al. [44]).
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TABLE III. Parameter sets used in this work and corresponding saturation properties.

FSU [49] TM1 [47] TM1ωρ [48] NLρ [51] NL3 [46] GM1 [50] GM3 [50]

n0 (fm−3) 0.148 0.145 0.145 0.160 0.148 0.153 0.153
K (MeV) 230 281 281 240 271.76 300 240
m∗/m 0.62 0.643 0.643 0.75 0.60 0.70 0.78
m (MeV) 939 938 938 939 939 938 938
−B/A (MeV) 16.3 16.3 16.3 16.0 16.299 16.3 16.3
Esym (MeV) 32.6 36.9 31.9 30.5 37.4 32.5 32.5
L (MeV) 61 110 55 85 118 94 90

mσ (MeV) 491.5 511.198 511.198 512 508.194 512 512
mω (MeV) 782.5 783 783 783 783 783 783
mρ (MeV) 763 770 770 763 763 770 770
gσ 10.592 10.029 10.029 8.340 10.217 8.910 8.175
gω 14.302 12.614 12.614 9.238 12.868 10.610 8.712
gρ 11.767 9.264 11.147 7.538 8.948 8.196 8.259
b 0.000756 −0.001506 −0.001506 0.006935 0.002052 0.002947 0.008659
c 0.003960 0.000061 0.000061 −0.004800 −0.002651 −0.001070 −0.002421
ξ 0.06 0.0169 0.0169 0 0 0 0
�v 0.03 0 0.03 0 0 0 0

C. The baryon octet, pions, kaons, and quarks

At this stage we have included in the hadron phase all
baryons of the baryon octet and to keep the strangeness
conservation as

∑
i Si = 0 in both phases we also have

included the K+ meson in the hadron phase. For the Gibbs’
conditions (40) we need to add µH

s = µQ
s , so that we can

write the chemical potential as µi = BiµB + I3iµ3 + SiµS ,
where Bi , I3i , and Si are the baryonic, isospin, and strangeness
quantum numbers of particle i.

The equations for the baryons and bosons are already
presented in this work. For the kaons we set gρK = gρ ,
gωK = 0, and also gσK = 0, such that m∗

K = mK as for the
pions. We are aware that this choice is very naive. It was done
to explore the isospin degree of freedom. In a future work
a more realistic parametrization of the kaon-meson coupling
will be used which will allow us to discuss the strangeness
degree of freedom more completely.

IV. RESULTS

First of all it is important to present some features of the
MIT bag model. Figure 1 shows a qualitative overview of the
MIT bag model in a simple case when µu = µd , in comparison
with data analysis of some collision experiments [44]. This
figure also indicates the best values of the bag constant B to
be used in some energy ranges that we describe in the present
work. At high temperatures and low baryon chemical potential
(low density) we use the values B1/4 = 190 and 210 MeV.
On the other hand, our analysis at intermediate energies is
performed with B1/4 = 160 MeV.

For the hadronic phase we use the parameter sets presented
in Table III, where we give the symmetric nuclear matter
properties at saturation density as well as the parameters of the
models. In Figs. 2(a) and 2(b) the pressure of the symmetric
nuclear matter and the symmetry energy, respectively, are
plotted for a large range of densities. In Fig. 2(a) we also
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FIG. 2. (Color online) EOS for symmetric matter and different models. (a) Pressure as a function of the baryon number density. The
enclosed area represents experimental data according to Ref. [45]. (b) The symmetry energy as a function of the baryon number density.
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include the experimental constraints obtained from collective
flow data in heavy-ion collisions [45]. We have considered a
wide range of models frequently used to study stellar matter
or finite nuclei. Even though some of them do not satisfy the
constraints determined in Ref. [45], as a whole these sets of
models allow us to understand the influence of a hard/soft
EOS and a hard/soft symmetry energy of the hadron-matter–
quark-matter phase transition. We have considered NL3 [46],
with a quite large symmetry energy and incompressibility
at saturation and which was fitted in order to reproduce the
ground-state properties of both stable and unstable nuclei;
TM1 [47], which also reproduces the ground-state properties
of both stable and unstable nuclei and provides an equation of
state of nuclear matter similar to the one obtained in the RBHF
(relativistic Brueckner-Hartree-Fock) theory, softer than NL3
at high densities; TM1ωρ [48]; the TM1 parametrization
with a mixed isoscalar-isovector coupling which we fix in
order to obtain a softer density dependence of the symmetry
energy [34]; FSU [49], which was accurately calibrated to
simultaneously describe the GMR in 90Zr and 208Pb and the
IVGDR in 208Pb and still reproduce ground-state observables
of stable and unstable nuclei; GM1 and GM3 [50], generally
used to describe stellar matter, with a symmetry energy not so
hard as the one of NL3 and TM1; and NLρ [51], which has been
used to discuss the hadron-matter–quark-matter transition in
Ref. [28] and which presents an EOS at high densities between
GM1 and GM3.

Let us first describe some hadron-quark matter systems at
zero and finite temperature, including the deconfined phase
transition, through isothermal processes. We first discuss the
effects of pions and gluons on the phase transition. For this
discussion we take NL3 to describe the hadronic matter;
however, the main conclusions do not depend on the nuclear
model considered.

In Figs. 3(a) and 3(b) we show slices of the binodal surface
indicating the two-dimensional phase-coexistence boundary
in the {P, T , α} space, at T = 30 MeV. For each temperature,
the binodal section is divided into two branches. One branch
describes the system in the hadron phase, while the other
branch describes the quark-gluon phase. In both figures the
role of the pions and gluons is presented. Figure 3(a) shows a

system with no gluons for two cases with and without the pions.
The blue curves represent a system with no pions. The gluons
have a very strong effect on the critical point, corresponding
to a maximum in the pressure, when both phases coexist for
α = 0. The presence of gluons increases the critical pressure
almost by 100%. The role of the pions is better seen in Fig. 3(b)
(red lines). The asymmetry parameter of the hadron phase
increases due to the presence of the pions which increase the
isospin interaction. In equilibrium, the pressures in both phases
must be equal according to the Gibbs’ conditions. When pions
are present these conditions still hold. We observe a slight
increase of the pressure of the quark-gluon phase for α > 3,
following the hadronic pressure increase.

At finite temperature pions are present as a Bose gas and
their presence as a condensate state at low enough temperatures
is also possible. The presence of a pion gas and a pion
condensate changes the pressure at low densities according
to Fig. 4 by increasing the absolute value of the ρ meson field
(i.e., the isospin interaction) because the condensate itself does
not contribute to the pressure of the system as a boson gas. The
lowest pressures of the binodal section occur for the largest
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values of the asymmetry parameter α (1 for the hadronic phase
without pions).

When gluons are included in the quark phase the densities
reached by the system at the binodal surface increase slightly in
both phases such that the onset of the pion condensation takes
place at a slightly higher density: 2.87n0 instead of 2.18n0 at
T = 30 MeV according to Fig. 5, when an isothermal process
is analyzed. Therefore, the presence of gluons shifts the phase
transition to a quark-gluon plasma to larger densities.

The onset of the pion condensation according to Eq. (39)
[or similarly Eq. (36)] is clearly seen in Fig. 6 where we
plot the pion mass mπ , the pion chemical potential µπ , the
pion effective chemical potential νπ , and the pion frequency
at p = 0, ω+

b (p = 0). The pion condensation occurs for
the lower densities when the conditions (39) or (36) are
satisfied.

In Fig. 7 we show the binodal slices at different temper-
atures and for the bag constant 190 MeV. The enclosed area
becomes smaller with increasing temperature and the pressure
at α = 0 decreases when the temperature increases. The two
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FIG. 6. The onset of the pion condensation for the case with
gluons in Fig. 5. On the y axis we plot the pion mass, the chemical
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branches merge into a single line when the system reaches the
critical temperature at zero chemical potential and density. The
critical temperature (Tc) of the phase transition is ∼150 MeV
for the bag constant B1/4 = 190 MeV. For larger values of B

we obtain larger pressures at the same temperature and the
other way round for smaller values. The results shown in the
figure are consistent with the ones found in Ref. [26] although
here the NL3 parameter set has been used. The calculation
includes both pions and gluons.

Next we discuss the inclusion of strangeness. The popu-
lation of particles at T = 50 MeV can be seen in Fig. 8 for
two cases: (a) a simple system of protons, p, neutrons, n, and
pions, π−, in the hadron phase, and (b) including the hyperons
of the baryon octet and K+ mesons in the hadron phase. In both
cases the total strangeness of the system is zero; therefore, we
just have quarks u and d in the quark phase. Figure 8(a) shows
an increase of pions at low baryon densities, which plays an
important role in the isospin density of the system. Most of
the pions below 2.6n0 are in a zero momentum state (i.e., a
pion condensate). The same pattern can be seen in Fig. 8(b)
on pions and nucleons, indicating that strange particles are not
important under these conditions at that temperature but they
do appear at higher densities. We do not see kaon condensation,
just a pion condensate as in the first case. It is important to
analyze how sensitive are the above results to the choice of the
kaon-meson interaction. Work in this direction will be done in
the near future.

We now discuss the effect of the density dependence of
the EOS on the binodal surfaces. In Fig. 9(a) one sees a
comparison of the hadron-phase–quark-phase binodal sections
among the different parameter sets listed in Table III for the
zero temperature case and B1/4 = 160 MeV. Qualitatively all
the curves behave in the same way. The difference lies in the
pressures and the densities reached by the different systems,
which are explicitly shown in Fig. 9(b). We conclude that the
different behaviors seen for the binodal sections are due to
the EOS at large densities; see Fig. 2(a) where the pressure
is plotted as a function of density for cold symmetric nuclear
matter. At finite temperature a similar trend is obtained except
that the maximum densities reached are smaller.
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The effect of the symmetry energy on the binodal is better
discussed analyzing Fig. 10 where the binodal for TM1 and
TM1ωρ is plotted without pions. These two models have the
same isoscalar behavior and just differ in the isovector channel,
TM1ωρ having a softer symmetry energy. We conclude that
a softer symmetry energy favors a phase transition at larger
asymmetries. For the same reason the models with a softer
symmetry energy have their binodals for larger asymmetries
in Fig. 9(a).

Figures 2(a) and 2(b) are used in the following to discuss the
differences between the models. We see that the hadron density
at the binodal surface is very sensitive to the softness/hardness
of the EOS at intermediate/high densities. In particular,
the largest pressures are attained by the softest EOS. It is
interesting to analyze the behavior of TM1: it behaves at low
densities as a hard EOS like NL3 and at high densities as a soft
one, giving the largest pressure at the critical point. It is the
relative change of hard/soft character of the EOS that explains
the crossing between the different models in Fig. 9(a). We have
not included a curve for FSU because due to its softness no
phase transition was obtained at reasonable densities. The be-
havior at large densities can be adjusted by changing the value

of the parameter χ , which multiplies the forth power of the
ω-meson term in the Lagrangian density. A larger value gives
a softer EOS at large densities. We have reduced the value of
χ and for χ = 0.03 we could get convergence at reasonable
densities. This coincides with the large density behavior of the
new parametrization proposed in Ref. [52], which corrects the
behavior of FSU at large densities, which predicted too small
maximum star masses and too large star radii.

The density dependence of the energy density does not
affect the binodal surface of symmetric nuclear matter but
it certainly has an effect if we consider asymmetric matter.
We investigate the phase transition at intermediate energies
using a convenient choice of different parametrizations of the
NLWM to explore different compressibilities at large densities
as well as an asysoft and asyhard EOS. We take into account
the following parameter sets: NL3, hard EOS and symmetry
energy; NLρ, intermediate behavior in both the isoscalar and
the isovector channel; TM1, soft EOS at high densities and
hard symmetry energy; and TM1ωρ, with a soft symmetry
energy.

To discuss the effect of isospin asymmetry on the binodal
sections, we allow the temperature to change with fixed
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asymmetry parameter and compare the predictions of the
different models. Figures 11(a) and 11(b) show, for NL3 and
NLρ, the binodal sections in the {nB, T , α} space and the
projection of several branches at different α onto the (nB, T )
plane (HP = hadron phase; QP = quark phase). In other
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no gluons. (b) Same as panel (a) for the NLρ parameter set. In both
cases the critical temperature where µB = 0 is Tc ∼ 155 MeV.

words Figs. 11(a) and 11(b) show the QCD phase diagram
with different asymmetries, α = 0, 0.2, 0.4, 0.6, 0.8, and 1.0,
from the right (I) to the left (II) in the two phases. From now
on, in order not to reach too high densities in the hadron phase
we exclude the gluons from the system. This does not affect the
comparison between models and may give rise to a maximum
20% underestimation of the transition density.

In Fig. 11(a) we have considered B1/4 = 190 MeV together
with the models NL3 and NLρ. The properties of the EOS are
clearly reflected on these results: for NL3 the transition occurs
for smaller densities due to its very large compressibility at
large densities. It is also this high value of the compressibility
that dilutes in part the effect of the asymmetry parameter.
NLρ has a much softer EOS and symmetry energy and,
therefore, the curves obtained for a fixed asymmetry span a
larger range of densities. In summary, the hadron-quark phase
transition is favored when the asymmetry of the system is
increased.

We are interested in discussing the phase transition at
intermediate temperatures and high densities and, for this
reason, we consider smaller bag pressures according to
Fig. 1. We set B1/4 = 160 MeV to reach a specific range of
temperature and densities, which is presented in Figs. 12(a) and
12(c) and also in Fig. 13(a). The asymmetries experimentally
available up to now according to Table II are in the range
0–0.23.

Since NL3 is too hard and does not satisfy most of
the constraints imposed by experimental and observational
measurements [53] we consider in the following TM1 with
and without a ωρ nonlinear term that allows us to discuss
a asy-soft and a asy-hard EOS. We also take into account
the NLρ parametrization in order to compare with the results
already obtained in Ref. [27].

In Fig. 12 we compare TM1 and TM1-ωρ. This allows us
to discuss the effect of density dependence of the symmetry
energy on the phase transition because the isoscalar channel is
kept fixed. The main effect of a softer symmetry energy is to
shift the binodal sections for larger values of the asymmetry
parameter to larger densities. A harder symmetry energy
allows the occurrence of the hadron-quark phase transition at
smaller densities and, therefore, is easier to reach with heavy-
ion collisions at intermediate energies. Similar conclusions
were drawn in Ref. [28] where the effect of the δ meson on
the phase transition was discussed: the δ meson gives rise
to a harder symmetry energy at large densities favoring the
hadron-quark phase transition.

In Fig. 13(a) we show for the same bag constant the binodal
sections obtained with NLρ. It is seen that due to a softer
EOS at intermediate densities the binodal sections occur at
larger densities when compared with TM1. The effect of the
bag constant is clear if we compare Fig. 11(b) with B1/4 =
190 MeV with Fig. 13(a). A larger B shifts the phase transition
to much larger densities, showing that in order to obtain a
good estimation it is essential to choose an adequate value
of B.

We show in Figs. 12(b) and 12(d) and Fig. 13(b) a part of
Figs. 12(a) and 12(c) and also Fig. 13(a), corresponding to
α = 0.2. We also include curves corresponding to the mixed
phase with the quark concentrations χ = 0.2 and 0.5 which
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CAVAGNOLI, PROVIDÊNCIA, AND MENEZES PHYSICAL REVIEW C 83, 045201 (2011)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  1  2  3  4  5  6  7  8  9

T
 (

M
eV

)

nB/n0

•

B
1/4

 = 160 MeV

 (I) α = 0

(II) α = 1

TM1

HP

QP

(a)

Hadronic branch
Quark branch

 0

 20

 40

 60

 80

 100

 2  3  4  5  6  7  8  9

T
 (

M
eV

)

nB/n0

HP

QP

αH
=0.2 αQ

=0.2

B
1/4

 = 160 MeV

TM1

(b)

χ=0.0  ; αH
=0.2

χ=0.2  ; α =0.2

χ=0.5  ; α =0.2

χ=1.0  ; αQ
=0.2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  1  2  3  4  5  6  7  8  9

T
 (

M
eV

)

nB/n0

•

B
1/4

 = 160 MeV

 (I) α = 0

(II) α = 1

TM1ωρ

HP

QP

(c)

Hadronic branch
Quark branch

 0

 20

 40

 60

 80

 100

 2  3  4  5  6  7  8  9

T
 (

M
eV

)

nB/n0

HP

QP

αH
=0.2 αQ

=0.2

B
1/4

 = 160 MeV

TM1ωρ

(d)

χ=0.0  ; αH
=0.2

χ=0.2  ; α =0.2

χ=0.5  ; α =0.2

χ=1.0  ; αQ
=0.2

FIG. 12. (Color online) Same as in Fig. 11 for B1/4 = 160 MeV. The critical temperatures are Tc ∼ 130 MeV and the labels (I) and (II) also
represent the asymmetry in the same way as in Fig. 11. (a) The TM1 parameter set is used. (b) Part of Fig. 12(a) for α = 0.2 with the mixed
phase for different quark concentrations (χ = 0.2, 0.5). (c) The TM1 parameter set and the mixing term �v have been used in the present case.
(d) Part of Fig. 12(c) with the mixed phase.

correspond to 20% and 50% of quarks in the mixed phase. One
sees the indication of an interesting region where the phase
transition probably occurs and can be probed by intermediate-

energy heavy-ion collisions. This region is located in the range
nB = 2 − 4n0 and T = 50–65 MeV and can reached by the
new planned facilities (NICA) at JINR/ Dubna [19] and (FAIR)
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quark concentrations (χ = 0.2, 0.5).
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at GSI/Darmstadt [20] that will start operations in the next few
years.

The density behavior at intermediate/high densities defines
the transition region. For instance, models TM1 and TM1ωρ

would favor the detection of a quark phase more than
NLρ.

V. SUMMARY

We have presented a study of the deconfinement phase
transition from hadronic matter to a quark-gluon plasma that
could be formed in heavy-ion collisions. Calculations at finite
temperature with a simple two-phase model and the inclusion
of pion and kaon condensation were done to describe this type
of system. We have studied the effect of the density dependence
of the EOS on the phase transition choosing a convenient set
of parametrizations of the NLWM. We have considered both
hard and soft EOS at intermediate densities as well as models
with asyhard and asysoft symmetry energies. We have also
considered the effect of gluons on the quark phase. For the
quark phase we have used the MIT bag model and chose the bag
constant according to a parametrization of the freeze-out curve
deduced from particle multiplicities in heavy-ion collisions
[16]: for deconfinement phase transition at T ∼ 50–60 and
ρ ∼ 2–6ρ0, the bag constant B1/4 ∼ 160 MeV was used.

An important result is the difference between the phase
diagram for a symmetric system and that for asymmetric
matter as observed in liquid-gas phase transition. Usually,
the onset of the phase transition takes place at lower baryon
densities and temperatures in more asymmetric systems. This
can be probed by means of neutron-rich nuclei in heavy-ion
collisions. Moreover, the density at which the phase transition
occurs is sensitive to the density dependence of the EOS at
intermediate densities. A hard EOS gives rise to a transition
at lower densities. The density dependence of the symmetry
energy also affects the transition when asymmetric matter is
considered. The phase transition is favored for asymmetric
nuclear matter and even more for an asyhard symmetry
energy.

Both thermal pions and pion condensation have been
included in the calculation. They mainly play a role at low
densities, large isospin asymmetries, and large temperatures.
We have considered that the pions couple to the nucleons
through the ρ meson [26]. Using an equivalent parametrization
for the kaon-meson coupling, which maybe too naive because
it only takes into account the isospin interaction, we have
verified that the effect of including strangeness in the hadron
phase was negligible for a system with an overall strangeness
equal to zero. This can be generalized to finite strangeness
when it becomes possible to prepare heavy-ion collisions with
hypernuclei. It remains to be investigated how sensitive are the
results to the pion and kaon interaction.

The results obtained for the phase transition are very
sensitive to the EOS. Both the isoscalar and the isovector
interactions have an effect on the transition density. According
to the effective models used in this work there exists a
region in the parameter space where the phase transition
probably occurs and can be probed by heavy-ion collisions
at intermediate energies. This region is located in the range

nB = 2–4n0 and T = 30–65 MeV and can be reached by the
new planned facilities (NICA) at JINR/ Dubna [19] and (FAIR)
at GSI/Darmstadt [20] that will start operations in the next few
years. We have obtained a larger T interval, extending to lower
temperatures, for the same densities obtained in Ref. [28] due
to the properties of the models used. A clear sign of a phase
transition could be used to constrain both the EOS and the
symmetry energy at intermediate densities.

We have verified that models with a soft EOS and soft
symmetry energy such as FSU do not predict a hadron-quark
phase transition at densities that could be attained in the
laboratory.

A more complete system with all baryons of the baryonic
octet and strange mesons, as well as interacting pions and
kaons, and using interactions constrained by experimental
measurements is under investigation in order to get more
systematic results.
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APPENDIX: THE BOSON THERMODYNAMIC
POTENTIAL

Using the Lagrangian density in the minimal coupling
scheme [37–43]

Lb = D∗
µ�∗Dµ� − m∗2

b �∗�, (A1)

it is possible to obtain the respective thermodynamic potential
and the EOS of the boson fields. It is convenient to transform
� into real and imaginary parts using two real fields, φ1(x, t)
and φ2(x, t), such that

� = 1√
2

(φ1 + iφ2), �∗ = 1√
2

(φ1 − iφ2). (A2)

The conjugate momenta are

π1 = ∂Lb

∂(∂0φ1)
= ∂0φ1 − X0φ2,

(A3)

π2 = ∂Lb

∂(∂0φ2)
= ∂0φ2 + X0φ1,

and the corresponding Hamiltonian density of the boson field
is Hb = π1∂0φ1 + π2∂0φ2 − Lb such that the four-current and
its zero component are

jµ = i[�∗(Dµ�) − (D∗
µ�∗)�], (A4)

j0 = φ2π1 − φ1π2. (A5)

For the neutral pions we just have π = ∂Lb

∂(∂0φ) = ∂0φ and � =
φ

21/2 , such that �∗ = � and jµ = 0. Now we can write the
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Hamiltonian density

Hb = 1

2
π2

1 + 1

2
π2

2 + π1(X0φ2) − π2(X0φ1) + 1

2
( �∇φ1)2

+ 1

2
( �∇φ2)2 + (∂iφ2)Xiφ1 − (∂iφ1)Xiφ2 + 1

2
(Xiφ1)2

+ 1

2
(Xiφ2)2 + m∗2

b

2

(
φ2

1 + φ2
2

)
, (A6)

where i = 1, 2, 3, and the partition function in the grand
canonical ensemble as a functional integral is given by

Zb =
∫

[dπ1][dπ2]
∫

periodic

[dφ1][dφ2] exp

{∫ β

0
dτ

∫
d3x

×
[
iπ1

∂φ1

∂τ
+ iπ2

∂φ2

∂τ
− Hb + µb(φ2π1 − φ1π2)

]}
,

(A7)

where µb is the boson chemical potential associated with the
conserved charge Q = ∫

d3xj0(x). Here “periodic” means that
the integration over the field is constrained in the imaginary
time variable τ = it so that φk(x, 0) = φk(x, β), and where
β = 1/T . The neutral pion Hamiltonian is Hπ0 = 1

2π2 +
1
2 ( �∇φ)2 + 1

2m2
π0φ

2, which has the form of that of a neutral
scalar field, so that it can be used within the relativistic
mean-field approach, as it is known that the pion pseudoscalar
interaction term vanishes in the mean field level. After some
algebra the integration over momenta can be done and the
result is

Zb = N2
∫

periodic

[dφ1][dφ2] exp

(∫ β

0
dτ

∫
d3x

×
{

− 1

2

[
∂φ1

∂τ
− i(µb − X0)φ2

]2

− 1

2

[
∂φ2

∂τ
+ i(µb − X0)φ1

]2

− 1

2
( �∇φ1)2 − 1

2
( �∇φ2)2 + (∂iφ1)Xiφ2 − (∂iφ2)Xiφ1

−1

2
(Xiφ1)2 − 1

2
(Xiφ2)2 − 1

2
m∗2

b

(
φ2

1 + φ2
2

)})
, (A8)

where N is a normalization factor. In the mean field approach
〈Xi〉 = 0. Integrating Eq. (A8) by parts, and taking into
account the periodicity of φ1 and φ2, the result is

Zb = N2
∫

periodic

[dφ1][dφ2] exp

(
1

2

∫ β

0
dτ

∫
d3x

×
{
φ1

[
∂2

∂τ 2
+ ∇2 − m∗2

b + (µb − X0)2

]
φ1

×φ2

[
∂2

∂τ 2
+ ∇2 − m∗2

b + (µb − X0)2

]
φ2

+ 2i(µb − X0)

[
φ2

(
∂φ1

∂τ

)
− φ1

(
∂φ2

∂τ

)]})
. (A9)

The fields can be expanded in a Fourier series as

φ1(x, τ ) =
√

2ζ cos(θ ) +
(

β

V

)1/2 ∑
n

∑
p

ei(p·x+ωnτ )φ1,n(p),

φ2(x, τ ) =
√

2ζ sin(θ ) +
(

β

V

)1/2 ∑
n

∑
p

ei(p·x+ωnτ )φ2,n(p),

(A10)

where the Matsubara frequency is ωn = 2πnT , due to the
constraint of periodicity of the fields, such that φk(x, β) =
φk(x, 0) for all x. The normalization factors of Eq. (A10) can
be chosen so that each Fourier amplitude is dimensionless.
The infrared character of the field is carried out by ζ and
θ , so that φ1,0(p = 0) = φ2,0(p = 0) = 0, which allows some
particles to reside in the n = 0, p = 0 state, i.e., a possibility
of a condensation of the bosons into the zero-momentum state
(“s-wave” condensation). Using Eq. (A10) in Eq. (A9), and
noting that φ−n(−p) = φ∗

n(p) because φ1(x, τ ) and φ2(x, τ )
are real fields, we have

Zb = N2

[∏
n

∏
p

∫
dφ1,n(p)dφ2,n(p)

]
eS, (A11)

where

S = βV ζ 2
[
(µb − X0)2 − m∗2

b

]
−1

2

∑
n

∑
p

[φ1,−n(−p), φ2,−n(−p) ]D

[
φ1,n(p)

φ2,n(p)

]
,

(A12)

and

D = β2

[
ω2

n + p2 + m∗2
b − (µb − X0)2 −2(µb − X0)ωn

2(µb − X0)ωn ω2
n + p2 + m∗2

b − (µb − X0)2

]
.

(A13)

As the thermodynamic potential is given by � = −(1/β)
ln(Z), we can perform the integrals in Eq. (A11) and write

ln(Zb) = βV ζ 2
[
(µb − X0)2−m∗2

b

]+ ln
[
(detD)−

1
2
]
. (A14)

The multiplication of Zb by any constant is irrelevant because
it does not change the thermodynamics of the system. The
second term of (A14) is given by

− 1

2
ln [detD] = −1

2
ln

{∏
n

∏
p

β4
[(

ω2
n + p2 + m∗2

b

− (µb − X0)2)2 + 4(µb − X0)2ω2
n

]}

= −1

2
ln

{∏
n,p

β2 [
ω2

n + (ω+ − µb)2]}

−1

2
ln

{∏
n,p

β2
[
ω2

n + (ω− + µb)2
]}

,

(A15)
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so that Eq. (A14) can be written as

ln(Zb) = βV ζ 2
[
(µb − X0)2 − m∗2

b

]
−1

2

∑
n,p

ln
{
β2

[
ω2

n + (ω+−µb)2
]}

−1

2

∑
n,p

ln
{
β2

[
ω2

n + (ω−+µb)2
]}

, (A16)

and in the continuum limit, neglecting the zero-point energy
contribution, due to the mean-field approach, the result is

ln(Zb) = βV ζ 2
[
(µb − X0)2 − m∗2

b

] − V

∫
d3p

(2π )3

×{ln[1 − e−β(ω+−µ)] + ln[1 − e−β(ω−+µ)]}, (A17)

where

ω±(p) ≡
√

p2 + m∗2
b ± X0 (A18)

is the effective Bose energy, such that the thermodynamic
potential for the bosons is given by

�b

V
= − ln(Zb)

βV
= ζ 2

[
m∗2

b − (µb − X0)2
]

+ T

∫
d3p

(2π )3
{ln[1 − e−β(ω+−µ)] + ln[1 − e−β(ω−+µ)]}.

(A19)
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