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Hydrodynamic flow in heavy-ion collisions with large hadronic viscosity
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Using the (2+1)-dimensional viscous hydrodynamic code VISH2+1 with a temperature-dependent specific
shear viscosity (η/s)(T ), we present a detailed study of the influence of a large hadronic shear viscosity and
its corresponding relaxation time τπ on the transverse momentum spectra and elliptic flow of hadrons produced
in 200A GeV Au+Au collisions. Although theory, in principle, predicts a well-defined relation τπT = κ(T ) ×
(η/s)(T ), the precise form of κ(T ) for the matter created in relativistic heavy-ion collisions is not known.
For the popular choice κ = 3 the hadron spectra are found to be insensitive to a significant rise of η/s in the
hadronic stage, whereas their differential elliptic flow v2(pT ) is strongly suppressed by large hadronic viscosity.
The large viscous effects on v2 are strongly reduced if (as theoretically expected) κ(T ) is allowed to grow
with decreasing temperature in the hadronic stage. This implies that, until reliable calculations of κ(T ) become
available, an extraction of the hadronic shear viscosity from a comparison between VISH2+1 and a microscopic
hadron cascade or experimental data requires a simultaneous fit of (η/s)(T ) and κ(T ).
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I. INTRODUCTION

A fluid state of matter, quark-gluon plasma (QGP), is
created in ultrarelativistic heavy-ion collision experiments at
the Relativistic Heavy Ion Collider (RHIC) [1–4]. Theoretical
analysis of these experiments established that QGP behaves
like an almost perfect liquid with very small viscosity [5–7].
Much effort was focused on determining the QGP transport
parameters, in particular, its specific shear viscosity (η/s)QGP

[i.e., the ratio between its shear viscosity η and entropy density
s (see [8,9] for recent reviews)].

In a recent article [10] the newly developed hybrid code
VISHNU [11] was used to extract (η/s)QGP from the observed
collision centrality dependence of the integrated charged
hadron elliptic flow v2. This code couples the macroscopic
evolution of the QGP by the (2+1)-dimensional viscous hy-
drodynamic code VISH2+1 to the Boltzmann cascade URQMD

which describes the final hadronic rescattering and freeze-out
stage microscopically. The microscopic simulation of the late
hadronic stage is numerically costly, and a macroscopic de-
scription with viscous fluid dynamics would therefore be much
preferred if valid. Unfortunately, a detailed study presented
in Ref. [11] indicated that the microscopic URQMD dynamics
cannot be faithfully simulated with viscous hydrodynamics
if one assumes the frequently used relationship τπT = 3 η

s

between the specific shear viscosity η/s and the microscopic
relaxation time τπ for the shear viscous pressure tensor πµν ,
scaled with the temperature T of the fluid. Relations of the
type τπT = κ

η

s
, with constant proportionality factors κ , are

found theoretically in both the extreme weak-coupling (for
a massless Boltzmann gas one finds κ = 6 in Israel-Stewart
theory [12,13] and κ = 5 in the modified approach by Denicol
et al. [14]) and extreme strong-coupling limits (where one has
κ = 4−2 ln 2 = 2.614 for N = 4 super-Yang-Mills theory at
infinite coupling [15–17]). Other recent work, however, based
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on modified Kubo relations [18–21] and a deeper analysis
of the Boltzmann equation and its connection to viscous
hydrodynamics [14,22,23], suggests (in some cases strong)
temperature dependence of κ .

Here we will explore one such proposed relation,
κ = (e+p)/p [19] (where e and p are the energy density and
pressure of the system), which leads to a strong increase of
κ(T ) with decreasing temperature in the massive hadron reso-
nance gas below the quark confinement temperature Tc. Such
an increase is qualitatively consistent with certain observations
made in the recent VISHNU study [11]. We here use VISH2+1

to investigate, within a purely hydrodynamic framework,
systematically the consequences of increasing shear viscosity
and shear pressure relaxation time in the late hadronic stage
on the transverse momentum spectra and elliptic flow of soft
(pT <2 GeV/c) hadrons produced in Au+Au collisions at
RHIC. Our work differs from an earlier study by Bożek [24] of
the effects of temperature-dependent specific bulk and shear
viscosities by focusing on shear viscosity and investigating
situations in which the shear viscosity of the hadron gas
is larger than that of the QGP (rather than the other way
around [24]), as expected on basic theoretical grounds [25].
While the present work was being completed, a related study
appeared [26] that focuses chiefly on the question of whether
recent data from Pb+Pb collisions at the Large Hadron Collider
(LHC) [27] require an increase of the QGP shear viscosity with
rising temperature.

The paper is organized as follows: In Sec. II we briefly
review the viscous hydrodynamic model and discuss the
specific ingredients used in the present study. The effects of a
large hadronic specific shear viscosity (η/s)HG on the fireball
evolution are discussed in Sec. III. In Sec. IV we discuss the
dependence of the transverse momentum spectra and elliptic
flow of emitted hadrons in Au+Au collisions on (η/s)HG,
the decoupling temperature Tdec, and the collision centrality.
Section V is dedicated to a detailed discussion of the viscous
corrections to the freeze-out phase-space distribution and their
effects on spectra and elliptic flow. All results up to this
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point assume a constant factor κ = 3 in the relation τπT = κ
η

s

between the specific shear viscosity η/s and the microscopic
relaxation time τπ ; in Sec. VI we explore the consequences of
making κ(T ) temperature dependent and letting it grow during
the quark-hadron phase transition. A final discussion in Sec.
VII concludes our paper.

II. VISCOUS HYDRODYNAMICS: SPECIFIC
INGREDIENTS FOR THE PRESENT STUDY

VISH2+1 [28] solves the second-order Israel-Stewart equa-
tions for causal relativistic viscous fluid dynamics [12] in the
spatial plane transverse to the beam direction and in time,
assuming boost invariance of the longitudinal expansion. To
avoid repetition we refer the reader interested in the technical
details to earlier descriptions of the specific form of the
evolution equations and the equation of state s95p-PCE used
here (see specifically Secs. II and III in Ref. [29]). The energy-
momentum tensor is decomposed as T µν = euµuν − p�µν +
πµν where πµν is the viscous pressure tensor. We consider
only shear viscosity and ignore bulk viscous effects; in this
situation the Israel-Stewart equations describe the evolution
of πµν toward its Navier-Stokes limit 2ησµν on a microscopic
relaxation time scale τπ , where η is the shear viscosity and σµν

is the velocity shear tensor, which evolves hydrodynamically
in space and time. We initialize πµν with its Navier-Stokes
value πµν = 2ησ

µν

0 at initial time τ0, calculated from the initial
velocity profile uµ = (uτ , ux, uy, uη) = (1, 0, 0, 0).

The generation of hydrodynamic flow from the pressure
gradients in the system is controlled by the fluid’s equation
of state (EOS) for which we use s95p-PCE [29,30] with
chemical decoupling temperature Tchem = 165 MeV. This EOS
interpolates between state-of-the-art Lattice QCD data at high
temperatures and a chemically frozen hadron resonance gas
at low temperatures. Chemical freeze-out at Tchem = 165 MeV
guarantees that the final hadron yields, calculated by inte-
grating the final hadron momentum spectra obtained from
the hydrodynamic output along an isothermal decoupling
surface of temperature Tdec < Tchem via the Cooper-Frye pro-
cedure [31] followed by resonance decay [32,33], agree with
experimental measurements in 200 A GeV Au+Au collisions
at RHIC [3,34,35]. At decoupling, we parametrize the local
distribution function in the Cooper-Frye formula by a local
thermal equilibrium function plus a small viscous correction
that depends on the value of the viscous pressure tensor πµν

on the freeze-out surface and increases quadratically with
particle momentum [29,36]. Unless noted otherwise, we use
Tdec = 120 MeV.

We initialize the hydrodynamic evolution with an energy
density profile obtained from the optical FKLN model [37–39].
The model yields the initial gluon density distribution which,
after thermalization, gives directly the initial entropy density
which is then converted to energy density using the EOS
s95p-PCE. The normalization of the initial entropy density
is adjusted in the most central collisions to reproduce the
finally measured charged hadron multiplicity. Because of
viscous entropy production, changing η/s requires a read-
justment of this normalization to keep the final multiplicity

FIG. 1. (Color online) Five choices for the temperature-
dependent (η/s)(T ) studied in this work. The constant values at low
T are multiples of 0.08 ≈ 1

4π
.

fixed. After normalization in central collisions, the centrality
dependence of the final charged hadron multiplicity is obtained
directly from the fKLN model, without further adjustment of
parameters.

The key ingredients whose influence on the generation
of radial and elliptic flow we want to study here are the
temperature dependence of the specific shear viscosity η/s

and of the proportionality constant between η/s and the
temperature-scaled microscopic relaxation time τπT , κ = τπT

η/s
.

Specifically, we will explore scenarios where η/s = 0.16 is a
constant in the QGP phase but increases by variable amounts
during the transition from QGP to hadrons, using the following
parametrization for its temperature dependence:

η

s
(T ) = (η/s)QGP + (η/s)HG

2

+ (η/s)QGP − (η/s)HG

2
tanh

(
40

T −Tc

Tc

)
. (1)

Here Tc = 170 MeV, and (η/s)QGP = 0.16 and (η/s)HG

are (different) constants for the QGP and HG (hadron gas)
phases. We will explore the range 0.16 � (η/s)HG � 0.48, as
illustrated in Fig. 1. In the next three sections κ will be held
constant at κ = 3;1 consequences of a temperature-dependent
κ(T ) = (e + p)/p will be explored in Sec. VI.

III. HYDRODYNAMIC EVOLUTION

To study how the fireball evolves with a temperature-
dependent (η/s)(T ) that increases in the HG phase, we graph
the time evolution for the average transverse flow velocity
〈〈v⊥〉〉 (the average over the transverse plane being defined

1The specific values (η/s)QGP = 0.16 and κ = 3 chosen here agree
with those used by us in the earlier studies [10,29] whereas the recent
work [26] assumes κ = 5.

044909-2



HYDRODYNAMIC FLOW IN HEAVY-ION COLLISIONS . . . PHYSICAL REVIEW C 83, 044909 (2011)

with the laboratory-frame energy density γ⊥e as weight),
the spatial eccentricity εx = 〈〈y2−x2〉〉

〈〈y2+x2〉〉 of the laboratory-frame
energy density distribution, the flow momentum anisotropy

εp = 〈T xx
0 −T

yy

0 〉
〈T xx

0 +T
yy

0 〉 (where 〈. . .〉 denotes simple integration over the

transverse plane and T
µν

0 is the ideal fluid part of the energy-
momentum tensor, without viscous pressure contributions),
and the total momentum anisotropy ε′

p = 〈T xx−T yy 〉
〈T xx+T yy 〉 for different

choices of the temperature dependence of η/s.
Because shear viscosity leads to viscous heating, which

generates entropy, holding the finally observed hadron mul-
tiplicity fixed requires that an increase in (η/s)(T ) must
be accompanied by a decrease of the initial entropy of the
fireball. We implement this by a decrease of the normalization
of the initial entropy density distribution, keeping its shape
fixed. Whereas for fixed initial conditions an overall increase
of η/s leads to stronger radial acceleration because of a
positive contribution from the viscous pressure tensor πµν

to the transverse pressure gradients [36,40–43], this effect
is largely compensated [26,29,44] after rescaling the initial
entropy density to ensure fixed final multiplicity. For our
temperature-dependent η/s this compensation no longer works
in the same way: After rescaling the initial entropy density
profile, to compensate for increased viscous heating in the
hadronic phase, the QGP core shrinks and the HG corona
grows in size. Because the viscous pressure is relatively larger
in the hadronic phase than in the QGP, the effective transverse
pressure gradient is reduced when increasing η/s only in the
hadronic phase, leading to weaker radial acceleration. This can
be seen in Fig. 1(a), where we see a reduction of the growth
rate of the average radial flow velocity 〈〈v⊥〉〉 with increasing
values of (η/s)HG, holding (η/s)QGP = 0.16 fixed.

The larger shear viscosity in the hadronic corona leads to a
more rapid initial decay2 of the spatial fireball eccentricity εx

[see Fig. 2(b)] and a slower growth rate and lower asymptotic
value of the flow momentum anisotropy εp [Fig. 2(c), open
symbols]. The spatial eccentricity curves in Fig. 2(b) all
cross around τ − τ0 = 4.5 fm/c, indicating the transition from
stronger decay of εx at early times to weaker decay at late
times for larger values of (η/s)HG. This is a consequence of
the reduced flow anisotropy εp shown in Fig. 2(c).

The lines with solid symbols in Fig. 2(c) show that the
effects of increased hadronic viscosity on the asymptotic
values of the total momentum anisotropy ε′

p are much stronger
than on the flow anisotropy εp: Although the latter decreases
by about 25% from (η/s)HG = 0.16 to (η/s)HG = 0.48, the
corresponding decrease for ε′

p is almost twice as large.
Furthermore, most of the effect on ε′

p happens at late times
τ − τ0>4.5 fm/c when most of the matter has converted into
hadron gas. This reflects the growth of the Navier-Stokes value
π

µν

NS = 2ησµν of the viscous pressure contribution to T µν in
the hadronic phase where ηHG increases. In contrast to εp, the

2We note that ε is defined by integrating at fixed time τ over
the entire transverse plane, including both thermalized and already
decoupled matter. It is possible that the strong initial decay of ε seen in
Fig. 2(b) arises mostly from contributions in that part of the hadronic
corona that has already decoupled.

FIG. 2. (Color online) The average radial flow 〈〈v⊥〉〉, spatial
eccentricity εx , and the flow and total momentum anisotropies
εp and ε′

p for Au+Au collisions at b = 7.5 fm as functions of
hydrodynamic evolution time τ−τ0, for τ0 = 0.4 fm/c and kinetic
freeze-out temperature Tdec = 120 MeV. Lines with different symbols
correspond to different temperature dependencies of η/s as shown in
Fig. 1.

total momentum anisotropy ε′
p does not saturate at late times

after the spatial eccentricity (which drives the flow anisotropy)
has essentially decayed to zero; its continued increase is
because of the continuing decrease of the magnitude of the
πµν components whose contribution to ε′

p is negative [43].
The large difference between the late-time values of

εp and ε′
p for high values of ηHG shows that, for strong

hadronic viscosity, the viscous corrections to the local thermal
equilibrium distribution on the kinetic decoupling surface at
Tdec are big. We will explore this in more detail in Sec. V.
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IV. SPECTRA AND ELLIPTIC FLOW

A. Central and semiperipheral Au+Au collisions

Figure 3 shows the transverse momentum spectra for
charged hadrons, pions, and protons from central Au+Au
collisions (0%−5% centrality) and their elliptic flows v2(pT )
for semiperipheral Au+Au collisions (20%−30% centrality)
for different choices of the hadronic shear viscosity (η/s)HG.
The pT spectra in Fig. 3(a) are seen to be completely insensitive
to the value of (η/s)HG. From the reduction of the radial flow
seen in Fig. 2(a) one would have expected steeper spectra
for larger (η/s)HG because Tdec = 120 MeV is held fixed;
clearly, for pT < 2 GeV/c, the viscous correction δf to the
local equilibrium distribution at freeze-out (which will be
analyzed in greater depth in Sec. V) happens to almost exactly
compensate for the loss of radial flow, over the entire range of
(η/s)HG values studied here.

This is not true for the elliptic flow, which is strongly
reduced when the hadronic viscosity is increased [Figs. 3(b)–
3(d)]. For protons a striking effect is seen for (η/s)HG>0.32:
The proton elliptic flow turns negative (i.e., protons show
stronger flow perpendicular than parallel to the reaction plane)
for low pT . This effect is caused entirely by the δf correction.
δf grows not only with pT , as is well known, but also with the
mass of the hadron. For massive hadrons, the shear viscous
δf correction can be a strong effect even at pT = 0. In Fig. 3
negative v2(pT ) caused by δf at low pT is not visible for
pions, but for protons and would be much stronger for �

FIG. 3. (Color online) (a) Transverse momentum spectra for
charged hadrons, pions, and protons from VISH2+ for the 5% most
central Au+Au collisions (b = 2.33 fm). (b) and (c) Differential
elliptic flow v2(pT ) for charged hadrons (b), pions (c), and protons (d)
from Au+Au collisions at 20%–30% centrality (b = 7.49 fm). Lines
with different symbols correspond to different values of (η/s)HG as
shown in Fig. 1; Tdec = 120 MeV. Decay products from all strong
resonance decays are included. Charged hadrons include π+, K+, p,
�±, −, �−, and their antiparticles.

FIG. 4. (Color online) Similar to Fig. 3, for fixed (η/s)HG = 0.48
and different decoupling temperatures Tdec ranging from 160 to
100 MeV. In panels (b)–(d), dotted lines show v2(pT ) calculated
without the δf correction whereas the solid lines show the full
calculations.

hyperons or J/ψ mesons [45] if they also followed viscous
hydrodynamical evolution down to Tdec = 120 MeV.

The effect of the δf correction is studied in Fig. 4, for
various choices of the decoupling temperature Tdec. We hold
the hadronic shear viscosity fixed at (η/s)HG = 0.48, the largest
value studied here. The effect of variations in Tdec on the
spectra in Fig. 4(a) is similar to what we observed in Ref. [29]:
Lower decoupling temperatures cause flatter proton spectra
because of larger radial flow, steeper pion spectra from the
cooling effect that dominates for light particles, and almost no
change in the charged hadron spectra whose mix of light and
heavy particles effectively balances the counteracting cooling
and radial flow effects.

In Figs. 4(b)–4(d) we plot the differential elliptic flow
for charged hadrons, pions, and protons. The dotted lines
show a calculation that ignores the viscous δf correction
at freeze-out and thus only includes the Tdec dependence of
the pure flow effects. We see that lower Tdec values suppress
v2(pT ) for protons but increase it for pions at low pT . This
is really a consequence of the accompanying change of the
pT spectra: Because of the large hadronic viscosity, very
little additional flow momentum anisotropy is generated at
temperatures below Tc. However, because of cooling, the pion
spectra get steeper with decreasing Tdec, moving more of
their momentum anisotropy to low transverse momenta, which
leads to the increase of pion v2(pT ) at low pT . Conversely,
the proton spectra get flatter, in spite of cooling, because
of additional radial flow developing between Tc and Tdec;
consequently, their total momentum anisotropy gets shifted
on average to larger transverse momenta, causing a reduction
of proton v2(pT ) at low pT (accompanied by an increase at
high pT < 2 GeV/c, beyond the range shown here). Both the
flattening of the proton spectra and the shifting of their elliptic
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flow to larger pT are stronger for the case of large hadronic
shear viscosity ((η/s)HG = 0.48) studied here than for the case
of temperature-independent η/s = 0.16 studied in Ref. [29]:
The large hadronic viscosity generates stronger additional
radial flow but less additional momentum anisotropy in the
hadronic stage than does constant η/s = 0.16. Note that,
without δf , proton v2(pT ) never turns negative, even for the
largest hadronic shear viscosity studied in this work.

The solid lines in Figs. 4(b)–4(d) show the full calculation
of v2(pT ) including the δf correction. We see larger δf effects
for protons than pions, because of their larger rest mass [43].
The full calculations feature a nonmonotonic variation of
pion and charged hadron v2(pT ) with decoupling temperature
Tdec: The suppression from δf is smaller for Tdec = 160 MeV
than for Tdec = 140 MeV. The like explanation is that Tdec =
160 MeV is so close to the inflection point Tc of the shear
viscosity (η/s)(T ) that, because of the finite relaxation time
τπ ∼ 2 fm/c at this temperature, the viscous pressure tensor
has not yet had time to fully evolve to its (larger) hadronic
Navier-Stokes value whereas at Tdec complete relaxation
was achieved. At sufficiently low Tdec, δf decreases with
decreasing the decoupling temperature, because now η/s has
reached its new, higher hadronic level and πµν becomes
smaller simply from hydrodynamic expansion [43].

B. Minimum bias collisions

In Fig. 5 we show pT spectra and differential elliptic flow
for charged hadrons, pions, and protons from minimum bias
Au+Au collisions with Tdec = 120 MeV. For these we summed
our calculated results over all collision centralities �80%. The
dependence on collision centrality is discussed in the next
subsection.

Similar to what we saw in Fig. 3(a) for central Au+Au
collisions, the spectra shown in Fig. 5(a) exhibit almost no
sensitivity at all to variations of the specific shear viscosity
(η/s)HG in the hadron gas stage. We did observe some flat-
tening of the charged hadron spectrum in the most peripheral
(70%−80%) centrality bin studied, where the viscous effects
are strongest and the δf correction is largest. Because of its
low weight in the average, this weak effect is not visible in the
minimum bias result.

In Figs. 5(b) and 5(c), the minimum bias differential v2(pT )
of all charged hadrons, pions, and protons are shown for
different (η/s)HG. We see that the features observed in Fig. 3 for
the specific 20%−30% centrality bin carry over, qualitatively
unchanged, to event samples without centrality selection: A
significant increase of η/s in the hadron gas phase has a strong
suppression effect on v2(pT ). However, as shown in Sec. IV A,
the suppression arises mostly from the δf correction at kinetic
freeze-out, with a much smaller contribution accounting for
the lack of growth of the total momentum anisotropy in the
hadronic phase when (η/s)HG becomes large. Hence, the strong
suppression of differential elliptic flow by large hadronic shear
viscosity shown here is critically dependent on the validity of
viscous hydrodynamics as the correct framework for evolving
δf all the way down to Tdec = 120 MeV. This is assumed here,
but not supported by the analysis presented in Ref. [11].

FIG. 5. (Color online) Transverse momentum spectra (a) and
differential elliptic flow v2(pT ) for charged hadrons (b) and pions
and protons (c) from minimum bias Au+Au collisions at RHIC, for
various (η/s)(T ) as indicated (c.f. Fig. 1).

C. Centrality dependence of elliptic flow

The centrality dependence of the eccentricity-scaled elliptic
flow v2/ε is shown in Fig. 6 where we graph this quan-
tity as a function of the final charged multiplicity density
(1/S)dNch/dy for different values of (η/s)HG. [We obtain v2

by integrating v2(pT ) over all pT , without regard to possible pT
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FIG. 6. (Color online) Eccentricity-scaled charged hadron elliptic
flow v2/ε as a function of the multiplicity density (1/S)(dNch/dy),
for different values of (η/s)HG. The overlap area S = π

√〈〈x2〉〉〈〈y2〉〉 is
calculated from the same initial profiles as the spatial eccentricity ε.

cuts imposed by experimental constraints.] Strong suppression
of v2/ε by hadronic viscosity is observed even in the most
central collisions, but the effect is stronger in peripheral
collisions. An increase of (η/s)HG thus not only decreases v2/ε,
but also changes the slope of its centrality dependence. We note
in passing that in recent studies with the hydro+cascade hybrid
code VISHNU [10] this slope was fixed and controlled by the
effective dissipation encoded in the hadron cascade, and that
in Ref. [11] an (unsuccessful) attempt was made to extract
the temperature dependence of (η/s)HG (here assumed to be
T independent) by matching the magnitude and slope of the
corresponding v2/ε versus (1/S)dNch/dy curves from VISH to
those from VISHNU. We also observe that for the largest value of
(η/s)HG studied here, (η/s)HG = 0.48, the total charged hadron
elliptic flow turns negative in the most peripheral (70%−80%)
centrality bin. We found that this is caused by negative pion
v2(pT ) around pT = 0.5 GeV/c (i.e., close to their average
pT ), caused by large δf corrections at freeze-out.3

V. δF CONTRIBUTIONS

Because of nonzero viscous pressure components πµν , the
distribution function fi(x, p) for hadron species i must deviate
on the freeze-out surface from local equilibrium:

fi(x, p) = feq,i(x, p) + δfi(x, p). (2)

3For 70%−80% centrality and (η/s)HG = 0.32−0.48, we found for
that for pions v2(pT ) first rises at very low pT , then turns negative for
0.25<pT <0.75 GeV/c before turning positive again and continuing
to grow approximately linearly with pT . This is different from protons
whose v2(pT ) turns negative right away at small pT , again with a
minimum around 0.5 GeV/c. All these effects are caused by large δf

effects; in this centrality bin we do not trust viscous hydrodynamic
predictions to be very robust.

We use [36]

δfi = feq,i · 1

2

pµpν

T 2

πµν

e + p
, (3)

noting that also other forms have been suggested in the
literature [46,47]. The numerator can be written as

pµpνπµν(x) = πττ (x)

[
m2

T (2 cosh2(y−η) − 1)

+p2
T

v2
⊥

sin(2φp)

sin(2φv)

−2
pT

v⊥
mT cosh(y−η)

sin(φp+φv)

sin(2φv)

]

+�(x)

[
−m2

T sinh2(y−η)

+p2
T

2

(
1 − sin(2φp)

sin(2φv)

)

+pT mT cosh(y−η)v⊥
sin(φp−φv)

tan(2φv)

]

+�(x)

[
pT mT cosh(y−η)v⊥

sin(φp−φv)

sin(2φv)

−p2
T

2

sin(2(φp−φv))

sin(2φv)

]
, (4)

where � =πxx+πyy , �= πxx−πyy . Because of boost in-
variance, tracelessness, and orthogonality to uµ, only three
components of πµν are independent; we take them as �, �,
and πττ . mT = √

m2+p2
T is the transverse mass of the particles,

φp is the azimuthal angle of pT , and φv(x) is the azimuthal
angle of the fluid velocity v at point x.

We now discuss the individual contributions from Eq. (4)
to the pT spectra and elliptic flow, for the cases of con-
stant η/s = 0.16 (Fig. 7) and temperature-dependent (η/s)(T )
(Fig. 8). In panels (a)–(c) we show the fractional contribution
δN/Neq from δf to the Cooper-Frye spectra of charged
hadrons (a), pions (b), and protons (c). At low pT , the
contributions proportional to πττ and � [first and last terms
on the right-hand side of Eq. (4)] are small and overshadowed
by the contribution from the average transverse viscous
pressure �. The first (negative) term ∼ −m2

T in the expression
multiplying � dominates at low pT . It obviously grows with
rest mass, leading to large negative δN/Neq corrections at low
pT for heavy hadrons such as � and J/ψ [45]. For protons the
effect remains below 10% in central Au+Au collisions (i.e.,
δf corrections are small and the calculation is reliable). At
larger pT , all three contributions in Eq. (4) turn positive and
δN/Neq switches sign (around 0.5 GeV/c for pions and around
1 GeV/c for protons). Again, the term ∼� first dominates, but
because it grows only linearly at large pT it is eventually
(at pT � 2 GeV/c) overtaken by the term ∼πττ . For constant
η/s = 0.16, |δN/Neq| remains below 25% up to pT = 2 GeV/c

for all three spectra shown,4 and the calculation is therefore
reliable. For large hadronic viscosity (η/s)HG = 0.48 (Fig. 8)

4The δf effects on charged hadron spectra can be qualitatively
understood from those on pion and proton spectra by noting that at
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FIG. 7. (Color online) The δf correction for constant η/s = 0.16 to the pT spectra for charged hadrons (a), pions (b), and protons (c)
at 0%−5% centrality, and to their differential elliptic flow (d)–(f) at 20%−30% centrality. Lines with different symbols denote individual
contributions as described in the text.

the δf corrections to the pT spectra are larger, in particular,
the term ∼πττ , and |δN/Neq| reaches 70%−80% at pT =
2 GeV/c, indicating the imminent breakdown of the viscous
hydrodynamic expansion |δf |�feq.

In the lower panels of Figs. 7 and 8 we show the δf

contributions to the differential v2(pT ) for charged hadrons
(d), pions (e), and protons (f), again separated into their
individual contributions according to Eq. (3). We see that for
low pT all three terms in Eq. (4) contribute to the suppression
of elliptic flow, but that in this case at high pT the term
proportional to the viscous pressure anisotropy �= πxx−πyy

plays the dominant role, overshadowing the terms ∼� and
(except for the largest hadronic viscosities) also ∼πττ . The
latter grows quadratically with pT and eventually wins over
the term ∼�; for large hadronic viscosity (Fig. 8) it even
exceeds the anisotropy term ∼� at sufficiently large pT . The
term proportional to the average transverse viscous pressure
� individually generates a positive elliptic flow correction
at large pT [i.e., at pT � 2 GeV/c for constant η/s = 0.16
and at pT � (1−1.5) GeV/c for T -dependent (η/s)(T ) with
(η/s)HG = 0.48]. Similarly the anisotropy term ∼� by itself
increases proton elliptic flow at low pT if the hadronic
viscosity is large enough [Fig. 8(f)]. In the sum, however,
these positive individual corrections are always overwhelmed
by the remaining two negative corrections, leading to an overall

low pT charged hadrons are dominated by pions whereas at larger pT

heavier hadrons become increasingly more important.

suppression of v2(pT ) at all pT in all cases. Interestingly,
the negative proton elliptic flow at low pT and large (η/s)HG

values noted earlier (Figs. 3–5) is not caused by the viscous
pressure anisotropy �, but by the average transverse viscous
pressure � [green triangles in Fig. 8(f)]. This phenomenon is
driven by the effect of � on the proton spectra [Figs. 7(c) and
8(c)]: � suppresses the spectra at low pT , leading (in extreme
situations) to the formation of a shoulder in the proton spectra,
which is known [48] to cause negative v2.

VI. LARGE HADRONIC RELAXATION TIMES

Motivated by the study of the VISHNU model in Ref. [11]
we explore in this section the consequences of very large
relaxation times τπ in the hadronic phase. Specifically, we
assume a relation proposed in Ref. [19],

κ(T ) = e + p

p
(T ), (5)

which can be easily worked out for our EOS s95p-PCE and is
shown in Fig. 9. In the massless limit (i.e., at large T where
the EOS approaches e = 3p), this expression approaches the
value κ = 4. To explore effects specifically related to the T

dependence of κ , we compare in this section results from
Eq. (5) with those for constant κ = 4 (and not κ = 3 as
in the preceding sections). The QGP viscosity is kept at
(η/s)QGP = 0.16 throughout, but we toggle (η/s)HG in Eq. (1)
between the two values 0.16 and 0.48 (see Fig. 1).
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FIG. 8. (Color online) Similar to Fig. 7, but for temperature-dependent (η/s)(T ), Eq. (1), with (η/s)HG = 0.48.

Figure 10 shows a similar analysis as Fig. 2, but now com-
paring constant with T -dependent κ values. From Fig. 10(a)
we conclude that the temperature dependence of κ has no
visible influence on the evolution of the spatial eccentricity
εx , irrespective of whether the specific shear viscosity η/s

grows in the hadronic phase or not. On the other hand we see
in Fig. 10(b) that a κ(T ) that grows around and below Tc as
shown in Fig. 9 reduces significantly the viscous suppression

FIG. 9. The temperature-dependent κ(T ) from Eq. (5) for
EOS s95p-PCE (solid), compared with the massless limit κ = 4
(dashed).

of the total momentum anisotropy ε′
p that is otherwise caused

by a large hadronic shear viscosity.5 Analyzing Fig. 10(b) in
more detail, we observe that during the early stage of the
evolution larger hadronic relaxation times have little effect on
the flow momentum anisotropy εp, consistent with the almost
unchanged decay rate of the spatial eccentricity seen in panel
(a) that drives the anisotropic flow. At late times, however,
the larger κ(T ) is seen to have a small positive effect on
the generation of anisotropic collective flow. Increasing the
response time τπ with which the viscous pressure tensor πµν

can react to changes in the velocity shear tensor apparently
allows the collective flow anisotropy to grow more easily,
with less viscous damping, than if πµν is allowed to relax
to its Navier-Stokes value π

µν

NS = 2ησµν more quickly. This is
a cumulative effect that becomes visible most clearly at late
times when most of the fireball matter is affected by the larger
κ(T ) values at lower temperatures.

The total momentum anisotropy ε′
p, on the other hand,

is more strongly affected by a low-temperature growth of
κ(T ) [solid lines in Fig 10(b)]. ε′

p is suppressed relative
to the flow anisotropy εp by the nonequilibrium corrections
∼πµν in the energy-momentum tensor. When the relaxation
time τπT is allowed to grow large in the hadronic phase,
this suppression is found to be reduced, and the reduction is
relatively larger for large values of (η/s)HG (corresponding to
a larger Navier-Stokes value π

µν

NS ) than for smaller (η/s)HG.

5Please note that the extremely rapid rise of κ(T ) below T ∼
50 MeV seen in Fig. 9 is irrelevant in this context because the fireball
matter decouples already at Tdec = 120 MeV.
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FIG. 10. (Color online) Same as Figs. 2(b) and 2(c), but for
κ(T ) from Eq. (5) and constant κ = 4 instead of κ = 3. For the
QGP (η/s)QGP = 0.16 is used throughout whereas (η/s)HG is varied
between 0.16 and 0.48 as indicated in the legend.

We also note that this suppression of the πµν contribution
to ε′

p is visible already at early times when the larger κ(T )
values affect only the fireball corona. In fact, for constant
η/s = 0.16 (solid squares and circles) the low-temperature
growth of κ(T ) leads to a bigger increase of ε′

p over εp at early
than at late times; this is because of the larger longitudinal
expansion rates at early times that lead to larger Navier-Stokes
values for �= πxx−πyy everywhere, thus causing greater
sensitivity to increased κ(T ) values in the fireball corona.
In the case of T -dependent η/s (solid upright and inverted
triangles) the effects from a delayed response τπ are larger
at late times; in this situation, the Navier-Stokes values for
�= πxx−πyy grow in the hadronic phase because of sudden
increase of η/s below Tc, clearly reflected by a “kink” in the
growth of ε′

p around τ−τ0 = 4 fm/c [see upright green solid
triangles in Fig. 10(b)]. This kink is largely washed out by
a simultaneous rise of κ(T ) [inverted blue solid triangles in
Fig 10(b)].

The behavior of the total momentum anisotropy ε′
p is

directly reflected in the charged hadron elliptic flow, shown in
Fig. 11. We point especially to the reduction of the (negative)
πµν contributions to ε′

p in the case of T -dependent (η/s)(T ),
which manifests itself through reduced δf corrections to
v2(pT ), which again are most pronounced at large pT (green
triangles and blue inverted triangles in Fig. 11). For constant

FIG. 11. (Color online) Differential elliptic flow v2(pT ) for
charged hadrons, using a temperature-dependent κ(T ). Same param-
eters as in Fig. 10.

η/s, on the other hand, the larger hadronic relaxation time has
little effect on the differential v2(pT ), consistent with the very
small effect on the total momentum anisotropy ε′

p at late times
seen in Fig. 10(b).

VII. DISCUSSION AND CONCLUSIONS

Figure 11 has important implications: Comparing the blue
line with inverted triangles to the case of constant κ and η/s

(black squares), we conclude that the suppression of v2(pT )
reflected in the blue line could have arisen in two different
ways: (i) by a large increase of η/s in the hadronic phase,
accompanied by a similarly large increase of κ , as shown
here, or (ii) by a much less pronounced increase of the
hadronic shear viscosity, compensated by a correspondingly
reduced increase of the hadronic relaxation time. In other
words, the hadronic shear viscosities and relaxation times
extracted from a given charged hadron v2(pT ) are strongly
correlated and impossible to determine independently from
a single elliptic flow measurement. Whether and how the
systematic exploration of differential elliptic flow for different
particle species and different collision systems at different
centralities can help to resolve this ambiguity remains to be
seen.

The study presented here shows that any discussion of
large dissipative effects in the hadronic phase of heavy-ion
collisions, reflected by specific shear viscosities and (scaled)
microscopic relaxation times that grow as the system cools
below the critical quark-hadron transition temperature, is
really a discussion of δf , that is, of the deviation of the
freeze-out distribution function from its local equilibrium
form and its reflection in the final hadron spectra and
anisotropies. As the system cools and approaches kinetic
freeze-out, dissipative effects become stronger and stronger,
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bringing the framework of viscous hydrodynamics closer and
closer to breakdown. In this sense, our results have to be
taken as qualitative insights but should not be confused with
quantitative predictions. Their main value, as we see it, is
that they shed light on and help to classify and qualitatively
understand the late-stage dissipative effects on hadron spectra
and their elliptic flow as seen in a realistic microscopic
approach (as embodied, for example, by VISHNU). The results
presented here do provide support to the conclusion of Ref.
[11] that an effective viscous hydrodynamic description of the
hadronic stage in heavy-ion collisions, if valid at all, likely
requires both large shear viscosity and long relaxation times
below Tc.
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