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Beam fragmentation in heavy ion collisions with realistically correlated nuclear configurations
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We develop a new approach to production of the spectator nucleons in the ultrarelativistic heavy ion collisions.
The energy transfer to the spectator system is calculated using the Monte Carlo based on the updated version of
our generator of configurations in colliding nuclei which includes a realistic account of short-range correlations in
nuclei. The transferred energy distributions are calculated within the framework of the Glauber multiple-scattering
theory, taking into account all individual inelastic and elastic collisions using an independent realistic calculation
of the potential energy contribution of each of the nucleon-nucleon pairs to the total potential. We show that
the dominant mechanism of the energy transfer is tearing apart pairs of nucleons with the major contribution
coming from the short-range correlations. We calculate the momentum distribution of the directed flow of emitted
nucleons which is strongly affected by short-range correlations, including its dependence on the azimuthal angle.
In particular, we predict a strong angular asymmetry along the direction of the impact parameter b, providing
a unique opportunity to determine the direction of b. Also, we predict a strong dependence of the shape of the
nucleon momentum distribution on the centrality of the nucleus-nucleus collision.
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I. INTRODUCTION

In this paper we start a program of studies of the nuclear
fragmentation in ultrarelativistic heavy ion collisions using as a
starting point an event generator of the nucleon configurations
in nuclei which correctly reproduces short-range correlations
between the nucleons.

Most of the recent experimental and theoretical studies
of the relativistic heavy ion collisions were focused on the
production of hadrons at central rapidities. Fragmentation of
nuclei in these collisions was used only as a supplementary
trigger for centrality. At the same time experiments at
Relativistic Heavy Ion Collider (RHIC) have demonstrated
that it is possible to determine on the event-by-event basis
impact parameter and reaction plane of the collision. (There is
obviously some inherit uncertainty related to the fluctuations
of the observables for collisions at a given impact parameter.)
This opens new opportunities for studies of the nuclear
fragmentation which have a long history; see, for example,
Ref. [1] and references therein.

Another motivation is the recent direct observation of the
short-range correlations (SRC) [2–5] in the nuclear decays
initiated by a hard removal of the nucleon from the nucleus.
When combined with the scaling of the ratios in x > 1 (e, e′)
nuclear reactions, it demonstrates the important role played
by SRC in nuclear structure; for a recent review, see Ref.
[6]. This calls for a description of heavy ion collisions using
realistic configurations of nucleons in nuclei going beyond the
commonly used collection of nucleons randomly distributed
in the nuclear volume.

We started the program of including SRC in nuclear config-
urations in Ref. [7] where we implemented central correlation
functions using the Metropolis method. This allowed us to
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overcome the problem of distortion of single-particle density
when configurations with nucleons at short distance are simply
discarded. The pair distribution function for the generated
configurations is close enough to the realistic one; in particular,
it vanishes when the two nucleons separation approaches zero.

In Ref. [7] the inclusion of correlations in nuclear configura-
tions was shown to have significant effects on the fluctuations
of the average number collisions in NA scattering; the authors
of Refs. [8,9] confirmed the importance of NN correlations
effects on fluctuations in NA as well as AA collisions using
our central-correlated configurations [10] within their Monte
Carlo (MC) simulations. In this work we implement the
second step of our program: taking into account spin and
isospin dependence in the generation of configurations. This
allows us to implement for the first time, the state-dependent
correlations; this procedure is discussed in Sec. II.

In this paper we apply the MC method for taking into
correlation effects in AA collisions at the energies of the CERN
NA49 experiment [11], also using results from the Lawrence
Berkeley National Laboratory (LBL) experiment of Ref. [12].
We analyze dependence of nuclear fragmentation on centrality
of the collisions. In the data analyses the centrality is usually
determined based on the the correlation between the observed
charged-particle multiplicity and the calculated number of
participant nucleons in the AA collision. This leads to large
uncertainties and the impact parameter is usually known in
large bins and very central collisions are difficult to identify.
We propose in this work that one can obtain additional infor-
mation about the centrality of a collision, based on the detailed
balance of energy transferred in the collision at a given impact
parameter and on the emission of high-momentum nucleons
originating from SRC pair in nuclei. In addition, the angular
asymmetry for emission of nucleons allows us to resolve the
sign ambiguity of the direction of impact parameter b in
contrast with the current procedures which determine only |b|.

We introduce a new model for the description of the emis-
sion mechanism of spectator nucleons in ultra-high-energy
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FIG. 1. (Color online) Sketch of a Pb-Pb collision in the target rest frame at impact parameter b = 5 fm oriented at 45◦ with respect to the
x and y axes; the projectile moves along the z axis. [(a) and (c)] View along the beam line; [(b) and (d)] view from behind; [(a) and (b)] before
interaction; [(c) and (d)] after interaction. The inelastically interacting nucleons have been removed from the figure. Black and red spheres
represent protons and neutron, respectively, while the white ones are active nucleons (see text). The dimension of the spheres are taken as the
rms charge radius of the proton. Animations are available at the URL in Ref. [10] along with the configurations used for the colliding nuclei.

heavy ion collisions. In this limit, in the rest frame of one
of the nuclei, the projectile is strongly Lorentz contracted
to the longitudinal size of the order �1/µ where µ is a
soft strong interaction scale �mρ . As a result, the collision
can be considered as the propagation of a “pancake” moving
with the speed of light which consequently removes nucleons
from the target along its path; the situation is depicted in
Fig. 1. It is worth emphasizing that the dynamics of nuclear
fragmentation at low energies differs significantly; energy
transfers to individual nucleons are small as compared to
the scale of energies in SRC, and the relative velocities of
nuclei are small. This differs markedly from the picture of a
thin pancaked nucleus going through the target nucleus we
can employ in the ultrarelativistic collisions. For a review of
models of fragmentation at low energies, see Ref. [13]. The
spectator system emerging from the target is left in an unknown
excited state. At the first stage the destruction of the potentials
between the pairs (triplets) of nearby nucleons, one of which is
hit and another belongs to the spectator system, release energy
on the layer of nucleons adjacent to the removed portion of
the nucleus. This energy comes from the work performed by
destruction of the potential energy (bonds) associated with the

position of these nucleons in the initial wave function, and it
can be readily converted into kinetic energy. As a result, they
can be emitted into free space in the direction of the removed
nucleons or propagate into the spectator system and undergo
attenuation. The remaining available potential energy goes
into excitation of the spectator system and it can be released
at a later stage by standard nucleon evaporation and decay.
Experimental analyses along the lines we suggest in this work
are feasible at RHIC as presence of the directed flow v1 for
neutrons was observed (though not analyzed in detail) by the
PHENIX [14] and STAR [15,16] experiments.

The paper is organized as follows. In Sec. II we introduce
general definitions and describe our improved procedure
for generating nucleon configurations in nuclei, which, in
difference from our original procedure, includes spin and
isospin nucleon-nucleon correlations. We also describe the MC
procedure for the first stage of the collision which separates
nucleons into spectators and interacting nucleons. It employs
the geometry of the Glauber description of the collision, which
allows an impact-parameter-dependent description and takes
into account the basic features of realistic calculations of
SRCs in the ground state of nuclei [17]. (Note here that
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the Glauber model forms a basis of many MC codes for
the simulation of high-energy nucleus-nucleus collisions; for
example, HIJING [18] for the simulation of nucleus-nucleus
collisions.) In our model we use the standard description of
hadron-nucleus interactions [19], in which inelastic collisions
of nuclei are treated as an incoherent superposition of the
individual collisions of the nucleons of the two systems.
The participants are defined as the nucleons which interacted
inelastically at least once in the AA collision, and spectators
are the nucleons which did not interact. They are determined
within the Glauber approximation and the simulation of
the collisions is performed starting from random nucleons
distributed according to a given probability density for the
nucleus profile.

In Sec. III we perform first dynamical calculation of the
total excitation energy of the spectator system based on the
total potential energy due to the links between spectators and
interacting nucleons and use of the analog of the Koltun sum
rule. Inclusion of SRC is critical at this point. Indeed, the
realistic calculations of the fractions of total potential energy
due to the different pp and pn pairs in nuclei based on
the method of Ref. [17] show that, while in the mean-field
approximation the two contributions are proportional to the
corresponding number of pairs, the inclusion of correlation
drastically changes these fractions, bringing the pn pairs to
carry about 83% of the total potential energy. The results are
given as a function of the impact parameter of the AA collision.

In Sec. IV we first describe the algorithm for the selection of
correlated nucleons among the nucleons close to the collision
surface. Next, we outline the procedure used to generate emis-
sion of both high momentum and low momentum nucleons.
The high momentum nucleons are emitted predominantly from
the surface. The soft component arrises both due to evaoration
from the surface and emission from the bulk of the residual
system which is excited both in the initial removal of the
interacting nucleons and in the process of the absorption of
the part of the nucleons emitted from the surface. We describe
also an additional contribution to the nucleon production due
to elastic scattering of nucleons near the surface of the collision
which is enhanced for the emission angle close to 70 ÷ 90◦ in
the nucleus rest frame. The section concludes with numerical
results for the nucleon momentum distributions. The relative
roles of different mechanisms discussed in the paper is pre-
sented as well as and their dependence on the impact parameter.

In Sec. V we discuss a novel feature of the nucleon emission
which is present in the proposed mechanism of nucleus
fragmentation: the strong angular dependence of the nucleon
emission. It is due to a large contribution of the emission
from the inner surface generated by removal of a fraction of
nucleons due to the collision, which is strongly dependent
on the geometry of the process. We expect an azimuthal
asymmetry which can be exploited to determine the centrality
of a given collision event and also resolve the sign ambiguity
of the impact parameter vector.

In Sec. VI we compare our results with those of the previous
models.Of particular interest is the analysis of Ref. [1], in
which the abrasion-ablation model is used to define the
participant-spectator mechanism and the subsequent spectator
system decay and to perform the estimate of the excitation

energy per spectator nucleon. We find that our results for the
average characteristics of the nucleon emission are close to the
result of Ref. [1] where certain inputs from the data were used.

II. GENERAL DEFINITIONS AND METHOD

The inclusion of central correlations in nuclear configura-
tions can be achieved within a Monte Carlo Metropolis method
by using as a probability function the square of the wave
function of the system taken in the following form:

ψ0(x1, . . . , xA) = F̂ (x1, . . . , xA) φ0(x1, . . . , xA), (1)

where φ0(x1, . . . , xA) is a Slater determinant of single-particle
densities, the vector xi = {r i ; σi ; τi} contains the spatial,
spin, and isospin degrees of freedom, and the correlation
operator F̂ can, in principle, include the dependence on all
the state-dependent operators contained in realistic nucleon-
nucleon potentials; in Ref. [7] a simple product of central
correlation functions was considered, F̂ ≡ F = ∏A

i<j f (rij ).

The calculation which includes the full product F̂ = ∏A
i<j f̂ij

with f̂ij state-dependent correlation functions, is a formidable
task; instead, one can consider an expansion of that product
whose first term contains correlation links of the particle under
investigation in the Metropolis search with a second particle
only, disregarding correlation links between the second particle
and the others. The subsequent terms which include such third-
and higher-order correlations, namely three-body clusters
linked by spin- and isospin-dependent two-body correlations,
as well as genuine three-body correlations, will be neglected
in the present work. At the same time, the central correlations
will be retained to all orders. This procedure is dictated by
the enormous computing power needed for a higher-order
calculation and justified by the fact that realistic calculations
based on the cluster expansion technique show that higher-
order calculations, essential for the accurate determination of
quantities such as binding energy and momentum distributions,
provides corrections to the bulk properties of the quantities of
relevance, namely diagonal one- and radial two-body densities,
which are small as compared to the accuracy needed by our
study. Instead, we will make use of realistic results obtained
within the cluster expansion method ([17,20]) when applicable.
The one-body densities obtained with our configurations for
A = 16, 40, and 208 are shown in Fig. 2(a). They coincide
with very high precision with the analytic function used as an
input. In Fig. 2(b) we present the pair distribution function

C(r) = 1 − ρ
(2)
C (r)

/
ρ

(2)
U (r), (2)

with ρ
(2)
C and ρ

(2)
U being the correlated and uncorrelated

two-body radial densities, respectively. The procedure of
Ref. [7] with improved configurations described above leads
to a better agreement with the realistic variational calculation
from Ref. [17] than the original procedure which included
only central correlations. For comparison we also the results
of Ref. [7] obtained in MC with step (θ function) and Gaussian
nucleon-nucleon correlation functions which strongly deviate
from the realistic calculation already for r ∼ 1 fm.
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FIG. 2. (Color online) (a) The one-body density of 16O, 40Ca, and 208Pb; the colored curves correspond to the calculation with our fully
correlated configurations, while the black curves are the corresponding input functions. (b) The pair distribution function C(r) of 16O defined
in Eq. (2), obtained with MC within various approximations for the nucleon-nucleon correlation functions contained in Eq. (1), compared with
the variational calculation of Ref. [17]. Calculations for 40Ca and 208Pb nuclei produce similar results.

It is possible to describe the bulk features of the geometry of
the the nucleus-nucleus collisions using the Glauber multiple-
scattering model. Within this framework, nucleons are frozen
in their positions during the interaction, which is supposed
to be instantaneous. For a given impact parameter of the
colliding nuclei, the impact parameter bij = bi − bj of the i-th
projectile and j -th target nucleons are considered, and their
inelastic interaction is evaluated on the event-by-event basis
using the impact parameter representation for NN collisions
which leads to the probability of the inelastic nucleon-nucleon
at a relative impact parameter b:

Pin(b) = 1 − [1 − �(bi − bj )]2, (3)

where �(bij ) = σ tot
NN exp[−b2

ij /(2B)] /(4πB) is the usual
nucleon-nucleon elastic profile function. In most of our
numerical studies reported below we used the parameters
σ tot

NN = 39 mb and B = 13.59 GeV−2, corresponding to
NA49 energy. The main effect we neglect here is inelastic
shadowing corrections which arise in the Gribov-Glauber
approximation; these effects primarily affect interactions far
from the interaction surface. We also give results for the
energies of RHIC and the Large Hadron Collider (LHC). For
illustration purposes, we show in Fig. 1 the spectator nucleons
after a Pb-Pb collision, for two particular projectile-target
configurations. The figure shows, in addition to protons and
neutrons (respectively black and red online), nucleons which
before the event were correlated with an interacting nucleon.
These are shown explicitly in white. The correlated pairs were
identified by checking their relative distance and choosing
correlated nucleons on the basis of the potential energy they
can gain due to removal of the neighboring nucleons, as
described in the next sections.

III. POTENTIAL ENERGY CALCULATION

The first aim of our analysis is to evaluate the energy
transferred to the spectator system in the collision of two
heavy nuclei (this calculation does not depend on the details
of the fragmentation discussed in the following sections and
could be used in any other models of the high-energy nuclear
fragmentation). To this end, we considered the method of
the cluster expansion of Refs. [17] and [20] and found that

(i) the inclusion of correlations in the calculation of the
potential energy brings the fraction of the total potential
energy 〈V〉NN due to pn pairs to about 85% (with the main
contribution due to the existence of tensor interactions in the
nucleon-nucleon potential) and (ii) the state-dependent radial
two-body densities ρ(2)

n (r) obtained in Refs. [17] and [20] can
be incorporated into our Monte Carlo code to calculate the
total energy transferred to the spectator system in a particular
collision and to determine the fraction of the energy transfer
due to the SRCs.

The potential energy contribution to the ground-state energy
can be calculated according to

〈V 〉 = A(A − 1)

2

6∑
n=1

∫
d R d r ρ(2)

n (R, r) v(n)(r), (4)

where R = (r1 + r2)/2, r = r1 − r2, and ρ(2)
n (r1, r2) is the

state-dependent two-body density matrix defined as

ρ(2)
n (r1, r2) =

∫ ∑ A∏
j=3

d rj ψ	(x1, . . . , xA)

× Ô
(n)
12 ψ(x1, . . . , xA) . (5)

Here the sum extends over all the discrete degrees of
freedom so the final result is a spin-isospin-averaged quantity.
Equation (5) was evaluated within the cluster expansion
method [17]. Ô

(n)
12 are the operators

Ô
(n)
12 ∈ {1̂, σ 1 · σ 2, Ŝ12} ⊗ {1̂, τ 1 · τ 2}, (6)

acting between particles 1 and 2, which inlcude spin- and
isospin-dependent nucleon-nucleon potential and correspond-
ing operators in the nucleus ground-state wave function. Hence
Eq. (1) can be rewritten as

ψ0(x1, . . . , xA) =
A∏

i<j

f̂ij φ0(x1, . . . , xA)

=
A∏

i<j

6∑
n=1

f (n)(rij ) Ô
(n)
ij φ0(x1, . . . , xA) .

(7)
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The two-body density appearing in Eq. (4) can be easily
separated, within the cluster expansion as well as in the
MC calculation, into the contributions due to proton-proton
(pp),proton-neutron (pn), and neutron-neutron (nn) pairs:

ρ(2)
n (r1, r2) = ρ(2,n)

pp (r1, r2) + ρ(2,n)
pn (r1, r2) + ρ(2,n)

nn (r1, r2).

(8)

The potential energy can thus be written as a sum of three
contributions corresponding to pp, nn, and pn contributions
(pp and nn contributions are identical since the same single-
particle orbitals have been used both for protons and neutrons
states). Calculations show that for central correlations (the
total result in this case has a wrong absolute value due
to the lack of realistic correlations needed to approximate
the experimental values of binding energies), the individual
contributions for pp and pn pairs are exactly proportional to
the fraction of pp pairs (23) and pn pairs (53), respectively.
At the same time, if the full correlations are included, this
proportionality no longer holds: the pp contribution represents
8% of the total, and the pn 83% of the total; if we translate
this to the contributions of isospin 0 and 1 pairs, we obtain a
ratio of 74% for I = 0 and 26% for I = 1. These features of
the short-range nuclear structure can be exploited within the
formalism we are going to describe.

We now outline how to incorporate the information
presented in this section in our MC code. The realistic
calculation of Ref. [17] provides us with the contribution
to the total potential energy of a given pair of nucleons,
while the corresponding calculation of total kinetic energy
from momentum distributions for medium-weight nuclei, in
Ref. [17], and for heavy nuclei, in Ref. [21], can be used to
evaluate the total excitation energy of the nucleons which do
not experience inelastic interactions.

For each AA event, we select spectator and interacting
nucleons in both nuclei, using Eq. (3) as the interaction
probability; this quantity depends on the (nucleon pair) relative
impact parameter bij . Accordingly the probability not to

interact is given by

P survival
i (bi) =

A∏
j=1

[1 − P (bi − bj )]. (9)

Hence we can calculate for a given event the potential energy
which is freed by instantaneous removal of the inelastically
interacting nucleons. It represents the amount of the energy
available for freeing nucleons from the bound state and
generating their kinetic energy (in a sense our approximation
resembles the Koltun sum rule [22] for removal of one nucleon
from the nucleus). The total potential energy of the nucleus can
be calculated in terms of the two-body density of the system
or, more specifically, from the radial two body-density defined
as follows:

ρ(2)
n (|r|) =

∫
d R ρ(2)

n

(
r1 = R + r

2
, r2 = R − r

2

)
. (10)

This quantity may be easily calculated in the MC approach by
considering all the pairs and building the distribution of their
relative distances. It is then straightforward to calculate the
fractions of the total two-body potential energy which are due
to the interaction between two spectators, two nucleons which
experienced inelastic collisions, and mixed pairs. Comparing
these fractions with the realistic calculations, in (small)
intervals in r corresponding to the bins used in the Monte
Carlo determination of the densities, properly scaling the MC
densities to the ones obtained in the realistic calculations and
rescaling to the experimental value of the binding energy of
the initial nucleus, we can define the fractions 〈V〉SPE

NN , 〈V〉INT
NN

and 〈V〉MIX
NN accordingly. The MC procedure is not accurate

enough as far as the state-dependent radial two body densities
ρ(2)

n are concerned for a meaningful determination of the
expectation value of the realistic, state-dependent potential
V̂ij = ∑

n v(n)(rij )Ô(n)
ij (such a calculation would require a

much more accurate balance of several positive and negative
parts which is currently practical). The procedure can also
be applied to the individual pn and pp pairs. The two-body
densities obtained from the generated nuclear configurations

FIG. 3. (Color online) The two-body density matrix defined in Eq. (9) calculated for (a) 16O, (b) 40Ca, and (c) 208Pb within our MC code.
The comparison of the uncorrelated results (dashes) and the full correlation results (full lines) for the first operator O

(n=1)
12 is shown in the

various panels. The information on state-dependent correlations is contained in the configurations used in the calculation, which were produced
using the correlation functions of Ref. [17]. The curves are normalized to 4π

∫
r2drρ(2)(r) = A(A − 1)/2.
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FIG. 4. (Color online) Transferred energy in Pb-Pb collisions at
PLab = 160 GeV, calculated within our model at different impact
parameters. (Solid line) Potential energy due to removing of nucleons
with no other effects taken into account; (dashed line) transferred
energy after (i) subtraction of kinetic energy of emitted high-
momentum nucleons and soft nucleons from the interaction surface
and (ii) extra energy gained from nucleons absorbed the spectator
system.

are presented in Fig. 3 for different nuclei. The figure shows
both the results corresponding to uncorrelated and correlated
configurations for the radial two-body density associated with
the central operator, namely ρ

(2)
n=1 in Eqs. (5) and (10).

The outlined procedure determines the fraction of potential
energy due to mixed pairs of nucleons on the event-by-event
basis. The results of the calculation of this quantity (which
determines the total excitation energy of the spectator system
which is released in the process of nucleon/fragment emission)
are presented in Fig. 4 for the case of collisions at the momen-
tum of 160 GeV/c per nucleon for which the most extensive
high-energy studies of the fragmentation were performed. We
plot the potential energy due to the disrupted pairs and the
same (negative) quantity plus the (positive) kinetic energy due
to the emission of high-momentum nucleons. Figure 4 also
shows the dependence of the transferred energy as a function of
the impact parameter. Also, we show in Fig. 5 the dependence
of the transferred energy on the value of the cross section
of NN interactions taken for values corresponding to NA49,
RHIC, and LHC energies. One can see that for average impact

FIG. 5. (Color online) Transferred energy in Pb-Pb collisions due
to the only potential energy transfer. The values of the Glauber
parameters correspond to NA49 (solid line), RHIC (dashed line),
and LHC (dotted line) energies.

parameters the energy dependence is rather weak. At the same
time, for small impact parameters, the energy transfer drops
with increase of energy since the chances for spectators to
survive decrease due to increase of σ tot

NN , while the increase
of σ tot

NN leads to an increase of the probability to interact with
several nucleons at large impact parameters, leading to the
increase of the energy transfer at large b � 10 fm.

The details of our model for the description of emission of
nucleons are given in the next sections.

IV. NUCLEON EMISSION AND MOMENTUM
DISTRIBUTIONS

We have developed a model for nucleon emission as a
function of the solid angle d
 = d(cos θ )dφ from one of the
colliding nuclei in a Pb-Pb collision. The model takes into
account several different mechanisms for the nucleon emission
reflecting the geometry of the high-energy AA interaction.
Previously only evaporation of nucleons from the excited
spectator system resulting from the collision was considered
and the total energy released in the emission was treated as
an input parameter.In the previous section we developed a
novel approach which allows us to calculate the total excitation
energy on an event-by-event basis. Part of this energy is emitted
in a surface process resulting from the sudden removal of a
part of the nucleus with large energies transferred locally to
nucleons which had strong bonds with removed nucleons. We
first consider emission of the high-momentum (Sec. IV A)
and low-momentum nucleons (Sec. IV B) from the surface.
We also consider nucleons emitted in elastic interactions
of two nucleons of the colliding nuclei which gives an
important contribution for certain emission angles (Sec. IV C).
The nucleons generated in the surface emission and elastic
scattering propagate with a large fraction of the events through
the spectator system and transfer energy to the bulk of the
spectator system (Sec. IV D). Taking into account all these
effects we evaluate the total energy available for evaporation
of soft nucleons (Sec. IV E).

We discuss in detail the different mechanisms and how we
calculate the momentum distributions of emitted nucleons in
the following subsections.

A. Correlated nucleon emission

For a given impact parameter b, we calculate the interaction
between individual nucleons within the Glauber multiple-
scattering model as described in Sec. I and classify the different
pairs of the nucleons as described in Sec. III. Next, we
consider the mixed pairs, i.e., those pairs in which one of the
nucleons is a spectator and the second is an interacting one, and
define nucleons as active on the basis of the potential energy
transferred to them. These nucleons should be the candidates
among which we choose actually correlated nucleons.We
have combined information about the short-range character of
correlations and the relatively large contribution of correlations
to the total potential and kinetic energies. To this end, we
define as active the spectators which are, in a given event, at a
distance below some rmax from at least one interacting nucleon.
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We estimate rmax from the following considerations. The SRC
originate from the internucleon distances �1.4 fm, hence
rmax > 1.4 fm. At the same time for r > 2 fm the internucleon
potential corresponds to energies significantly smaller than the
Fermi energy. Hence a removal of such a long range bond is
likely result in collective excitations of the residual system.
Hence a reasonable value of this parameter of the model is
2 � rmax � 1.4 fm. In the following we will use as a base value
rmax 2 fm. The sensitivity to the variation of rmax is explored
in Sec. IV G. Next we calculate the energy transferred to each
of the active nucleons, making use of our realistic estimate
of the potential energy due to the removal of the interacting
nucleons. After ranking the active nucleons starting from the
one to which the highest energy is transferred, we choose as
correlated the first 25% of them, according to the estimated
fraction of correlations in heavy nucleons [21]. We choose,
among the active ones, those nucleons which have larger
potential energies and at the same time are at smaller distances
from one of their interacting partners, since spatial proximity
is a basic requirement for two nucleons to be correlated. This
is also clear from the short-range character of correlation
functions used in many-body calculations. A delicate feature
we need to deal with is that in quantum mechanics there is
no one-to-one relation between the potential V and kinetic
energy; the relation T = −V + ε, with ε the binding energy
per nucleon, is valid only in average. Hence we will use a
probabilistic algorithm of assigning correlated nucleons ran-
dom momentum vectors with modulus given by the probability
distribution n1(k), which is the correlated, high-momentum
tail of the momentum distribution from Ref. [21]. In the model
of Ref. [21] the total momentum distribution in a nucleus is
modeled as a mean-field, low-momentum part n0(k) plus a
correlated, high-momentum part n1(k), which accounts for
the 75% and 25%, respectively, of the total normalization
in a heavy nucleus. The procedure will be discussed again
in Sec. IV G, after several intermediate steps are described.
Note that the production of nucleons from the correlations has
forward-backward asymmetry which for moderate momenta
is given by the flux factor (1 + k3/mN ), where k3 is the
longitudinal component of the nucleon momentum in its rest
frame. So more nucleons are emitted forward (along the beam
direction of the projectile) in the rest frame of a nucleus. In
this paper to simplify the discussion we consider quantities
symmetrized over k3 → −k3.

At the next step active nucleons propagate through the
residual system and could be absorbed. This effect is evaluated
in Sec. IV D, using fits to the NN elastic-scattering data [23].

B. Direct emission of uncorrelated nucleons
from the inner surface

The number of correlated nucleons determined in Sec. IV A
is only a fraction of active nucleons whose “broken links”
with the removed nucleons produce a large fraction of the
available energy and which are located at r � rmax from at
least one of the removed nucleons. The rest of the nucleons,
located near the inner surface resulting from the removal of
the interacting nucleons, must be considered as escaping the

system as well, but with a momentum distribution given by
the low-momentum, mean-field part n0(k) of the model of
Ref. [21]. This assumption is reasonable since we assume the
active nucleons to be emitted with the same momenta they had
in the nucleus, but it is clearly an approximation.

C. Emissions from elastic scattering

In addition to the spectators which underwent inelastic scat-
tering, there are (primary) nucleons which scattered elastically.
We model the probability of high-energy NN elastic scattering
Pel(b) in the following way. It must obey the sum rule∫

db Pel(b) = σ el
NN (11)

(at NA49 energy we have σ el
NN = 5.72 mb), it must be a

function of b = bij = |bi − bj | and vanish when Pin(b) does.
A reasonable distribution appears to be

Pel(b) = 0.077 e−5.7 (b−1.59)2
, (12)

which is compared with Pin(b) of Eq. (3) in Fig. 6. Using
Eq. (12), we select elastically scattering nucleons and even-
tually take into account their recoiling partners as emerging
from the event and propagate them through the spectator
medium. We calculate the momentum and emission angle
of the recoiling nucleon as follows. The target nucleon has
momentum k =

√
k2
t + k2

3 (with probability distribution n1(k)
from Ref. [21]); the scattered nucleon has momentum p =√
p2

t + p2
3; the four-momentum transfer q can be assumed

to have q0 = q3 since we are at high energies so t = q2 =
q2

0 − q2
t − q2

0 = −q2
t ; t can be randomly generated using the

elastic-scattering amplitude

dσ el
NN

dt
= σ tot

NN

2

16π
eB t , (13)

using the differential NN elastic cross-section data for the
energy corresponding to the energy of the AA collisions. This
determines qt and pt = qt + kt . Since the light-cone fraction,
α, carried by the nucleon is conserved in the elastic scattering

FIG. 6. (Color online) Comparison between the probability of
inelastic interaction Pin(b) (solid line) of Eq. (3) and the elastic one
Pel(b) (dashed line), shown in Eq. (12), for values of the Glauber
parameters corresponding to the experiment of Ref. [11].
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we find

α = 1 + k3

m
=

√
p2

t + p2
3 + m2 − p3

m
(14)

leading to

p3 = p2
t + m2 − m2α2

2mα
. (15)

This allows to determine the scattering angle θ is tan θ =
pt/p3. Once elastically scattered nucleon is generated we can
use the method described in Sec. IV D to determine whether
the generated nucleon is absorbed during the propagation,
with its energy going into additional heating of the spectator
system, or it is emitted with its recoiling momentum, to
be collected in the final momentum distribution. Note that
the elastic mechanism predominantly contributes for α ∼ 1.
The data from Ref. [12] do indicate an extra contribution at
the corresponding kinematics.

D. Elastic scattering in the final state

The nucleons which are emitted in the processes described
in the previous subsections may be absorbed while propa-
gating through the spectators by thermalization due to elastic
rescattering, leading to the heating of the spectator system. We
can evaluate the attenuation due to the elastic scattering using
dσ el

NN/dT of Ref. [23], given as a function of incident nucleon
kinetic energy T = Tlab and center-of-mass scattering angle
θc.m.. We will consider as thermalized those nucleons which,
as a consequence of elastic rescattering, are left with kinetic
energy smaller than Tmin = √

k2
min + m2 − m kinetic energy,

where kmin = 250 MeV/c, the typical minimal momentum
scale of the SRCs in nuclei. First, we consider as interacting
elastically two nucleons whose transverse separation (with
respect to the direction of propagation of the nucleon under
investigation) is bij <

√
σ el

NN/π with σ el
NN evaluated at the

corresponding incident momentum, taken from the tabulated
values of Ref. [23]. If k = klab =

√
(T − m)2 − m2 is the

emitted nucleon momentum in the nucleus rest frame hitting a
spectator nucleon at rest which recoils with kinetic energy TR

we have

t = −2mTR = −2p2(1 − cos θc.m.), (16)

where p = kc.m. =
√

1
2m

√
k2 + m2 − 1

2m2 is the incident
nucleon momentum in the center of mass. Then, the probability
for the nucleon emerging from the collision of having more
than Tmin = TR − T is given by

∫ T

40
dT ′ dσ el

NN (T ′, θc.m.)

dT ′

/ ∫ ∞

40
dT ′ dσ el

NN (T ′, θc.m.)

dT ′ , (17)

where the lower limit of integration is dictated by the fact
that we have from Ref. [23] tables for 40 < T < 600 MeV

and the upper limit can safely be considered large enough.
Nucleons with T < 40 MeV are considered as being absorbed
the spectator medium. In Eq. (17) we use dσ el

pp both for pp and
nn scatterings and dσ el

pn for pn and np. In the case of absorption
by the spectator system, we add their kinetic energy to the
amount of energy available for the subsequent evaporation.
The same procedure has been used to calculate the propagation
of the nucleons generated in the primary (high energy) elastic
NN scattering (Sec. IV C).

It is worth noting here that to the best of our knowledge the
contribution of the high-energy elastic-scattering mechanism
with or without subsequent absorption was not considered
before. Of separate interest here is that we calculate this effect
(like all other quantities defined in this work) as a function of
the AA impact parameter b.

E. Evaporation mechanism

A standard mechanism for description of the spectator
emission in the process of fragmentation is the excitation of the
residual system and subsequent evaporation of nucleons with
the exponential probability for the emitted nucleon kinetic
energy Tn = p2

n/2m

P (Tn) = e−Tn/T0 , (18)

where T0 is typically assumed to be close to the average kinetic
energy for the Fermi gas [24]. We can estimate the kinetic
energy T0 for a given value of the impact parameter in the
following way. We have calculated the energy released by
destruction of nucleon-nucleon pairs in Sec. III. This energy
must be distributed among the evaporating nucleons according
to the following energy balance equation:

Nnucl( T0 + ε) = −V ′ − Temit, (19)

where Nnucl is the number of evaporated soft nucleons and Temit

is the kinetic energy of the correlated and uncorrelated nucle-
ons emitted from the surface which we discuss in Secs. IV A
and IV B. The renormalization of V in the right-hand side
V ′ = V (1 + ε/〈V〉N ) < 0 reflects the energy released, as
described in Sec. III, corrected for the binding effects of the
removed nucleons. Equation (19) states that the amount of
energy ε must be spent for each of the emitted nucleons, and
the available energy is provided by the calculated potential
energy; note that Nnucl, the number of emitted nucleons, and
V depend on the AA impact parameter b, as does the energy
per emitted soft nucleon, T0.

The energy balance expressed by Eq. (19) must be corrected
for several additional effects. First, we have to take into account
that a significant fraction of the nucleon spectators produced in
the decay of the spectator system are bound in light A = 2 ÷ 4
and heavier nuclear fragments. As a result one has to replace
in Eq. (19) Nnucl by Neff = Nnucl + K Nfrag, where Nfrag is the
total number of nucleons bound in the A � 2 fragments. To
determine this factor we use the measurements of Refs. [11]
and [12]. We extracted from the data what fraction of the
nucleons belongs to the fragments and found it to be ≈30%,
leading to K ≈ 0.3. Hence we did not include it explicitly
in the energy balance of Eq. (19). (The experiments were
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performed using light projectiles, and neutron production was
not measured. We made a natural assumption that for collision
of light nuclei the proton and neutron spectra coincide. We also
assumed that the fraction of energy in the fragments remains
approximately the same for collisions of heavy nuclei.)

There are other effects to be accounted for in Eq. (19)
leading to a modification of the initial transferred energy to
be eventually available for evaporation. The final excitation
energy is obtained starting with the initial transferred energy
calculated by considering the broken potential bonds due the
removal of nucleons, as described in Sec. III. In Eq. (20)
we kept track of contributions which decrease the available
energy. Namely we took into account that if a correlated
or uncorrelated nucleon is emitted from the region close
to the interaction surface, its kinetic energy is subtracted
from the available energy; on the other hand, if the same
nucleon is absorbed by the spectator system while propagating
through it, the corresponding energy is put back into the total.
We included also the contribution to the evaporation energy
of the nucleons produced in the primary elastic scatterings
which were absorbed by the spectator system. The energy per
evaporating nucleon T0 is then obtained by replacing Eq. (19)
with

Neff ( T0 + ε) = −V ′ − Temit + Tabs, (20)

with Temit and Tabs the total energies due to nucleon emission
and absorption in the final state, respectively.

The same procedure is used to determine the momentum
distributions of produced nucleons. When nucleons are emitted
from the interaction surface, they are assigned a momentum k

with probability distribution n0(k) or n1(k) if they are uncor-
related or correlated, respectively. If they survive propagation
through the spectators their momentum is collected. The same
algorithm is used for the nucleons experiencing the elastic
scattering in the initial state. These nucleons are assigned
initial momenta with probability n0(k) + n1(k). Momentum
distribution and other results will be presented in the following.

F. Results of calculations

Results for the calculation of the momentum distributions
are shown in Figs. 7 and 8. The curves correspond to the
inclusion of the different effects we have described in this
section. The curve labeled Evaporation corresponds to the
energy per emitted nucleon obtained by dividing the total
potential energy by the number of the expected free nucleons.
The curve labeled Total is obtained from Eq. (20), where we
account for (i) the energy going into the kinetic energy of the
emitted particles Temit and the kinetic energy of the absorbed
particles Tabs going into additional available energy and (ii) the
number of nucleons emitted in the first stage from the surface
close the interaction. These are either high-momentum or soft
nucleons. The number of nucleons emitted from the surface
is subtracted from the number of free nucleons which are
produced in the evaporation. The curves labeled Correlation
correspond to the inclusion of high-momentum-correlated
nucleons; curves Soft correspond to the inclusion of soft
nucleons emitted from the surface, which are the nucleons left
after subtracting the correlated from the active ones; the curves
labeled Elastic correspond to the contributions from primary
elastically scattered nucleons. Note that subsequent absorption
from the residual system by elastic rescattering is taken into
account for all the separate contributions. The results of our
calculation of the energy per evaporating nucleon are shown in
Fig. 9 as a function of the impact parameter [Fig. 9(b)]. Both
the result including only evaporation and total result [Eq. (20)]
are given. Figure 9(a) shows the dependence of the number
of interacting and spectator nucleons on b of the number of
spectators.

We would like to comment on data from Ref. [12].
Momentum distributions of detected nucleons were explicitly
measured; nonetheless, a direct comparison with our results
may not be trivial. The authors have compared the observed
momentum distribution with the theoretical momentum distri-
bution in nuclei, which is not consistent with the observation
that (i) most of the nucleons are emitted by the evaporation
mechanism, whose distribution is given by Eq. (18) and it is

FIG. 7. (Color online) The momentum distributions k2 n(k) of directed flow of emitted nucleons in Pb-Pb collisions at PLab = 160 GeV,
calculated within our model at b = 0 within different approximations. (a) Comparison of the input momentum distributions n0(k) and n1(k)
against the MC output considering only evaporation and emission of correlated nucleons (no primary elastic scattering and no additional soft
nucleons emitted from the surface taken into account); the contribution of the high-momentum tail of n1(k) is evident in the sum. (b) The total
momentum distributions from MC within the various approximations described in the text. The normalization of each curve is set to the actual
number N of nucleons falling into the corresponding definition, according to 4π

∫
dkk2n(k) = N .
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FIG. 8. (Color online) The momentum distributions k2 n(k) of emitted nucleons in Pb-Pb collisions at PLab = 160 GeV, calculated within
our full model. We show the different contributions due to evaporation (black dotted) and the sum of all other nucleon emission mechanisms,
namely soft nucleons from the surface, correlated nucleons and elastically scattered nucleons (red dashed); the total momentum distribution is
also shown (green solid). [(a)–(c)] The momentum distributions plotted for impact parameters of b = 0, b = 6, and b = 12 fm, respectively.
Note that for central collisions the most relevant contribution to the total normalization is due to the high-momentum part, as expected, while
when b increases the dominant contribution is due to evaporation.

expected to differ significantly from the momentum distri-
bution of nucleons inside the nucleus and (ii) the observed
momentum distribution depends on the transferred energy in
the process of removing one nucleon while the momentum dis-
tribution is the integral of the spectral function for one nucleon
removal over all the removal energy range; a calculation of the
effects of the integration of the spectral function on a limited
region of energy may be found in Ref. [25]. (iii) We suggest
that only the high-momentum part of the observed momentum
distribution can be compared with the nucleon momentum
distribution in nuclei n(k), since it is due to direct emission
of correlated nucleons whose momentum may be distorted by
the propagation through the spectator system but still will be
similar to the original n(k). Moreover, the high-momentum
region of the observed momentum distribution is also affected
by primary elastically scattered nucleons, which must be taken
into account. Data from Ref. [12] exhibits a change in slope
of the momentum distribution of protons as well as a strong
change of the shape of the transverse-momentum distribution
for nucleons with total energy equal to EA/A. The first effect
may be due to the high-momentum, correlated nucleons, as

suggested by results of calculations shown in Fig. 7(b). While
the second effect is likely to be due to the elastic-scattering
mechanism.

G. Sensitivity to the parameter rmax

Here we return to discussion of rmax and sensitivity of the
results to a specific choice of rmax which played an important
role in identifying the active nucleons. We already gave our
rationale for the choice of rmax ≈ 2 fm. An alternative way
to determine rmax is to require that it is equal to the average
maximum distance from the nearest interacting nucleons of
spectators with potential energy larger than the average 〈V〉/A.
This definition leads to the value of rmax = 2 fm, which is
close to our qualitative expectations. To explore the sensitivity
to this parameter we varied it between 1.8 and 2.2 fm. The
results are shown in Fig. 11. It can be seen that the final
result for the energy per evaporating nucleon [Fig. 11(a)]
changes by at most 10%, with an even smaller effect on
the momentum distribution for k < 300 MeV/c [Fig. 11(b)].

FIG. 9. (Color online) (a) Spectators in a Pb-Pb collision within a Glauber model at NA49 energy (PLab = 160 GeV per nucleon). The total
number of spectators Nspec, unbound nucleons Nnuc, and high-momentum nucleons Ncor are shown. Data from the NA49 experiment [11] was
used to determine the spectators/emitted nucleons ratio. (b) The kinetic energy per emitted soft nucleon as calculated within our model. We
show the case in which only evaporation is taken into account (black solid line) and the case when all the effects described in Sec. IV are taken
into account (red dashed line).
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FIG. 10. (Color online) Sketch of the asymmetry of emission of high-momentum, correlated nucleons defined in Eq. (21) and quantitatively
evaluated in Fig. 12, in Pb-Pb collisions; the preferred direction of emission is shown with arrows as a function of the impact parameter which
is oriented as in Fig. 1 and its values through the different panels are (a) b = 1 fm, (b) b = 5 fm, (c) b = 10 fm, and (d) b = 15 fm.

The effect is larger for high-momentum nucleons. However, it
should be stressed that reducing rmax to less than 2 fm would
produce an unrealistically low number of correlations, since

the NN correlation functions of Eq. (7) have been shown
by many-body calculations (see the correlation functions in
Refs. [17] and [27] and references therein) to extend up to

FIG. 11. (Color online) Dependence of (a) the total potential energy per evaporating nucleon and (b) the correlated contribution to the
momentum distribution. We show three values of the cutoff distance below which we select active nucleons among the spectator ones. The
distance is calculated from the nearest interacting nucleon.
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relative distances of at least 2 fm. Also, we checked that
the variation of rmax leads to a very small modification of
the asymmetry of the emission which we discuss in the next
section.

V. ANGULAR DEPENDENCE OF DIRECTED FLOW
OF EMITTED HIGH-MOMENTUM NUCLEONS

One of the aims of this work is to estimate the asymmetry of
emerging from the AA collision. These nucleons are generated
on the inner surface left after the fast propagation of the
projectile nucleus; we define N+ to be the number of nucleons
ending up in the hemisphere oriented toward free space and
N− its analog in the opposite hemisphere. We can define the
impact parameter-dependent asymmetry as follows:

A(b) = N+ − N−
N+ + N−

. (21)

We expect that the few nucleons surviving in a central collision
will find little or no matter to propagate through in any
direction, resulting in A(0) = 0. The situation is depicted in
Fig. 10 for different impact parameters ranging from b = 1 fm
(top left panel) to b = 15 fm (bottom right panel). In the first
case of almost central collisions, few nucleons are left; they
are far from each other and free to propagate. For increasing b,
it can be seen how an asymmetry arises in the rest frame of
the target nucleus, since nucleons are produced with random
momentum direction and they can end up propagating into
free space or through the spectator system which prevents
emitted nucleons to propagate freely. For a large impact
parameter, the asymmetry of Eq. (21) which is due only to
the correlations should approach the value given by taking
N− � 0.5N+, which is the fraction of nucleons surviving after
the scatterings through the spectator matter at large impact
parameters. This would result in A(b) � 0.3. The calculations
of A(b) performed within our model are shown in Figs. 12
and 13 and confirm these expectations. Figure 12 shows the
asymmetry including nucleons from the different emission

mechanisms. The contribution due to correlations is, as already
stated, strongly asymmetric; elastically scattered nucleons lead
to similar asymmetry as they also originate from the surface;
soft nucleons originating from the surface somewhat increase
asymmetry. The largest contribution, as far as the number of
nucleons is concerned, is from the soft, evaporating ones and
makes the total asymmetry much smaller. Figure 13 shows
the individual contributions to N+ and N− from correlated
nucleons alone and from the total number of emission of
spectator nucleons. Note that for b > 12 fm we used an
extrapolation of the NA49 data [11] for the number of nucleons
produced at a given impact parameter for determining the
fraction of energy taken from nucleons and fragments, as
described in Sec. IV.

In this analysis we did not take into account the effect of the
Coulomb interaction between nuclei which gives fragmenting
systems of opposite transverse momenta. The effect gives
an asymmetry of the opposite sign than the effect we
discussed here. Our effect is large for large nucleon momenta,
while the Coulomb effect is most important for the lowest-
momentum neutrons. We will consider the Coulomb effect
elsewhere.

We mentioned in the Introduction that RHIC experiments
observed displacement of the core of the neutron shower from
the center of the detector. However, this effect is dominated
by low-momentum neutrons and may be more sensitive to
the Coulomb effect. Hence it would be important to study
asymmetry separately for different ranges of the neutron
momenta as well as study experimentally correlation of the
strengths and directions of asymmetries of two fragmentation
regions. When the origin of the asymmetry is cleared out it
would be possible to use this effect to solve the ambiguity
in the sign of the impact parameter b. Note here that the
correlation of v1 with corresponding asymmetry for hadrons at
the rapidities away from the central one was observed at RHIC.
However, due to the lack of understanding of the origin of the
neutron asymmetry it was impossible to use this observation
to constrain the current models of AA collisions at RHIC.

FIG. 12. (Color online) (a) The asymmetry defined in Eq. (21) within the approximations described in Sec. IV; the curve labeled with Total
corresponds to the inclusion of both correlated and soft nucleons from the surface as well as elastic scattering, absorption, and soft nucleons
from evaporation. Correlations, soft nucleons from the surface, and elastic scatterings exhibit a strong asymmetry, while soft nucleons from
evaporation are emitted isotropically. (b) The fraction of emitted high-momentum nucleons which survive after scattering off the spectator
system, disregarding any angular dependence.
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FIG. 13. (Color online) The number of high-momentum nucleons emitted in the hemisphere containing the projectile (N+; solid curve) and
in the opposite one (N−; dashed curve); the line and symbol curve represent the asymmetry defined in Eq. (21). (a) Only correlated nucleons;
(b) quantities calculated using our model with all the different mechanisms of nucleon emissions, including soft nucleons from evaporation, as
described in Sec. IV.

We investigated the dependence of the A(b) on the cutoff
distance from the closest interacting nucleon, as discussed
in the previous section. We find negligible effects on the
asymmetry. This is due to the fact that the emission of
correlated nucleons is highly asymmetric, but the asymmetry
is dominated by isotropic emissions in any case so the small
relative fraction of correlations practically does not affect A(b).

VI. COMPARISON WITH THE ABRASION-ABLATION
MODEL

In this section we compare our approach for the calculation
of the excitation energy of the spectator system with the one
employed in Ref. [1]. In the cited Ref. [1], the authors use
the abrasion-ablation model for hadronic interactions and the
relativistic electromagnetic dissociation model for electromag-
netic interactions of relativistic heavy ions to describe data of
charge-changing cross section in Pb-A collisions. In particular,
they address the question of how to estimate the excitation
energy of a nuclear system formed by sudden removal of
several nucleons, which is also one of the main aims of
the present work, and describe the decay of excited nuclear
systems within the statistical multifragmentation model. The
abrasion model describes participant and spectator nucleons
with participants originating from the overlapping parts of
the colliding nuclei, while their nonoverlapping parts are
treated as spectators which represent excited remnants of the
initial nuclei which undergo secondary decay by statistical
evaporation and fission models in the so-called ablation model.

The NN interaction probability in Ref. [1] is defined
through (uncorrelated) nuclear thickness functions, while in
our approach correlations are taken into account automatically
by using improved configurations from Ref. [7]. The main
difference then consists in the estimate of the spectator system
(prefragment, in the terminology of Ref. [1]) excitation energy.
We use similar values of NN cross sections. The authors of
Ref. [1] describe excitation energy by the abrasion model,
which basically evaluate the energy due to a hole in the
uncorrelated ground state of the initial nucleus, while we

use the realistic calculation of Sec. III; moreover, in Ref. [1]
it is explicitly mentioned that the procedure is not well
defined for a large number of removed nucleons and that
their method of calculating excitation energies of prefragments
via the hole state densities should be considered only as a
model assumption. A comparison with other approaches was
also done in Ref. [1], finding for the excitation energy per
nucleon a value of �40 MeV using the ablation model and
�27 MeV using a more refined formula, the latter estimate
being confirmed by data; we note that the value of �27 MeV is
in good agreement with our findings of Fig. 9, where this value
is just about our estimate for b � 3–4 fm; we believe that one of
the important improvement of our approach is precisely the
possibility of giving an impact-parameter dependent estimate
of the excitation energy, which was untouched by any of
the previous approaches. As a last remark, let us stress
that in Ref. [1] it was mentioned that their model should
be complemented with FSI, which we take into account in
our estimate of the energy per nucleon, and the additional
energy brought in by elastically scattered primary nucleons
subsequently absorbed by the spectator system, which we also
considered.

VII. CONCLUSIONS

We have demonstrated that the underlying dynamics of the
process of the nucleus fragmentation in high-energy nucleus-
nucleus collisions is strongly related to the the presence of
short-range correlations in nuclei. We predict a number of
new phenomena which could be tested in the current and
forthcoming heavy ion experiments, including the dependence
of the momentum spectrum on the impact parameter strong
asymmetry of the emission nucleons along the b direction.
Such an asymmetry as well as other predicted effects may be
of use for more detailed analyses of dynamics of the heavy
ion collisions. In particular, it would allow one to investigate
whether similar asymmetry is present for the hadrons produced
in AA collisions away from zero center of mass rapidity. We
also predict a close connection of the spectrum of nucleons in
the central collisions and momentum distribution in the nuclei.
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We are now in the process of implementing the discussed
effects in a complete MC event generator of AA collisions and
results will be presented elsewhere [26].
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