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Radiative energy loss in an anisotropic quark-gluon plasma
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We calculate radiative energy loss of heavy and light quarks in an anisotropic medium (static) in a first-order
opacity expansion. Such an anisotropy can result from the initial rapid longitudinal expansion of the matter
created in relativistic heavy-ion collisions. Significant dependency of the energy loss on the anisotropy parameter
ξ and the direction of propagation of the partons with respect to the anisotropy axis is found. It is shown that the
introduction of early-time momentum-space anisotropy can enhance the fractional energy loss in the direction of
the anisotropy, whereas it decreases when the parton propagates perpendicular to the direction of the anisotropy.
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I. INTRODUCTION

One of the goals for the ongoing relativistic heavy-ion
collision experiments at the Relativistic Heavy Ion Collider
(RHIC) and the upcoming experiments at the CERN Large
Hadron Collider (LHC) is to produce a quark-gluon plasma
(QGP) and study its properties. According to the prediction
of lattice quantum chromodynamics, a QGP is expected to be
formed when the temperature of nuclear matter is raised above
its critical value, Tc ∼ 170 MeV or, equivalently, the energy
density of nuclear matter is raised above 1 GeV/fm3 [1]. The
possibility of QGP formation at the RHIC experiment, with an
initial density of 5 GeV/fm3, is supported by the observation of
high pT hadron suppression (jet quenching) in the central Au-
Au collisions compared to the binary-scaled hadron-hadron
collisions [2]. Apart from jet quenching, several possible
probes have been studied in order to characterize the properties
of QGPs.

However, many properties of QGPs are still poorly under-
stood. The most debated question is whether the matter formed
in the relativistic heavy-ion collisions is in thermal equilibrium
or not. The measurement of the elliptic flow parameter and its
theoretical explanation suggest that the matter quickly comes
into thermal equilibrium (with τtherm < 1 fm/c, where τtherm is
the time of thermalization) [3]. On the contrary, a perturbative
estimation suggests a relatively slower thermalization of QGPs
[4]. However, recent hydrodynamical studies [5] have shown
that, due to the poor knowledge of the initial conditions,
there is a sizable amount of uncertainty in the estimate of
thermalization or isotropization time. It is suggested that
(momentum) anisotropy-driven plasma instabilities may speed
up the process of isotropization [6], in which case one is
allowed to use hydrodynamics for the evolution of the matter.
However, instability-driven isotropization is not yet proven at
RHIC and LHC energies.

In the absence of a theoretical proof favoring the rapid
thermalization and the uncertainties in the hydrodynamical fits
of experimental data, it is very hard to assume hydrodynamical
behavior of the system from the very beginning. Therefore, it
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has been suggested to look for some observables which are
sensitive to the early time after the collision. For example,
jet quenching vis-à-vis energy loss of partons could be an
observable where the initial-state momentum anisotropy can
play important role. This is the issue that we address here.

It is known that the energy loss of partons (also dubbed
“jet quenching”) in QCD plasma can proceed in two ways: by
two-body scattering and also via gluon radiation. These are
known as collisional and radiative energy loss, respectively.
The phenomena of jet-quenching has been investigated by
various authors [2] More recently, the nonphotonic single-
electron data show more suppression than expected, which
cannot be explained by radiative loss alone. A substantial
amount of work has been done to look into this issue in recent
times [2].

Note that the existing calculations on energy loss have been
performed in isotropic QGP, which is true immediately after
its formation [7]. However, subsequent rapid expansion of the
matter along the beam direction causes faster cooling in the
longitudinal direction than in the transverse direction [4]. As
a result, the system becomes anisotropic with 〈pL

2〉 � 〈pT
2〉

in the local rest frame. At some later time when the effect
of the parton interaction rate overcomes the plasma expansion
rate, the system returns to the isotropic state again and remains
isotropic for the rest of the period. Thus, during the early stage,
the plasma remains anisotropic and any calculation of energy
loss should, in principle, include this aspect. The collisional
energy loss in anisotropic media for heavy fermions has been
calculated in Refs. [8,9]. In these calculations it is found that
the deviations from the isotropic results are of the order of 10%
for ξ = 1 and of the order of 20% for ξ = 10. It is observed that
the collisional energy loss varies with the angle of propagation
by up to 50%.

Recently, in Ref. [10], the transport coefficient q̂ has
been calculated in anisotropic media which, in turn, affects
the radiative energy loss. Here, we attempt to provide a
quantitative estimate of radiative energy loss by modifying the
static-scatterer model [11] appropriate for anisotropic media.

The other interesting aspect which, in recent years, has
attracted considerable attention, is the possibility of the growth
of unstable modes in an anisotropic plasma [12]. For example,
in Ref. [13] the authors calculate q̂ for a two-stream plasma and
show that the momentum broadening grows exponentially in
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time as the spontaneously growing fields exert an exponentially
growing influence on the propagating parton. This momentum
broadening of a fast parton which radiates gluons due to
scattering off the plasma constituents therefore controls the
radiative energy loss [14]. In an evolving plasma this is an
important component which, however, is not included in the
present manuscript. Therefore the results we report here can be
considered to be something like a zeroth-order approximation.

The plan of the paper is the following. In Sec. II we
briefly mention how to calculate the two-body potential in
an anisotropic medium along with the modified expression
for the fractional energy loss. Section III will be devoted to
discussing the results. Finally, we conclude in Sec. IV.

II. FORMALISM

In this section, we recapitulate the basic formalism of the
radiative energy loss of a fast-moving parton in an infinitely
extended static isotropic plasma [11,15,16]. As in Ref. [11]
we restrict ourselves to the radiative energy loss quarks at
first order in opacity involving three diagrams, as shown
in Fig. 1, where we assume that an on-shell heavy quark
produced in the remote past is propagating through an infinite
QCD medium that consists of randomly distributed static
scattering centers. In the original Gyulassy-Wang formalism
[17] static interactions are modeled here as color-screened
Yukawa potentials originally developed for the isotropic QCD
medium and given by

Vn = V (qn)ei �qn·�xn

= 2πδ(q0)v(�qn)e−iqnxnTan
(R) ⊗ Tan

(n), (1)

with v(�qn) = 4παs/(�q2
n + µ2), where µ is the Debye mass.

The quantity xn is the location of the nth scattering center
and T (summed over an) denotes the color matrices of the
parton and the scattering center. Note that the potential has
been derived by using a hard thermal loop (HTL) propagator
in a QGP medium. In a plasma with momentum anisotropy,
the two-body interaction, as expected, becomes direction
dependent. It has been observed that, on a distance scale on the
order of the inverse Debye mass, the attraction for the quarks
aligned along the direction of the anisotropy is stronger than
for transverse alignment [18]. Therefore, the radiative energy
loss will also depend on the direction of momentum of the
quarks emitting Bremsstrahlung gluons. This necessitates the
introduction of an anisotropy-dependent potential to estimate
the radiative energy loss in a plasma having an anisotropic
momentum distribution.

The heavy-quark potential in an anisotropic plasma has
recently been calculated in Ref. [18], for which one starts with

FIG. 1. Feynman diagrams contributing to the soft-gluon radia-
tion in a static medium to first order in opacity.
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FIG. 2. (Color online) Fractional energy loss for light quark when
mean free path is given by Eq. (19).

the retarded gluon self-energy expressed as [19]

�µν(P ) = g2
∫

d3k

(2π )3
vµ ∂f (�k)

∂Kβ

(
gνβ − vνP β

P · v + iε

)
. (2)

We have adopted the following notation for four vectors:
P µ = (p0, �p) = (p0, p, pz); that is, �p (with an explicit vector
superscript) describes a three-vector while p denotes the
two-vector transverse to the z direction.

To include the local anisotropy in the plasma, one has to cal-
culate the gluon polarization tensor incorporating anisotropic
distribution functions of the medium. This subsequently can be
used to construct an HTL-corrected gluon propagator which,
in general, assumes a very complicated from. Such an HTL
propagator was first derived in Ref. [20] in the time-axial
gauge. A similar propagator has also been constructed in
Ref. [18] to derive the heavy-quark potential in an anisotropic
plasma, which, as we know, is given by the Fourier transform
of the propagator in the static limit.

The self-energy, apart from momentum P µ, also depends
on a fixed anisotropy vector nµ[= (1, �n)] and �µν can be
cast in a suitable tensorial basis appropriate for an anisotropic
plasma in a covariant gauge in the following way [18]:

�µν = αAµν + βBµν + γCµν + δDµν, (3)

where the basis tensors are constructed out of pµ, nµ, and the
four-velocity of the heat bath uµ. The detailed expressions for
the quantities that appear in Eq. (3) can be found in Ref. [18].
The anisotropicity enters through the distribution function

f ( �p) = fiso

√
�p2 + ξ ( �p · �n)2, (4)

where the parameter ξ is the degree-of-anisotropy parameter
(−1 < ξ < ∞) and is given by ξ = 〈p2〉/(2〈p2

z 〉) − 1. Note
that ξ can also be related to the shear viscosity [21].

Since the self-energy is symmetric and transverse, all
the components are not independent. After a change of
variables (p′ = �p2[1 + ξ (p̂ · �n)2]), the spatial components can
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be written as

�ij = µ2
∫

d�

4π
vi v

l + ξ (�v · �n)nl

1 + ξ (�v · �n)2

(
δjl + vjpl

P · v + iε

)
. (5)

Now α, β, γ , and δ are determined by the following contrac-
tions:

pi�ijpj = �p2β,

Ailnl�ijpj = [ �p2 − (n · P )2]δ,

Ailnl�ijAjknk = �p2 − (n · P )2

�p2
α + γ,

Tr�ij = 2α + β + γ, (6)

where the expressions for α, β, γ , and δ are given in Ref. [20].
After knowing the gluon HTL self-energy in anisotropic

media the propagator can be calculated. The result, after some

cumbersome algebra [10,18], is

µν = 1

(P 2 − α)
[Aµν − Cµν] + G

[
(P 2 − α − γ )

ω4

P 4
Bµν

+ (ω2 − β)Cµν + δ
ω2

P 2
Dµν

]
− λ

P 4
P µP ν, (7)

where

−1
G = (P 2 − α − γ )(ω2 − β) − δ2[P 2 − (n · P )2]. (8)

Now the momentum space potential can be obtained from
thestatic gluon propagator in the following way:

v(q, qz, ξ ) = g200(ω = 0, q, qz, ξ )

= g2
�q2 + m2

α + m2
γ(�q2 + m2

α + m2
γ

)(�q2 + m2
β

) − m2
δ

, (9)

where

m2
α = − µ2

2q2
√

ξ

[
q2

z tan−1(
√

ξ ) − qz �q2√
�q2 + ξq2

tan−1

( √
ξqz√

�q2 + ξq2

)]
,

m2
β = µ2

[
√

ξ + (1 + ξ ) tan−1(
√

ξ )](�q2 + ξq2) + �q2(1+ξ )√
�q2+ξq2

tan−1

( √
ξqz√

�q2+ξq2

)
2
√

ξ (1 + ξ )(�q2 + ξq2)
,

m2
γ = −µ2

2

⎡
⎣ �q2

ξq2 + �q2
−

1 + 2q2
z

q2√
ξ

tan−1(
√

ξ ) + qz �q2(2�q2 + 3ξq2)√
ξ (ξq2 + �q2)3/2q2

tan−1

( √
ξqz√�q2 + ξq2

)⎤
⎦ ,

m2
δ = − πµ2ξqzq|�q|

4(ξ �q2 + �q2)3/2
, (10)

with �q = (q, qz). For the general anisotropy vector �n we
have q = �q − (�q · �n)�n and qz = �q · �n.

For qz = 0, the potential in an anisotropic medium simpli-
fies to

v(q, ξ ) = 4παs

q2 + R(ξ )µ2
, (11)

R(ξ ) = 1

2

[
1

1 + ξ
+ tan−1 √

ξ√
ξ

]
. (12)

For small anisotropicity and qz = 0, the two-body interac-
tion can be written as

v(q, ξ � 1) = 4παs

[
1

q2 + µ2
+ 2

3

µ2ξ

(q2 + µ2)2

]
. (13)

Now, in Fig. 1, the parton scatters with one of the
color centers with the momentum Q = (0, q, qz) and radiates
a gluon with momentum K = (ω, k, kz). The method for
calculating the amplitudes of the diagrams depicted in Fig.
1 is discussed in Refs. [15,16] and we shall quote the main
results only. The quark energy loss is calculated by folding
the rate of gluon radiation �(E) with the gluon energy by

assuming ω + q0 ≈ ω. In this approximation one finds

dE

dL
= E

DR

∫
xdx

d�

dx
. (14)

Here, DR is defined as [ta, tc][tc, ta] = C2(G)CRDR where
C2(G) = 3, DR = 3, and [ta, tc] is a color commutator (see
Ref. [11] for details). The quantity x is the longitudinal
momentum fraction of the quark carried away by the emitted
gluon.

where in anisotropic media we have

x
d�

dx
= CRαs

π

L

λ

∫
d2k
π

d2q
π

|v(q, qz, ξ )|2 µ2

16π2α2
s

×
[

k + q
(k + q)2 + χ2

− k
k2 + χ

]2

. (15)

In the last expression, v(�q, ξ ) is the two-body quark-quark
potential given by Eq. (9) and χ = m2

qx
2 + m2

g , where m2
g =

µ2/2 and m2
q = µ2/6.

In the present case, we assume that the parton is propagating
along the z direction and the anisotropy vector �n makes an
angle θn with the z axis [i.e., �n = (sin θn, 0, cos θn)]. Thus,
θn describes the direction of propagation of the parton with
respect to the anisotropy axis. In such cases, we replace q
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and qz in Eq. (9) by q →
√

q2 − q2 sin2 θn cos2 φ and qz →
|q| cos φ sin θn, where q = (|q| cos φ, |q| sin φ).

For arbitrary ξ the radiative energy loss can be written as

E

E
= CRαs

π2

Lµ2

λ

∫
dxd2q

|v(q, qz, ξ )|2
16π2α2

s

[
−1

2
− k2

m

k2
m + χ

+ q2 − k2
m + χ

2
√

q4 + 2q2
(
χ − k2

m

) + (
k2
m + χ

)2

+ q2 + 2χ

q2
√

1 + 4χ

q2

ln

⎛
⎜⎝k2

m + χ

χ

(q2 + 3χ ) +
√

1 + 4χ

q2 (q2 + χ )(
q2 − k2

m + 3χ
) +

√
1 + 4χ

q2

√
q4 + 2q2

(
χ − k2

m

) + (
k2
m + χ

)2

⎞
⎟⎠

⎤
⎥⎦ . (16)

In the above expression, λ denotes the average mean-free path
of the quark given by

1

λ
= 1

λg

+ 1

λq

, (17)

which in this case would be ξ -dependent. In the last expression
λg and λq correspond to the contributions coming from q-g
and q-q scatterings, respectively.

Explicitly, with Eq.(11), we have

λ−1
i = CRC2(i)ρi

dA

∫
d2q

4α2
s

[q2 + R(ξ )µ2]2
, (18)

where CR = 4/3, C2(i) is the cashimir for the di-dimensional
representation and C2(i) = (N2

c − 1)/(2Nc) for quark and
C2(i) = Nc for gluon scatterers. The quantity dA = N2

c − 1
is the dimensionality of the adjoint representation and ρi is the
density of the scatterers. Using ρi = ρ iso

i /
√

1 + ξ we obtain

1

λ
= 18αsT ζ (3)

π2
√

1 + ξ

1

R(ξ )

1 + NF /6

1 + NF /4
, (19)

where NF is the number of flavors. For ξ → 0 Eq. (19) reduces
to the well-known result [11]

1

λ
= 18αsT ζ (3)

π2

1 + NF /6

1 + NF /4
. (20)

It is evident that the changes from the isotropic medium
appear here as the coefficient R(ξ ) of the Debye mass and
the coefficient 1/

√
1 + ξ of the number density. In the limit

ξ → 0 we recover all the previously known results, as may be
checked from Ref. [11].

III. RESULTS

For the quantitative estimates of the fractional energy
loss in an anisotropic medium, first we consider a plasma
at a temperature T = 250 MeV with the effective number
of degrees of freedom NF = 2.5 with the strong coupling
constant αs = 0.3 and L = 5 fm. We also note that the
mean-free path of the propagating parton depends on the
anisotropy parameter ξ [see Eq.(19)]. The fractional energy
loss for nonzero ξ (ξ = 0.5) for light flavor is shown in
Fig. 2. As is evident from Eq. (16), the energy loss in
anisotropic media depends on the angle of propagation of the
fast partons with respect to the anisotropy axis (�n). This is also
illustrated in Fig. 2. It is observed that, for a nonzero value of
the anisotropy parameter ξ , the fractional energy loss increases
in the direction parallel to the anisotropy axis. However, away
from the anisotropy axis, the fractional energy loss decreases
because the quark-quark potential is stronger in the anisotropy
direction.
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FIG. 3. (Color online) Same as Fig. 2 for ξ = 1 (left panel) and for ξ = 5 (right panel).

044904-4



RADIATIVE ENERGY LOSS IN AN ANISOTROPIC . . . PHYSICAL REVIEW C 83, 044904 (2011)

0 10 20 30 40
p (GeV/c)

0

0.2

0.4

0.6

0.8

1

∆E
/E isotropic

θn=0

θn=π/6

θn=π/2

T=500 MeV, ξ=1, αs=0.3

0 10 20 30 40
p (GeV/c)

0

0.1

0.2

0.3

0.4

0.5

∆E
/E

isotropic
θn=0

θn=π/6

θn=π/2

T=500 MeV, ξ=1, αs=0.3

FIG. 4. (Color online) Same as Fig. 2 for charm (left panel) and bottom quarks (right panel) with ξ = 1 and T = 500 MeV.

For higher values of the anisotropy parameter ξ the results
are shown in Fig. 3. It is seen that the fractional energy loss
increases with ξ in the anisotropy direction. For ξ = 1 and ξ =
0.5, the fractional energy loss increases marginally for θn =
π/6 and it becomes larger for ξ = 5 for the same value of θn.
However, in the perpendicular direction the fractional energy
loss decreases substantially. Note that, for small anisotropy,
the results are almost similar to the case when the mean-free
path is independent of the anisotropy parameter. However, for
larger values of ξ the result changes reasonably, as can be
verified by calculating λ from Eq. (19) for larger anisotropy
[see Fig. 2].

For the heavy quarks (i.e., for charm and bottom), the results
are shown in Fig. 4 for ξ = 1. Similar to light quarks, we
find enhancement in the anisotropy direction as well as for
θn = π/6. However, for θn = π/2 the energy loss (fractional)
decreases for the reasons mentioned earlier.

IV. SUMMARY

In this work, we have calculated the fractional energy loss
due to gluon radiation in an infinite-size anisotropic medium
treating the scatterer as providing a screened coulomb-like

potential. We have seen that the potential gets modified in
anisotropic media. It is observed that the fractional energy
loss depends on the direction of propagation of the fast partons
with respect to the anisotropy axis as well as on the anisotropy
parameter ξ . An enhancement is seen in the direction parallel to
the anisotropy direction �n where, as in the transverse direction,
it reduces due to weaker quark-quark interaction. It is also
observed that, for higher values of ξ , the fractional energy loss
increases for a given direction with respect to the anisotropy
axis. We also note that, due to the dependency of the mean-free
path on the anisotropy parameter, the energy loss increases as
ξ increases.

We do not include the recoil of the scatterer in this work.
However, this condition can be relaxed by incorporating the
recoil corrections, which play an important role, as shown
in Ref. [11]. This will be included in a future presentation.
Furthermore, the finite-size effect on the radiative energy
loss in anisotropic media would also be interesting to
study.

The present calculation can be extended to include the effect
of the growth of unstable modes to obtain results valid in a more
realistic scenario, as mentioned in the introduction. Inclusion
of such effects might modify the quantitative estimate of the
nuclear modification factor at RHIC and LHC energies.
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